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Gastrodia elata Blume (G. elata), listed as one of the 34 precious Chinese
medicines, servers a dual purpose as both a medicinal herb and a food
source. Polysaccharide is the main active ingredient in G. elata, which has
pharmacological activities such as immune regulation, anti-oxidation, anti-
cancer, anti-aging, neuroprotection and antibacterial activity and so on. The
biological activities of G. elata polysaccharide (GPs) is closely related to its
chemical structures. However, no a review has synthetically summarized the
chemical structures and pharmacological activities of GPs. This study delves into
the chemical structures, pharmacological action of GPs, offering insights for the
future development an application of these compounds.
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1 Introduction

Gastrodiae Rhizoma (known as Tianma in China) is the dry tubers ofG. elata Blume (G.
elata), which was first mentioned in the Shen Nong’s Herbal Classic and was widely
distributed in in Sichuan, Guangdong, Yunnan and Guizhou provinces (Wang et al., 2022).
According to the theory of Traditional Chinese Medicine (TCM), G. elata nature is
naturally warm and tastes sweet, returns to the liver meridian, which has the function
of calming wind and stopping convulsive seizures, suppressing liver yang, expelling wind
and clearing collateral. In clinical practice, G. elata is widely used in the prevention and
treatment of childhood convulsions, memory loss, sciatic neuropathy, epilepsy and other
diseases, and is also widely used in health products and food fields (Zhang et al., 2007).
Modern pharmacology recognizes that G. elata and its extracts have anti-tumor, anti-
oxidation and anti-aging effects, regulating immunity, sedation, hypoglycemia,
hypolipidemia, anti-depression, anti-viral, and anti-convulsant effects (Liu and
Huang, 2017).

Studies have shown that 134 bioactive compounds originate from G. elata, including
phenolic compounds, polysaccharides, organic acids and sterols (Feng et al., 1979; Yang
et al., 2007; Duan et al., 2013; Zhu et al., 2019). Some of these molecules showed activity
against migraines, hypertension, and other neurological diseases (Hayashi et al., 2002; Zhu
et al., 2019). It has been suggested that G. elata polysaccharides (GPs) are active compounds
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with a wide range of pharmacological effects, such as anti-oxidant,
anti-cancer, anti-virus, anti-osteoporosis, immunomodulatory, and
neuroprotective effects and so on (Qiu et al., 2007; Chen et al., 2015;
Liu and Mori, 1992; Liu et al., 2015; Bao et al., 2017). Due to its great
medical and health value, more and more researchers are paying
attention to the pharmacological activities of GPs. Furthermore,
many studies have attested that the biological activities of GPs are
closely related to their chemical structures. However, no previous
articles have synthetically summarized the chemical structures and
pharmacological activities of GPs. In this article, we review the
structural characteristics, biological activities and structure-activity

relationships of GPs, to aid in providing a theoretical basis and data
for the research, development and utilization of GPs.

2 The structural features of GPs

The structures of polysaccharides can be divided into primary
structure and high-level structure. The primary structure includes
molecular weight, monosaccharide composition, glycosidic bond
configuration, repeating structural units and branching degree. The
high-level structure (secondary, tertiary and quaternary structures)

TABLE 1 The chemical structures of Gastrodia elata Blume polysaccharides.

Compound name Molecular
weight (Da)

Monosaccharide composition and
molar ratio

Backbone Ref.

WGEW 1.00 × 105 Glc α-1,4-Glcp
α-1,4,6-Glcp

Qiu et al. (2007)

AGEW 2.80 × 105 Glc α-1,4-Glcp
α-1,4,6-Glcp

Qiu et al. (2007)

GPs 2.71 × 105 Glc α-1,4-Glcp Bao et al. (2017)

GPSa 4.97 × 105 Rha: Man: Glc: 1: 1.07: 67.24 α-1,4-Glcp Zhu et al. (2010)

WTMA 7.00 × 105 Glc α-1,4-Glcp
α-1,4,6-Glcp

Chen et al.
(2011)

PGEB-3H 2.88 × 104 Glc α-1,4-Glcp
α-1,4,6-Glcp

Ming et al.
(2012)

Acidic polysaccharides – Xyl: Glc: GlcA: GlaA – Lee et al. (2012)

RGP-1a 1.93 × 104 Glc: Fru: 10.68: 1 – Chen et al.
(2016)

RGP-1b 3.92 × 103 Glc –

PGE 1.54 × 106 Glc α-1,4-Glcp
α-1,4,6-Glcp
α-1,3-Glcp

Zhu et al. (2018)

GEP 8.75 × 106 Glc – Chen et al.
(2018a)

GEP-3 2.52 × 104 Glc α-1,4-Glcp
β-1,4-Glcp
β-1,6-Glcp
α-1,3,4-Glcp

Huo et al. (2021)

GEP-1 2.01 × 105 Glc α-1,4-Glcp
α-1,4,6-Glcp
β-1,6-Glcp

β-1,3-Glcp p-hydroxybenzyl
alcoho

Huo et al. (2021)

GEP-1 7.64 × 104 Ara: Gal: Glc: Man: 2.189: 4.791: 92.035: 0.342 α-1,4-Glcp Guan et al.
(2022)

GEPs 2.90 × 105 Glc: Gal: GlcA: 88.21: 4.48: 4.40 α-1,4-Glcp Li N. et al.
(2023)

GaE-B 2.15 × 105 Man: Rha: Glc: Gal: Xyl: 5.36: 2.64: 77.35: 5.33: 9.34 – Ji et al. (2022)

GaE-R 1.49 × 105 Man: Rha: Glc: Gal: Xyl: 5.07: 3.18: 71.01: 6.41: 14.32 – Ji et al. (2022)

GaE-Hyb 1.95 × 105 Man: Rha: Glc: Gal: Xyl: 4.83: 3.02: 77.58: 4.76: 9.81 – Ji et al. (2022)

GaE-G 2.51 × 105 Man: Rha: Glc: Gal: Xyl: 3.64: 2.96: 81.88: 3.11: 8.40 – Ji et al. (2022)

GEP2-6 2.71 × 106 Glc α-1,4-Glcp
α-1,6-Glcp

Chen et al.
(2024)

Notes:–Indicates that the item is not detected; Glc: glucose, Man: mannose, Rha: rhamnose, Gal: galactose, Xyl: xylose, Fru: fructose, GlcA: glucuronic acid, GlaA: galacturonic acid.
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is mainly the spatial conformation of polysaccharides (Zhang et al.,
2018). To date, more than 20 GPs with known structures have been
extracted and separated. The primary structural characteristics of
the GPs, including molecular weight, monosaccharide composition,
molar ratio, and backbone, are summarized in Table 1. The
structures of the some GPs are shown in Figure 1.

Qiu et al. (2007) obtained two glucans (WGEW and AGEW)
from G. elata Blume., with molecular weight of AGEW and WGEW
was 2.80 × 105 Da and 1.00 ×·105 Da, respectively. Their structures
have an α-(1→4)-linked glucosyl backbone. Methylation analysis
showed that two polysaccharides have terminal Glc, 1,4- and 1,4,6-
linked Glc, the ratio of Glc:1,4-:1,4,6-linked Glc inWGEWwas 1:16:
1, and the ratio of it in AGEWwas 1: 14: 1. Zhu et al. (2010) obtained
G.elata polysaccharide (GPSa), with a molecular weight of 4.97 ×
105 Da. Structural analysis revealed that GPSa was composed mainly
of glucose, but also contained small amounts of rhamnose and
mannose. The molar ratio of GPSa is rhamnose: mannose: glucose:
1: 1.07: 67.24. IR and NMR analysis indicated GPSa chain was α-
(1→4) glucan with α-(1→4) glucosyl branches. Chen et al. (2011)
also obtained water-soluble glucan (WTMA) from the rhizome of
Gastrodia elata Bl. The mean molecular weight of WTMA was 7.0 ×
105 Da, with the results showed that WTMAwas an α-(1→4) glucan
with α-(1→4) glucosyl branches attached to O-6 of the branch
points. Ming et al. (2012) purified G. elata polysaccharide (PGEB-
3H), was found to be a glucan with a molecular weight of 2.88 ×
104 Da. Structural analysis showed that PGEB-3H was consisted of
1,4-linked glucose and 1,4,6-linked glucose with an approximate
molar ratio of 20: 1. FT-IR analysis indicated a pyranose form of the
glucosyl residue, absorption at 1027.0 cm−1, 1079.6 cm−1, and
1153.2 cm−1. Lee et al. (2012) obtained an acidic polysaccharide.
It was purified from the crude polysaccharides by DEAE-Sepharose
CL-6B. The analysis was shown that the fraction of acidic
polysaccharide included xylose, glucose, galacturonic acid, and

glucuronic acid (Table 1). Chen et al. (2016) separated two
homogeneous polysaccharides (RGP-1a and RGP-1b) from the
residue of Rhizoma gastrodiae. The results showed that RGP-1a
was composed of fructose and glucose in a molar ratio of 1:10.68,
and RGP-1b was mainly consisted of glucose. Bao et al. (2017)
obtained a homogeneous polysaccharide (GPs), with a molecular
weight of 2.71 × 105 Da. Analysis of the monosaccharide
composition of GPs showed that GPs was composed of glucose.
Zhu et al. (2018) yielded a polysaccharide (PGE) with hot water and
purified it with Sephadex G-200 followed by ultra-filtration. This
study indicated that PGE had a molecular weight of 1.54 × 106 Da,
the backbone of PGE composed of (1→4)-linked-D-Glcp and the
branches are (1→3)-linked-D-Glcp, (1→4,6)-linked-d-Glcp and
(1→)-linked-glucose terminal. Further detailed data are shown in
Table 1. Chen et al. (2018a) isolated a G. elata Blume polysaccharide
(GEP), with a molecular weight of 8.75 × 106 Da. IR and NMR
showed that GEP was consists of glucose. Huo et al. (2018) obtained
a homogeneous polysaccharide which was named GEP-1. It was
isolated and purified from G. elata by hot-water extraction, ethanol
precipitation, and membrane separator. The structural analysis
showed that the backbone of GEP-1 consisted of 1,3,6-linked-α-
Glcp, 1,4-linked-α-Glcp, 1,4-linked-α-Glcp and 1,4,6-linked-α-
Glcp, with a molecular weight of 2.01 × 105 Da, and contained a
citric acid and repeating the p-hydroxybenzyl alcohol as a branch.
Guan et al. (2022) isolated a polysaccharide from G. elata (named
GEP-1), with a molecular weight of 7.64 × 105 Da. NMR and
methylation analyses revealed that the main chain structure of
GEP-1 was α-(1→4)-glucans. Li F. et al. (2013) obtained a
polysaccharide named GEPs, with a molecular weight of 2.92 ×
105 Da, which consists of glucose, galactose and galacturonic acid
was in the ratio of 88.21: 4.48: 4.40. Ji et al. (2022) obtained four
components of GaE-B (G. elata Bl. f. glauca S. chow
polysaccharides), GaE-R (G. elata Bl. f. elata polysaccharides),

FIGURE 1
Structures of GPs compounds in G. elata.
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GaE-Hyb (hybridization of G. elata Bl. f. glauca S. chow and G. elata
Bl. f. elata polysaccharides), and GaE-G (G. elata Bl. f. viridis Makino
polysaccharides). Based on HPGPC analysis, their average
molecular weight are 2.15 × 105 Da, 1.49 × 105 Da, 1.95 × 105 Da,
2.51 × 105 Da, respectively. GC analysis showed that these GaE
polysaccharides were heteropolysaccharides, and the
polysaccharides comprised Man, Rha, Glc, Gal, and Xyl. The
detail more ratio shown in Table 1. Chen et al. (2024) obtained a
water-soluble polysaccharide (GEP2-6), with a molecular weight of
2.71 × 106 Da, which consists of only glucose. NMR and methylation
analyses revealed that the main chain structure of GEP2-6 was
consists of α-(1→4) and α-(1→6) glycosidic bonds.

3 Biological activities

In recent years, research has focused on the pharmacodynamics
of GPs. Many references point out that GPs showed that significant
pharmacological activies, sush as anti-oxidation, anti-tumor,
immune regulation, anti-aging, improve memory, improve
cerebral ischemia, reduce blood pressure, anti-bacterial effect and
reduce blood lipid (Figure 2) (Zhu et al., 2019; Wang et al., 2022).
The biological activities of GPs are summarized in Table 2.

3.1 Anti-oxidation activities

Free radicals can accelerate the oxidation process in vivo and lead to
cell aging. Previous studies have shown that GPs can effectively remove
free radicals including 1,1-diphenyl-2-picrylhydrazyl (DPPH), oxygen
radicals (O2-·), and hydroxyl radicals (·OH). GPs has good antioxidant
activity, as evaluated by DPPH, O2-·and·OH assays. The clearance rate

of DPPH, O2-·andOHwas around 50%, when the concentration of GPs
was 1–3.5 mg/mL (Hou andHou, 2018; Chen et al., 2018b; Zhang et al.,
2021; Chen et al., 2024; Liu et al., 2009; Wang, et al., 2022). Xu et al.
(2015) reported that GPs had the best removal effect on hydrogen
peroxide (H2O2), the clearance rates was 25.80%, and the scavenging
power of other free radicals as following DPPH (22.37%) > ONOO−

(20.52%)>O2- (12.23%)> -OH (4.85%). Chen et al. (2018a) foundGEP
had high radical-scavenging activities. At concentration of 200 mg/mL,
the HRSA andDRSA of the GEPwere 94.56% and 84.21%, respectively.
In addition, GPs have a strong scavenging effects on ABTS radicals,
superoxide radicals, ferrous ion chelating capacity, and reducing power
(Hou and Hou, 2018; Zhang et al., 2019; Ji et al., 2022; Wang, et al.,
2022). The above studies showed that GPs had a strong antioxidant
effect. The antioxidant range of heteropolysaccharides is wider than that
of glucan from G. elata.

3.2 Anti-aging activities

Many studies have shown that GPs can improve the expression
of peroxidase and slow down the aging of organs and tissue. Li N.
et al. (2023) reported that GPs had anti-aging effects in D-galactose-
induced senescence mice. GPs significantly increased SOD and
GSH-Px activity and decreased MDA and NO contents in aging
mice, and showed a good dose-dependent relationship. Xie et al.
(2010) found that GPs can improve the learning and memory ability
of D-galactose-induced aging mice, its mechanism is mainly related
to oxidative metabolism in the body. The finding of Kong et al.
(2005) displayed that GPs significantly increased the activities of
SOD and CAT in the serum, liver, brain and heart tissue of aging
mice, significantly inhibited the formation of MDA in the serum,
liver, brain and heart tissue of agingmice, and significantly increased

FIGURE 2
The health functions of GPs.
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TABLE 2 Biological activities of GPs isolated from the Gastrodia elata.

Biological
activies

Name Description In vivo/In
vitro

Ref.

Anti-oxidative activity GP evaluated the scavenging activity of DPPH and ABTS. In vitro Hou and Hou
(2018)

heteropolysaccharides tested the activites of DPPH radicals, ABTS radicals, superoxide radicals, hydroxyl
radicals, ferrous ion chelating capacity, and reducing power

In vitro Ji et al. (2022)

GPs The scavenging rate of DPPH and ABTS was higher, and the antioxidant capacity
was lower than that of Vc

In vitro Wang et al.
(2022)

GEP1-G GEP2-G The clearance rates of DPPH were 44.5% and 25.6%, the clearance rates of O2-· were
33.32% and 21.55%, the clearance rates of ·OH were 39.5% and 22.8%

In vitro Chen et al.
(2018b)

GPs the clearance rate of DPPH and ·OH was 40.52% and 36.52% In vitro Zhang et al.
(2021)

GPs has the best removal effect on hydrogen peroxide (H2O2), the clearance rates was
25.80%

In vitro Xu et al. (2015)

GPs the concentration IC50 were 1.18 mg/mL (·OH), 1.62 mg/mL (O2-·) In vitro Liu et al. (2009)

GPs has a certain scavenging effect on ferrous ions, ABTS free radicals, hydroxyl free
radicals and DPPH free radicals

In vitro Zhang et al.
(2019)

GEP2-6 scavenged DPPH and hydroxyl radicals In vitro Chen et al.
(2024)

Anti-aging activity GEP reduced the MDA level, increased the SOD and GSH-Px activities In vivo Chen et al.
(2018c)

GPs increased SOD and GSH-Px activity and decreased MDA and NO content In vivo Li F. et al.
(2013)

GPs related to oxidative metabolism in the body In vivo Xie et al. (2010)

GPs increased the activities of SOD and CAT in serum, liver, brain and heart In vivo Kong et al.
(2005)

GPs decreased the mRNA expression and protein level of caspase-3, MURF-1 and
MAFbX

In vivo Wang et al.
(2019)

Anti-tumor activity WTMA inhibited PANC-1 cell growth, showed no effect on PANC-1 cells growth In vitro Chen et al.
(2011)

GPs inhibited at 90 mg/kg, and the inhibition rate was 27.6% In vitro Wang et al.
(2014)

GPs increased G0/G1 phase and decrease G2/M phase In vitro Liu et al. (2015)

WSS25 blocked of BMP/Smad signaling pathway In vitro Qiu et al. (2010)

PGEs promoted late apoptosis and arrested at G2/M phase In vitro Dai et al. (2021)

Immunological activity RGP-1a RGP-1b effected the NO production and phagocytic activity In vitro Chen et al.
(2016)

GPs indreased the serum IL-2, TNF-a, IFN-g, IgG, IgA, IgM levels, and the spleen and
thymus indexes

In vivo Bao et al. (2017)

GEP-1 induced TNF-α, IL1-β and NO release In vitro Guan et al.
(2022)

GEPs increased content of SCFAs In vitro Li N. et al.
(2023)

GPs regulated the levels of IgA, IgG, IgM and hemolysin in mice, increased the index of
thymus and spleen

In vitro
In vivo

Dai et al. (2021)

GPs reduced the activity of ALT, AST, NO and the contents of TNF-α and IL-1 in serum
of mice, inhibited MAD, increased SOD.

In vitro
In vivo

Li et al. (2015)

GPs stimulated IL-2, TNF-α, IFN-γ, IgG, IgA and IgM In vivo Li et al. (2016)

(Continued on following page)
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the activity of GSH-Px in the serum of aging mice. The results
indicated that GPs had better scavenging free radicals, decreasing
MDA content and delaying cell aging. Chen et al. (2018b) found that
intragastric administration of GEP significantly decreased the MDA
levels but significantly increased SOD and GSH-Px activities in the
sera and brains of D-galactose-induced aging mice as compared with
those of the model group, indicated that GEP can effectively
suppress oxidation-induced damage to the sera and brain tissues
of D-galactose-induced aging mice. Wang and Liu (2019) found that
GPs could delay skeletal muscle aging in mice by reducing the
mRNA expression and protein levels of caspase-3, MURF-1 and
MAFbX in muscle tissue. However, the molecular mechanism of
anti-aging is not been clarified.

3.3 Anti-tumor activities

Numerous cell and animal model studies have shown that GPs can
significantly inhibit the development of various types of cancer, such as
colon cancer, liver cancer, pancreatic cancer, etc.Wang et al. (2014) found
that the tumor growth ofGPswas significantly inhibited at 90 mg/kg, and
the inhibition rate was 27.6%. Liu et al. (2015) reported that GPs have a
significant anti-cancer effect on H22 tumor-bearing mice, the results
showed that the GPs inhibition rate on H22 cells was 44.7%. The
mechanism is mainly related to GPs could increase the cell percentage
in the G0/G1 phase and decrease cell percentage in the G2/M phase. Qiu
et al. (2010) reported thatWSS25 could inhibit the growth of xenografted
hepatocellular cancer cells in nude mice, its mechanism is related to the
blocking of BMP/Smad signaling by WSS25, as shown in Figure 3. Dai
et al. (2021) investigated the anti-tumor activities of G. elata
polysaccharides (PGEs) against MCF-7 cells in vitro. The results

showed that the PGEs could inhibit the growth of MCF-7 cells by
promoting late apoptosis and arresting at G2/M phase. Chen et al. (2011)
investigated the anti-pancreatic cancer activities of WTMA against
PANC-1 cell lines and showed no effect on the growth of PANC-1 cells.

3.4 Immunological activities

Numerous in vitro and in vivo studies have demonstrated the
immunological activities of GPs. Li et al. (2016) found that GPs can
regulate the levels of immunoglobulin (IgA, IgG, IgM) and hemolysin in
mice, and increase the index of thymus and spleen. Li et al. (2015) reported
that GPs significantly reduced the activity of ALT, AST, NO and the
content of TNF-α and IL-1 in the serum of mice, inhibited the level of
MAD in the liver, increased the activity of SOD and the concentration
could significantly increase the proliferation ability of T and B
lymphocytes in the spleen. The results indicated that GPs had a good
protective effect against immunological liver injury in mice. Li F. et al.
(2013) found that GEPs can effectively alleviate immunosuppression, the
potential mechanism was related to the modulation of gut microbiota
composition byGEPs and the resulting increased content of SCFAs. Chen
et al. (2016) found that the two polysaccharides (RGP-1a and RGP-1b)
have a significant impact on NO production and phagocytic activity of
RAW264.7 macrophages. Compared to RGP-1a, RGP-1b, which has a
smaller molecular weight and a uniform monosaccharide composition,
exhibits superior immunological activities in RAW264.7 macrophages.
Molecular weight and homogeneous composition may be key factors
affecting the immunological activity of GPs. Bao et al. (2017) found that
GPs can increase serum IL-2, TNF-α, IFN-g, IgG, IgA and IgM levels, as
well as spleen and thymus indices of Kunming mice, showing that GPs
could improve the immune function of immunosuppressionmodel mice.

TABLE 2 (Continued) Biological activities of GPs isolated from the Gastrodia elata.

Biological
activies

Name Description In vivo/In
vitro

Ref.

Neuroprotective activity GPs decreased BCL-12 and BAX protein, inhibited the expression of caspase-3 protein In vitro Zhou et al.
(2013)

GPs reduced the level of intracellular toxic reactive oxygen species, reduced the release of
LDH, inhibited the expression of GRP 78, X-BP-1, GADD153, caspase-9 and
caspase-12

In vitro Zhou et al.
(2017)

NPGE attenuated ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling
pathway

In vitro Zhang et al.
(2023)

GPs increased Bcl-2 expression in brain tissue, reduced the expression of Bax In vitro Wang et al.
(2019)

Hypotensive effects GPs reduced systolic blood pressure in SHR fed a high-fat diet In vitro Lee et al. (2012)

PGE exhibited ACE-inhibitory activity In vitro Zhu et al.
(2018)

GPs decreased the levels of Ang II, and increased the levels of NO were increased In vitro Wang et al.
(2019)

Antihyperlipidemic
effects

PGEB-3H caused 29% increase in HDL-C In vitro Ming et al.
(2012)

GPs decreased hypolipidemic indexes (total cholesterol, triglyceride and low-density
lipoprotein cholesterol levels)

In vivo Lee et al. (2012)

PGEB-3-H decreased the content of TC and TG and increased HDL-C, had no significant effect
on the content of LDL-C

In vitro Miao and Shen
(2006)
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Guan et al. (2022) observed the effect of GEP-1 on immune function by
increasing phagocytic activities and induced release of cytokines (TNF-α,
IL1-β) and nitric oxide (NO) in macrophages.

3.5 Neuroprotective activities

The neuroprotective effect of GPs on rat pheochromocytoma nerve
cells (PC12) has recently attracted great attention. Zhou et al. (2013)
found that GPs significantly could improve corticosterone (CORT)-
induced injury and cell morphology of PC12 cells, reduce the
expression of BCL-12 and BAX protein, and inhibit the expression of
caspase-3 protein. Zhou et al. (2017) reported that GPs play a protective
role in nerve cells by reducing the level of intracellular toxic reactive
oxygen species, reducing the release of LDH, and inhibiting the
expression of GRP 78, X-BP-1, GADD153, caspase-9 and caspase-12.

Zhang et al. (2023) reported that neutral polysaccharide from G. elata
(NPGE) had potential effects on the neuropathology of cerebral ischemia-
reperfusion injury (CIRI). Its mechanism is related to that NPGE
alleviates CIRI by attenuating ferroptosis-mediated neuroinflammation
via the NRF2/HO-1 signaling pathway, the relevant mechanism is shown
in Figure 4. In addition, GPs could increase the expression of anti-
apoptotic gene Bcl-2 in brain tissue reduce expression of apoptosis gene
Bax, alleviating cerebral palsy, apoptosis of brain tissue, exerting
neuroprotective activity (Wang et al., 2019).

3.6 Hypotensive effects

Numerous studies have demonstrated the blood pressure
lowering effect of GPs. Angiotensin-converting enzyme (ACE) plays
a significant role in the development of hypertension in the body.

FIGURE 3
The mechanism of WSS25 in hepatocellular cancer cell lines.

FIGURE 4
Schematic illustration of NPGE in BC cells through of the NRF2/HO-1 pathway.
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Miao and Shen (2006) observed the effect of GPs on angiotensin Ⅱ
(Ang Ⅱ) level, the results showed that Ang II levels were decreased and
the NO levels were increased. Zhu et al. (2018) found that PGE hadACE
inhibitory activity, the inhibition rate of PGE on ACE was calculated to
be 74.40% and the IC50 value was 0.66 mg/mL. Lee et al. (2012) reported
that the acidic polysaccharide fraction from Gastrodia rhizome
significantly reduced blood pressure in SHR fed a high-fat diet.

3.7 Antihyperlipidemic effect

Ming et al. (2012) reported effects of PGEB-3-H on total cholesterol
(TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C)
and high-density lipoprotein cholesterol (HDL-C). The results showed
that PGEB-3-H could reduce the content of TC and TG and increase
the level of HDL-C, but had no significant effect on the LDL-C content.
It can be seen that PGEB-3-H has a potential effect on lowering blood
lipids and is related to the regulation of cholesterol content. Lee et al.
(2012) studies showed that the hypolipidemic indexes (total cholesterol,
triglyceride and low-density lipoprotein cholesterol levels) of the acidic
polysaccharide groups were lower than those in the control
group. These results indicated that acidic polysaccharide improve
serum lipid levels.

3.8 Other activities

GPs has various structures and diverse pharmacological effects. A
large number of studies have shown that GPs play an effective role in
anti-bacterial activity, osteoporosis prevention, liver protective effects,
memory improvement and skin care effectiveness. Chen et al. (2018c)
found that GPs had an inhibitory effect on G−, G+ and fungi. Chen et al.
(2015) investigated that a sulfated polysaccharide (WSS25)
extracted from the rhizome of G. elata inhibited RANKL-
induced osteoclast formation in RAW264.7 cells and BMMs
by blocking the BMP-2/Smad/Id1 signaling pathway. Shi et al.
(2017) reported that GPs could improve the memory of rats with
cerebral palsy by regulating neurotransmitter in the brain. A
number of studies have applied GPs to develop a skin care
product (Wang et al., 2016; Du and Chen, 2018; Zheng et al.,
2018). Qiu et al. (2007) reported that WGEW and AGEW showed
strong anti-dengue virus bioactivity. Chen et al. (2024) found
that four heteropolysaccharides had an inhibitory effect on the
anti-hyperglycaemic activity of α-amylase and α-glucosidase. Xu
et al. (2023) reported that GPs had modulation of gut microbiota
and improvement in metabolic disorders.

4 Conclusion

In conclusion, as a traditional Chinese medicine, G. elata is
widely used in medicine, food and health products. G. elata
polysaccharides are one of the main components of G. elata. Due
to its pharmacological effects such as anti-oxidation, anti-tumor,
immune regulation and memory improvement, it has attracted great
attention from scientists in medicine and healthcare fields. In this
paper, structural analysis and pharmacological activities of related
research, further study of G. elata polysaccharides and rational
application for reference.
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