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Long-chain esters (LCEs) are known to affect aroma perception, but the
mechanism of their effects remains unclear. In this study, ethyl palmitate (EP),
an important LCE inOsmanthus fragrans flower absolute (OFFA), was selected as
a target to identify its role and mechanism. The release characteristics of
10 aroma compounds from OFFA with and without EP were obtained by
headspace gas chromatography mass spectrometry (HS-GC/MS) and
olfactometry evaluation, respectively. The results show that EP changes the
release behaviors of volatile compounds in solution, increases their olfactory
detection thresholds (ODTs), and reduces the equilibrium headspace
concentrations. According to Whitman’s two-film model, EP was found to
change the partition coefficients and mass transfer coefficients of the
compounds between the liquid and gas phases. This indicates that EP plays an
important role in the scent formation of a flavor product and that it is very valuable
for the style design of the flavor product.
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1 Introduction

Osmanthus fragrans flowers are widely used in perfume production owing to their rich
and captivating fragrance (Liu et al., 2022). Therefore, there are extensive research reports in
literature on the volatile compounds of Osmanthus (Hu et al., 2009; Hu et al., 2010; Lei et al.,
2016). However, understanding only the volatile components in a material is not sufficient
to fully predict aroma perception, as this process depends heavily on the interactions
between the volatile and non-volatile compounds (Teixeira et al., 2013). It is commonly
known that some low-volatility or non-volatile compounds are also important components
of O. fragrans flower absolute (OFFA) (He and Qi, 2020) and that these account for a
relatively high content of around 25% of the components (Qiu, 2000). Long-chain esters
(LCEs) usually represent the low-volatility or non-volatile components in OFFA. The
relationship between the LCE content and OFFA release behavior is not completely clear.
Therefore, investigation of the interactions between LCEs such as ethyl palmitate (EP) and
the aroma components in OFFA is crucial for better understanding of the role of
Osmanthus aroma in perfumery.
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The process of release of aroma components from the bulk to gas
phases plays an important role in aroma perception, especially for a
homogenous solution. Several researchers have reported the factors
influencing the release of aroma compounds (Rabe et al., 2003;
Mitropoulou et al., 2011; Lorrain et al., 2013; Villamor et al., 2013;
Rahn et al., 2019; Guo et al., 2020; Gabler et al., 2024; Xiao et al.,
2024); these factors depend on not only the physicochemical
properties but also the influence of low-volatility or non-volatile
components in the solution. As a result, the content of low-volatility
or non-volatile components in the solution determines the amount
of aroma compounds transferred to the headspace, affecting the
overall aroma profile (Roussis and Sergianitis, 2008; Cameleyre et al.,
2018; Niu et al., 2020).

Recently, some researchers have focused on the LCEs in the
flavor system. Boothroyd et al. (2012) reported the influences of
LCEs (C6-C16) on volatile partitioning in a whisky model system.
Xiao et al. (2019) reported that ethyl tetradecanoate could enhance
the floral scent and overall aroma of rose oil. Hsieh et al. (2014)
found that EP, ethyl oleate, and ethyl linolenate could significantly
alter the sensory profiles of Taiwanese rice spirits. These studies

focused on alterations in the release amounts of the aroma
compounds, partition coefficients, or olfactory intensities.
However, insufficient attention was paid to the changes in the
release kinetics. Further research is therefore essential to elucidate
why changes in the LCEs affect aroma perception.

The present study aimed to investigate the effects of EP on the
release of the main aroma components from OFFA. Accordingly,
the releases of 10 aroma compounds in solution were analyzed using
headspace gas chromatography mass spectrometry (HS-GC/MS)
and subjected to olfactory evaluations at various EP concentrations.
The release kinetics of the compounds were discussed on the basis of
Whitman’s two-film model.

2 Materials and methods

2.1 Chemicals and materials

OFFA was purchased from Guangzhou Rihua Flavor &
Fragrance Co., Ltd. (Guangzhou, China). All the chemicals
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(purity >98%) were analytical grade and purchased from various
chemical reagent companies as follows: 1,2-propanediol and linalool
from J&K Scientific Co., Ltd. (Shanghai, China); ethanol from
Shanghai Chemisci Technology Co., Ltd. (Shanghai, China);
cyclohexane from CINC High Purity Solvent Co., Ltd. (Shanghai,
China); 1-phenylethyl propionate from Adamas Reagent Co., Ltd.
(Shanghai, China); 4-methoxyphenethy alcohol and γ-decalactone
from TCI Development Co., Ltd. (Shanghai, China); β-ionone,
dihydro-β-ionone, phenethyl alcohol, and linalool oxide (mixture
of isomers) from Sigma-Aldrich (Shanghai, China); theaspirane
(mixture of cis and trans isomers) from Shanghai Titan Scientific
Co., Ltd. (Shanghai, China); α-ionone from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China); EP from
Shanghai Macklin Biochemical Technology Co., Ltd.
(Shanghai, China).

Reconstituted oil (RO) was prepared on the basis of the
quantitative results of the aroma compounds (shown in
Supplementary Table S2) in the OFFA, and the ingredients of the
RO are listed in Supplementary Table S3.

2.2 GC/MS analysis of OFFA

OFFA was analyzed on an Agilent 8,890 gas chromatography
system coupled with a 5977B mass spectrometer and a DB-5MS
capillary column (60 m × 0.25 mm × 0.25 μm). The GC oven
temperature was first maintained at 50°C for 1 min,
immediately followed by ramping at 10 °C/min up to 300°C and
then maintaining at 300°C for 10 min. Helium was used as the
carrier gas at a constant flow rate of 1.0 mL/min. The transfer line
was maintained at 300°C. The mass spectrometer was operated in
the electron impact mode (70 eV). The mass was scanned in the
range of 50–300 amu. A 0.0100 g solution of 1-phenylethyl
propionate in cyclohexane (0.02 mg/g) was added to 1.0000 g of
the OFFA cyclohexane solution (40 mg/g). Here, 1-phenylethyl
propionate was used as the internal standard. The OFFA solution
was used for both qualitative and quantitative analyses. The
chromatography peaks were identified by comparing the
resulting mass spectra with the NIST database.

2.3 Analysis of headspace release of
aroma compounds

2.3.1 Sample preparation
Matrix 1 was prepared by mixing ethanol and 1,2-propanediol

(v/v, 1:1). Matrix 2 and Matrix 3 were obtained by adding 0.5% and
1% (v/v) EP to Matrix 1, respectively. The aroma compounds and
RO were then added sequentially to Matrix 1, Matrix 2, and Matrix
3 to prepare a series of 10 mg/g solutions. These solutions were next
analyzed by HS-GC/MS.

2.3.2 HS-GC/MS analysis
Static headspace analysis of each solution was conducted as

follows: 1 mL of the solution was carefully added to a 20 mL vial
at room temperature (25°C ± 1°C). After fast sealing and
equilibration for 2 h, 1 mL of the headspace gas was retrieved
for GC/MS analysis. The headspace sampling was conducted

intermittently using the Gerstel multiple automatic sampler
system (Mülheim an der Ruhr, Germany). Dynamic headspace
analysis of each solution was conducted as follows: 1 mL of the
solution was carefully added to a 20 mL vial at room temperature;
after rapid sealing, 1 mL of the headspace gas was retrieved every
15 min for GC/MS analysis.

Both the dynamic and static headspace analyses used consistent
GC/MS parameters. The GC/MS analyses were performed on an
Agilent 8,890 gas chromatography system coupled with a 5977B
mass spectrometer and a DB-5MS capillary column (60 m ×
0.25 mm × 0.25 μm). The oven temperature was programmed to
maintain 50°C for 1 min, then increase to 250°C at the rate of 20 °C/
min, followed by holding for 2 min. Helium was used as the carrier gas
at a constant flow rate of 2.18 mL/min. The mass spectrometer was
operated in the electron impactmode (70 eV). Themass was scanned in
the range of 50–300 amu. The chromatographic peaks of each
compound were recorded as the headspace concentrations (HCs) of
its volatile components. All data were obtained with five repetitions
per sample.

2.4 Sensory analysis

The olfactory detection thresholds (ODT) of each of the
compounds in different matrices were evaluated using the
three-alternative forced choice (3-AFC) and best estimation
threshold (BET) methods (ISO-13001, 2018). Seven volunteers
(four females and three males, aged 22–28 years, with expertise in
food science or sensory science) from the Laboratory of Aroma
Research Center, College of Chemistry, Zhengzhou University,
participated in this study. Before the experiments, the volunteers
were trained for 3 months on sensory evaluations. All
participants provided informed consent prior to participation.
All study procedures were approved by the Aroma Research
Center, College of Chemistry, Zhengzhou University.

The initial concentration of each flavor component in the
different matrices was 10 mg/g and was serially diluted tenfold
thereafter. For each solution concentration, the panelists were
requested to distinguish the sample containing the volatile
compound along with two blank contrast samples. The BET
was calculated as the geometric mean of the highest
concentration corresponding to the erroneous selection and
its adjacent higher concentrations. The group BET was then
calculated as the geometric mean of the individual BET values.

The seven panelists determined the characteristic aroma
descriptors of the RO, and the aroma profile of the RO was
subsequently assessed on the basis of the selected aroma
descriptors.

2.5 Dipole moment

Theoretical calculations were conducted using the Gaussian
09 software. The structures of the aromatic compounds and EP
were optimized at the theoretical level of M06-2X/6-31G (d, p)
under the solvation model based on density (SMD) (Marenich
et al., 2009) model, and the dipole moments were calculated
subsequently.
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3 Results and discussion

3.1 Main chemical composition of OFFA

The OFFA sample was analyzed by GC/MS (Supplementary
Figure S1), and a total of 29 compounds (summarized in
Supplementary Table S2) were identified using the NIST mass
spectra database; these compounds contributed to 97% of the
total chromatographic effluent.

About 38% of the total chromatographic peak area of OFFA
entailed long-chain compounds, including EP (3.94%), palmitic acid
(5.30%), and (Z,Z,Z)-9,12,15-octadecatrienoic acid (12.15%); these
were low-volatility or non-volatile compounds with weak or no
odors. Some studies have reported that the non-volatile compounds
could influence the release of aroma compounds in flavor products
[10]. Preliminary experiments showed that the addition of LCEs
(such as EP) to OFFA could significantly change the headspace
composition and aroma profile of the oil (results shown in

FIGURE 1
Release behaviors of linalool in (A) 1,2-propanediol and (B) the mixed solution of 1,2-propanediol and ethanol.

FIGURE 2
Release curves of the aroma compounds inMatrix 1, Matrix 2, andMatrix 3: (A) cis-theaspirane; (B) cis-linalool oxide (furan); (C) linalool oxide (pyran);
(D) α-ionone; (E) β-ionone; (F) γ-decalactone; (G) dihydro-β-ionone; (H) trans-theaspirane; (I) trans-linalool oxide (furan); (J) linalool.
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Supplementary Figure S2). Consequently, further experiments were
conducted to investigate the impacts of the LCEs on the release of
the main aroma compounds in OFFA.

3.2 Effects of EP on the release of
aroma compounds

Ten aroma compounds from OFFA were selected as the targets
to evaluate the influence of EP on the release of aroma components,
including linalool oxide (furan enantiomers), linalool oxide (pyran),
dihydro-β-ionone, α-ionone, β-ionone, γ-decalactone, theaspirane
(enantiomer), and linalool. These have always been considered as
some of the main contributors to the characteristic odor of OFFA
(Xin et al., 2013).

3.2.1 Selection of solvent for release of
aroma compounds

Previously, 1,2-propanediol was considered as a suitable solvent
for aroma compounds in experiments related to aroma release
because of its low vapor pressure, which avoided competition
between the flavors and solvent in the release procedure from
liquid phase to the headspace (Reineccius et al., 2005; Yang et al.,
2013). However, the poor solubility of EP in 1,2-propanediol did not
meet the requirements of the gradient experiments. Compared with
1,2-propanediol, ethanol as a commonly used solvent in perfumes
(Miastkowska et al., 2018) is more suitable for the solubility of ester
compounds; however, the high vapor pressure of ethanol could
affect the results. For our purposes, a mixture of propylene glycol
and ethanol, which is commonly used as a solvent for fragrance, was
considered as the solvent to solve the dilemma (Guo et al., 2019).

TABLE 1 Headspace concentrations (HCs), mass transfer coefficients (K), and determination coefficients (R2) of 10 aroma compounds based on Whitman’s
two-film model.

Aroma compound Matrix 1 Matrix 2 Matrix 3

HC K R2 HC K R2 HC K R2

β-Ionone 103,788 0.113 0.88 1,130,098 0.212 0.94 116,984 0.107 0.72

α-Ionone 255,786 0.126 0.80 221,898 0.138 0.98 178,296 0.081 0.89

γ-Decalactone 11,169 0.114 0.60 9,290 0.151 0.91 9,395 0.051 0.88

Dihydro-β-ionone 9.93 × 106 0.113 0.98 7.96 × 106 0.117 0.72 6.49 × 106 0.060 0.98

cis-Linalool oxide (furan) 4.27 × 107 0.067 0.96 3.22 × 107 0.091 0.99 2.79 × 107 0.076 0.96

trans-Linalool oxide (furan) 3.04 × 107 0.068 0.92 2.38 × 107 0.066 0.99 1.99 × 107 0.082 0.93

Linalool oxide (pyran) 6.71 × 107 0.096 0.67 5.36 × 107 0.079 0.98 4.78 × 107 0.074 0.86

cis-Theaspirane 2.56 × 107 0.036 0.99 1.21 × 107 0.135 0.96 8.77 × 106 0.124 0.97

trans-Theaspirane 1.61 × 107 0.034 0.98 8.35 × 106 0.113 0.97 6.16 × 106 0.113 0.96

Linalool 1.05 × 107 0.157 0.95 1.07 × 107 0.163 0.96 9.91 × 106 0.153 0.97

FIGURE 3
Relationship between the change ratio of the equilibriumHC (δ-H) and absolute dipole difference (δ-D) of the aroma compoundwith ethyl palmitate
(EP) in (A) Matrix 2 and (B) Matrix 3.
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A series of experiments was conducted to optimize the ratio of
1,2-propanediol to ethanol in the solvent. A mixture of 1,2-
propanediol and ethanol was first prepared in the volume ratio
of 1:1, which was denoted as Matrix 1. The solubility test revealed
that EP dissolved completely in Matrix 1 in the range of 0.5%–10%
(v/v). Solutions of linalool at concentrations of 10 mg/g each were
prepared in both 1,2-propanediol and Matrix 1 for a comparative
study of the release behaviors. Subsequently, the two samples were
analyzed by HS-GC/MS to measure the time-related HCs of linalool
(Figure 1). The results indicated that the release behavior of the
aroma compounds in the mixed solvent was similar to that in 1,2-

propanediol. Thus, the mixture of 1,2-propanediol and ethanol was
selected as the solvent for the subsequent release experiments.

3.2.2 Effects of EP on the release process of
aroma compounds

Each compound was added separately to Matrix 1, Matrix 2, and
Matrix 3 to prepare solutions at a concentration of 10 mg/g. The
corresponding HCs were measured by HS-GC-MS. Many studies
have proposed that the release process of volatile components in a
homogeneous solution could be explained by Whitman’s two-film
model (Whitman, 1962; Banavara et al., 2002; Hu and Chai, 2013).
This model assumes the existence of a double layer at the liquid–gas
interface, comprising a liquid phase membrane and a gas phase
membrane. The mass transfer of volatiles across the interface is
considered to be proportional to the concentration difference of the
volatiles between the liquid and gas membranes. According to the
model, the mass transfer process can be expressed by Eq. (1), which
can be integrated within appropriate limits to derive Eq. (2).

V dChs/dt( ) � KA KlgCbp-Chs( ) (1)

Chs t( ) � KlgCbp 1- exp −[ KA

V
( )t( ) (2)

Here, V is the volume of the gas phase in the sample bottle, Chs is
the HC of the volatile compound, t is the release time, K is the mass
transfer coefficient, A is the area of the liquid–gas interface, Klg is the
partition coefficient of the volatile compound in the liquid–gas
phase, and Cbp is the amount of volatile substance in the
liquid phase.

TABLE 2 Thresholds of the aroma compounds in Matrix 1, Matrix 2, and
Matrix 3.

Compound Threshold (μg/g)

Matrix 1 Matrix 2 Matrix 3

β-Ionone 0.88 1.77 3.55

γ-Decalactone 0.22 0.44 0.88

α-Ionone 0.88 1.77 7.07

Dihydro-β-ionone 7.07 0.88 3.55

Linalool oxide (furan) 353.55 707.11 1414.21

Theaspirane 0.88 3.55 7.07

Linalool 0.088 0.088 0.088

Linalool oxide (pyran) 1767.77 3535.53 7071.07

FIGURE 4
Headspace gas chromatography mass spectrometry (HS-GC/MS) TIC of reconstituted oil (RO) with different amounts of added ethyl palmitate (EP).
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The parameters Cbp, K, A, Klg, and V are constant for a specific
system; this means that the HCs of the aroma compounds are
logarithmically related to the release time. The dynamic HC of each
compound was obtained and plotted as the HC–time curve
(Figure 2, and the corresponding fitting equations are provided
in Supplementary Figures S3-S12; the curves are plotted using the
function BoxLucas 1 in Origin Pro 9. As expected, the curves exhibit
the classical characteristics of the logarithmic function. These results
show that the release process of aroma compounds in Matrix 1,
Matrix 2, and Matrix 3 could be expressed by the two-film model.
The values of the parameters, including HC, K, and determination
coefficient (R2), were obtained according to the model and are
summarized in Table 1. The addition of EP changed the K values
of all these compounds except for linalool. According to Eq. (1), the
change in K value leads to a change in the release rate. Therefore, the
addition of EP could change themass transfer process of the volatiles
reaching liquid–gas distribution equilibrium.

The mass transfer coefficient is expressed as K = D/δ in the
model, where D is the diffusion coefficient, and δ is the thickness of
the double layer (Danckwerts and Kennedy, 1997). According to the
Stokes–Einstein law, D is inversely proportional to the viscosity of a
specific solution system (Schiller, 1991). However, no obvious
differences in viscosity were observed among Matrix 1, Matrix 2,
and Matrix 3 (Supplementary Figure S13). These results suggest that
adding EP to the solutions change the thicknesses of the double
layers at the liquid–gas interfaces.

For α-ionone, linalool oxide (furan), β-ionone, cis-theaspirane,
dihydro-β-ionone, trans-theaspirane, linalool oxide (pyran), and γ-

decalactone, the values of K increase after adding EP. This indicates
that a reduction in the double-layer thickness facilitates faster
interfacial mass transfer. For linalool, the value of K did not
change obviously upon addition of EP; a reasonable explanation
for this is that the high volatility of linalool diminishes the impact of
EP on its release.

The unique structure of EPmay contribute to the alteration of K;
EP is an LCE with a hydrophobic long hydrocarbon group. The
characteristic surfactant structure of EP causes its automatic
congregation at the liquid–gas interface through molecular self-
assembly (Conner et al., 1998). Once added to a solution, the
molecular self-assembly of EP reduces the thickness of the double
layer. However, the value of K did not increase continuously with
further addition of EP, indicating that there were some stronger
molecular interactions between the aroma compounds and EP, such
as dipole–dipole interactions.

3.2.3 Effects of EP on the aroma release amounts
Supplementary Table S4 shows the HC of each compound

with EP after reaching the liquid–gas distribution equilibrium.
The data show that the equilibrium HCs of the compounds
decrease with increasing amounts of added EP, except for
linalool and β-ionone. These results indicate that EP could
affect the Klg of these compounds, further suggesting that
effective interactions exist between the aroma compounds and
EP in the solutions.

The dipole moments of the aroma compounds and EP were
calculated using Gaussian 09 and are listed in Supplementary Table

FIGURE 5
Aroma profiles of the ROs in different matrices.
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S4. Figure 3 illustrates the relationship between the change ratio of
the equilibrium HC (δ-H) and absolute dipole difference (δ-D) of
the aroma compound with EP. The results show that the δ-H of the
compounds have negative correlations with δ-D; this implies that
when the dipole moment of EP is closer to that of the aroma
compound, it has a greater effect on the release of the compound.
Moreover, most compounds show linear correlations between δ-H
and δ-D; this indicates that in the proposed solvent system, the
intermolecular interactions between hexadecyl ethyl ester and the
aromatic substances are mainly dipole interactions.

Therefore, it is a reasonable conclusion that dipole–dipole
interactions are the main reason that EP affects the HC of the
aroma compounds in the system comprising propylene glycol
and ethanol. The effects of the dipole–dipole interaction are
further demonstrated by the influence of EP on the release of
the isomers. For theaspirane and linalool oxide (furan), the δ-H
of the cis-isomer was higher than that of the trans-isomer, as
these two compounds are enantiomers with different affinities to
EP. These results are consistent with those reported by Honda
et al. (2021).

3.2.4 Effects of EP on the aroma release of the RO
To further evaluate the impacts of EP on the release of aroma

compounds, the ODTs of the 10 compounds in Matrix 1, Matrix
2, and Matrix 3 were obtained using the 3-AFC and BET
methods. As shown in Table 2, the ODT values of most
compounds increased with the addition of EP. These results
correspond with the decreased equilibrium HCs of the aroma
compounds with the addition of EP, further verifying that EP
could reduce the headspace release of the aroma compounds in
solution. Linalool was still an exception in this case, and its ODT
did not change significantly in different solvent media; this result
is consistent with the release data of the compound.

ROs with Osmanthus flavor were also prepared for the
10 selected aroma compounds according to their content in
OFFA. These ROs were dissolved in Matrix 1, Matrix 2, and
Matrix 3, and the equilibrium HCs were measured, as shown in
Figure 4. The results indicate that among these compounds, the
equilibrium HC values decrease with increasing EP content in
the matrix.

The aroma profiles of the ROs in different media were also
evaluated by experienced panelists using selected aroma
descriptors, namely floral, sweet, woody, fresh, fruity, and
milky, which were considered as the main flavors of OFFA.
These results are depicted in Figure 5 and show that EP could
change the score of each scent. The score variations were
roughly correlated with the HCs of each of the compounds.
In addition, EP decreased the odor intensities of the ROs and
optimized the odors of the mixtures. This result further
demonstrates that LCEs like EP could decrease the release of
aroma compounds and also prolong the retention of the
target fragrance.

4 Conclusion

The release characteristics of 10 aroma compounds
from OFFA and their mixtures in the presence of EP in a

solvent containing 1,2-propanediol and ethanol were obtained
by HS-GC/MS and olfactometry. The results illustrate that EP
reduces the equilibrium HCs of the selected compounds,
increases their ODTs, and optimizes the odors of the
solutions. Adding EP to RO reduces the HCs of the flavor
compounds, indicating that EP plays an important role in the
scent formation of OFFA. The experimental results of static and
dynamic headspaces show that EP changes the K and Klg of the
aroma compounds between the liquid and gas phases. These
release kinetics could be explained by Whitman’s two-film
model. Accordingly, the mass transfer is faster between the
liquid and gas phases. The δ-H of most selected compounds
show negative correlations with their δ-D values, indicating that
dipole–dipole interactions of the volatiles and EP is the important
factor affecting Klg. These research findings significantly enhance
our understanding of the role of EP in modulating the release of
aromatic compounds. Further, these insights are pivotal in
guiding the development of new perfume formulations with
enhanced sensory properties.
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