
Computational modelling of
micropolar blood-based
magnetised hybrid nanofluid flow
over a porous curved surface in
the presence of artificial bacteria

Wejdan Deebani1, Zahir Shah2*, Muhammad Rooman2,
Naeem Ullah Khan2, Narcisa Vrinceanu3* and Meshal Shutaywi1

1Department of Mathematics, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi
Arabia, 2Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, Pakistan,
3Faculty of Engineering, Department of Industrial Machines and Equipment, “Lucian Blaga” University of
Sibiu, Sibiu, Romania

This work provides a brief comparative analysis of the influence of heat creation
on micropolar blood-based unsteady magnetised hybrid nanofluid flow over a
curved surface. The Powell–Eyring fluid model was applied for modelling
purposes, and this work accounted for the impacts of both viscous dissipation
and Joule heating. By investigating the behaviours of Ag and TiO2 nanoparticles
dispersed in blood, we aimed to understand the intricate phenomenon of
hybridisation. A mathematical framework was created in accordance with the
fundamental flow assumptions to build the model. Then, the model was made
dimensionless using similarity transformations. The problem of a dimensionless
system was then effectively addressed using the homotopy analysis technique. A
cylindrical surface was used to calculate the flow quantities, and the outcomes
were visualised using graphs and tables. Additionally, a study was conducted to
evaluate skin friction and heat transfer in relation to blood flow dynamics; heat
transmission was enhanced to raise the Biot number values. According to the
findings of this study, increasing the values of the unstable parameters results in
increase of the blood velocity profile.
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1 Introduction

Micropolar fluids are a type of polar fluid that have microscopic features located in the non-
symmetric stress tensor. The presence of inflexible, spherical, or randomly oriented particles is a
characteristic of a micropolar fluid. These particles show distinct microrotations and spins when
suspended in a viscous liquid. These fluids are capable of a wide variety of microscale actions.
Micropolar flow can be observed in many physical phenomena, such as blood flow, bubbling
liquids, and liquid crystals. The most recent work on micropolar fluids by Xu and Pop (2014)
combines advancements in nanofluids (NFs) and bioconvection. Aziz et al. (2012) theorised the
boundary layer flow of the NF, including bioconvection. Agarwal et al. (1989) examined
micropolar fluid flow across a stretched sheet using finite-element method for flow and heat
transport solutions. Studies were conducted on the steady boundary layer flow across
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impermeable and permeable sheets in the presence of micropolar flow
by Hassanien and Gorla (1990). Eringen (1966a) originally proposed
the notion of micropolar fluids, and Abd El-Aziz (2013) studied the
manner in which rotational dynamics behaved in micropolar fluids
through individual particle motions. Spin inertia plays a role in
maintaining the rotational momentum and stress in a body. The
stagnant axisymmetric flow of a micropolar NF inside a rotating
cylinder was studied by Nadeem et al. (2012). Balaram and Sastri
(1973 explored free convection flow in a vertical parallel plate using a
micropolar fluid. The two-dimensional flow at the asymmetric
stagnation point was studied by Lok et al. (2003).

The goal of producing NF composites is to enhance the
characteristics that distinguish nanoparticles, such as thermal
conductivity. Framing can be used to produce NFs that are useful
for increasing the volume of fluids so as to absorb thermal energy and
enhance the rheological aspects. Accordingly, the enhanced thermal
energy and rheological characteristic transfer in liquids render NF
composites indispensable. Two nanoparticles can be combined to
form a hybrid nanofluid (HNF); these nanoparticles, which are
made of metals, oxides, or carbides, normally have sizes in the range
of 1–100 nm. HNFs are significant in medicine, solar energy, and
nuclear applications because they improve heat conductivity. Waini
et al. (2019) investigated a HNF with variable volume fraction for
copper nanoparticles and a fixed volume fraction of 0.1 for alumina
nanoparticles flowing over amoving permeable surface. Sulochana et al.
(2020) studiedHNFs beyond thewedge and cone and found evidence of
nonlinear radiation. Ashwinkumar et al. (2021) employed nonlinear
thermal radiation to explore the flow of a CuO − Al2O3 water HNF
through a vertical cone and plate; they investigated the features of HNF
flow while considering two altered geometries. Samrat et al. (2021)
investigated the influence of a stretched surface on heat transmission in
dusty and dusty HNF flows. Acharya (2021) devised a quasi-
linearisation modelling technique to study the hydrothermal
properties of HNFs employed on tilted spinning discs. Sarwar and
Hussain (2021) examined human blood flow under the assumption of
stenosis. Using the Cattaneo–Christov heat flux model and by taking
the heat generating effects into consideration, Garia et al. (2021) studied
the flow behaviours of HNFs over two different geometries; they
discovered that the Cattaneo–Christov model exhibited superior
accuracy for predicting heat transport behaviours compared to the
Fourier heat flow model. Eringen (1966b) introduced the micropolar
fluid model as a well-founded and major generalisation of the classical
Navier–Stokes model by accounting for the many additional
phenomena that occur in theory and applications. Hassanien and
Gorla (1990) analysed heat transfer from a stretched sheet to a
micropolar fluid and solved the model mathematically. Subhani and
Nadeem (2019) deliberated the time-dependent micropolar
magnetohydrodynamic (MHD) fluid flow in a permeable medium
for a two-dimensional plane.

The term “fluid” under the influence of magnetic and
electromagnetic forces is referred to as “magnetohydrodynamic”
(MHD). Solar panels, polymer manufacturing, and highly
conductive boilers are a few examples of applications that utilise
MHD behaviours. Various studies have been conducted in this field
because scientists aim to maintain the NFs under the influence of
electromagnetic forces. The micro liquid squeezing flow in a medium
under the effect of a magnetic field was investigated by Ghadikolaei
et al. (2017). Ullah et al. (2017) examined the non-Newtonian fluid flow

numerically over an enlarging sheet in the presence of a magnetic field
using the Keller boxmethod. Gul et al. (2015) studied the heat transport
of a ferrofluid using a vertical tube in amagnetic field. Saqib et al. (2018)
examined the flow of carbon-nanotube-based NFs in a channel under
natural convection constraints; their results indicate that greater heat
transfer improvement is attained when using lower volume fractions in
comparison with the base fluid. Ma et al. (2019) conducted a numerical
investigation on the MHD natural convection of NFs in a U-shaped
baffled enclosure; they noted that the length of the baffle considerably
impacts the flow and temperature patterns. It was also shown that heat
transmission increases as the Hartman number increases at low
Rayleigh numbers but decreases at large Rayleigh numbers. Khan
et al. (2020) examined how the shapes of nanoparticles affect the
features of peristaltic flow in MHDNFs within an asymmetric channel;
their findings reveal that platelet-shaped particles exhibit higher heat
transmission rates than brick or cylinder forms. Ghalambaz et al. (2019)
studied the phenomenon of spontaneous convection in a confined
space filled with a mixture of copper and aluminium oxide
nanoparticles, which are known as Cu–Al2O3 HNFs, where
enclosure was separated by a flexible membrane; they discovered
that increasing the quantity of solid particles in the fluid improved
heat transfer. On the other hand, the flexibility of the membrane caused
a delay in the circulation of the NF. Equations were also derived to
calculate the Nusselt number. Aman et al. (2018) provided precise
solutions for the flow of a hybrid Casson NF in a porous medium by
taking into account the MHD effects; this study demonstrated that the
Casson and magnetic factors had substantial impacts on the velocity,
nanoparticle concentration, and temperature. Das et al. (2017) studied
the entropy produced for the flow of Cu–Al2O3 HNFs in an absorbent
channel under MHD stimulus; their results indicate that there is a
decrease in entropy production with increase in the volume fraction; the
entropy generation number exhibited a positive correlation with the
Hartman and Brinkman numbers. Anantha Kumar et al. (2020a)
explored micropolar fluid flow with viscous dissipation effects over a
thin stretching surface using a modified Fourier heat flux model for the
analysis; they discovered that the temperature profiles decreased as the
levels of viscous dissipation and micropolar parameters increased.
Ramadevi et al. (2020) inspected the mixed convection flows of
micropolar fluids by employing a modified Fourier heat flux model;
their findings indicate that the velocity profiles decrease and the
temperature and concentration profiles increase when considering
the magnetic and viscous dissipation factors. Dawar et al. (2020)
examined the chemically reactive MHD flows of micropolar NFs by
considering the impacts of velocity slips and changing heat generation/
absorption; they noted positive correlations between the temperature
profiles and reaction rate parameters as well as negative correlations
with heat absorption effects. Scientists and engineers are fascinated by
the wide range of industrial applications of stretching sheets because of
their heat transfer and boundary layer flow; these applications are often
diverse and include hot rolling, gas blowing, metal spinning, wire
drawing, polymer sheet extruding, and liquid composite moulding.
Sakiadis (1961) described the results of constant speed over a solid
boundary wall. Tsou et al. (1967) investigated the properties of heat
transfer on a stretching sheet. Crane (1970) examined an analytical
solution for the viscous fluid flow induced by a linearly stretched
surface. To account for suction or blowing, Gupta and Gupta (1977)
conducted an analysis of the effects of linear velocity across a stretchy
sheet. Grubka and Bobba (1985) considered the linear velocity with
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changing temperature distribution while analysing the heat transfer
characteristics. Magyari and Keller (1999) investigated exponential flow
velocity and heat transmission with thermal dispersion effects over a
stretching surface. Elbashbeshy (2001) extended the work by Keller and
Magyari to determine how wind and suction affect a surface. Other
relevant research works can be explored through references (Shah et al.,
2024a; Grigore et al., 2017; Hasegan et al., 2019; Boicean et al., 2023;
Shah et al., 2024b), from which readers may explore further into the
subject matter to gain an inclusive understanding of the
research landscape.

Scholars and mathematicians have been increasingly interested
in studying fluid dynamics over curved surfaces because of their
importance in technology and engineering. This phenomenon has
significant consequences in several engineering disciplines,
including fabrication of polymer sheets, rubbers, melt-spinning,
paper making, and fibreglass. Micropolar fluid flow over a curved
surface is a complex phenomenon that occurs in many scientific and
practical applications. Scholars often explore complex flow patterns
using mathematical models and numerical simulations to develop
innovative methods for regulating and enhancing fluid flows in a
range of settings. Alblawi et al. (2019) numerically investigated a
curved surface that had been stretched exponentially. Ahmad and
Khan (2019a) studied the effects of fluid flow using magneto-
nanomaterials on a porous curved surface; the authors also
conducted a computer study of the MHD movement of a Sisko

nanomaterial fluid over a curved surface Ahmad and Khan, (2019b).
Sheikholeslami et al. (2020) developed a mathematical model for
MHD-based fluid flow of a nanomaterial over an inclined surface.
Sajid et al. (2010) studied the flow of a micropolar fluid over a curved
stretching surface. The continuous, incompressible flow of
micropolar fluid across an exponentially curved surface was
assessed by Shi et al. (2021) using a Keller box approach. Okechi
et al. (2017) established the flow across a curved surface by
accounting for the velocity and exponential similarity factors.
Abbas et al. (2022) examined the time-dependent flow properties
of a magnetised micropolar fluid adjacent to a curved surface.
Anantha Kumar et al. (2020b) examined the Casson fluid issue
in the context of heat radiation-influenced exponentially stretched
curved surfaces. Other simulations and investigations of entropy
analyses with applications may be seen in Ghachem et al. (2018),
Elgazery et al. (2022), Rooman et al. (2022), and Maatki (2023).

1.1 Objective

The aim of this work was to computationally model and
numerically analyse the behaviours of an unsteady magnetised
micropolar blood-based HNF containing gold and copper
nanoparticles as it flows over a curved surface. The Powell–Eyring
fluid model was used in this study, and consideration was given to the

FIGURE 1
Fluid flow configuration and coordinate system.

TABLE 1 Previous studies (Gul et al., 2015; Saqib et al., 2018; Ma et al., 2019) have analysed and reported the thermophysical characteristics of both the base
fluid and HNF in great detail Φ1 +Φ2 � Φ

Properties constituents cp( J/kg · K) k(W/m · K) σ(Ωm)−1 ρ(kg/m3 )
Gold (Au) 129 318 4.1 × 106 19300

Titanium dioxide (TiO2) 4,250 8.9538 6.27 × 10−5 686.20

Blood 3594 0.492 6.67 × 10−1 1063
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viscous dissipation and Joule heating processes. The model objective
was to contrast the performances of the HNFmodels. By investigating
the behaviours of Ag and TiO2 nanoparticles dispersed in blood, our
aim was to understand the intricate phenomenon of hybridisation.
Artificial bacteria swim in an interstitial nanoliquid that is heated by
Joule heating and variable thermal conductivity within a biotic cell.
The effects of velocity slip and thermal jump were considered while
analysing the curved surface. The basic flow assumptions were
considered in the development of a mathematical framework. The
numerical technique used to design the model verified previous
analyses, demonstrating good agreement for a specific
circumstance. The investigations delve into the impacts of various
parameters, such as the Prandtl number, volume fraction of the
nanoparticles, and blood flow parameters. The outcomes were
meticulously elucidated through graphical representations and
tabular summaries.

1.2 Novelty of the investigation

This study is unique and has a novel methodology because of
the following:

• The integration of the different elements involved in the flow
phenomenon has multiple implications for biomedical and
technical applications.

• The use of a blood-based NF containing gold nanoparticles
and blood-based HNF incorporation in combination with Ag
particles introduces novel characteristics to a real-life
physiological fluid.

• The curved surface consideration is useful for imitating
medical devices with spinning components.

• The role of dissipative heat in conjunction with particle
concentration is specifically attractive for the blood flow
phenomenon, thereby improving the heat
transmission qualities.

• We performed comparisons between the behaviours of an
unsteady magnetised micropolar blood-based NF containing
gold nanoparticles and a blood-based HNF incorporating both
gold and copper nanoparticles.

• Gold nanoparticles (GNPs) are able to treat and kill cancerous
tumours because of their large atomic numbers, which
generate heat and aid in the treatment of the tumour.
GNPs possess several other attributes that are critical for
the treatment of cancer; even though they are small, they
have the ability to penetrate deep within the body.

• Significantly, the findings of this research bear relevance to a
broad spectrum of biomedical applications.

2 Model description

2.1 Formal model and geometry

We considered a two-dimensional unsteady boundary layer
bioconvection flow of the Eyring–Powell micropolar blood-based
magnetised HNF (containing Ag and TiO2 nanoparticles) over a
porous curved stretching surface. The curvilinear coordinate system
was chosen, where r, s are the radial components, s is the length of
the arc, and stretching velocity in the s direction is u � Uw � as

1−ct,
and r is perpendicular to the tangent. The variable magnetic field
intensity B(t) operates normal to the surface. To precisely describe
the dynamics of bacterial density ρn and nutrient concentration n,
the reaction–diffusion equations are utilised.

• Unsteady, incompressible, and 2D boundary layer bioconvection
flows of the Eyring–Powell micropolar blood-based magnetised
hybrid NF (containing Ag and TiO2 nanoparticles) over a porous
curved stretching surface are considered.

• The curvilinear coordinate system was chosen, where r, s are
the radial components and s is the length of the arc.

• The velocity in the s direction is u � Uw � as
1−ct, and r is

perpendicular to the tangent.
• A varying magnetic field acts normal to the surface.
• A variable heat transfer is assumed.
• To describe the dynamics of bacterial density ρn and nutrient
concentration n, the reaction-diffusion equations are utilised.

Figure 1 illustrates the coordinate system, velocity field, and
relevant elements of the flow problem geometry.

TABLE 2 Thermophysical interactions of nano and hybrid nano fluids (Takabi and Salehi, 2014).

Properties Nano and hybrid

Viscosity μhnf
μbf

� 1
(1−ϕg−ϕTiO2 )2.5

Density ρhnf
ρbf

� ϕg( ρg
ρbf
) + ϕTiO2(ρTiO2ρbf

) + (1 − ϕg − ϕTiO2)

Thermal capacity (ρcp )hnf
(ρcp)bf � ϕg ( (ρcp )g

(ρcp)bf) + ϕTiO2( (ρcp)g
(ρcp)bf) + (1 − ϕg − ϕTiO2)

Thermal conductivity

khnf
kbf

�
ϕgkg+ϕTiO2 kTiO2( )

ϕg+ϕTiO2 +
2kbf + 2 ϕgkg + ϕTiO2kTiO2( )

−2 ϕg+ϕTiO2( )kbf⎧⎨⎩ ⎫⎬⎭
ϕgkg+ϕTiO2kTiO2( )

ϕg+ϕTiO2 +
2kbf − ϕgkg + ϕTiO2kTiO2( )

+ ϕg+ϕTiO2( )kbf⎧⎨⎩ ⎫⎬⎭
Electrical conductivity

σhnf
σbf

�
ϕg σg+ϕTiO2σTiO2( )

ϕg+ϕTiO2 +
2σbf + 2 ϕgσg + ϕTiO2σTiO2( )

−2 ϕg+ϕTiO2( )σbf⎧⎨⎩ ⎫⎬⎭
ϕgkg+ϕTiO2kTiO2( )

ϕg+ϕTiO2 +
2σbf − ϕgσg + ϕTiO2σTiO2( )

+ ϕg+ϕTiO2( )σbf⎧⎨⎩ ⎫⎬⎭
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2.2 Mathematical formulation and
basic equations

The constitutive equations characterising micropolar behaviour
are constructed in vectorial form using new kinematic properties
like the gyration tensor and micro-inertia moment tensor, in
addition to the body moments, stress moments, and micro-stress.
To take into consideration the magnetic effects, these equations are
further enhanced, as follows (Ashraf and Wehgal, 2012;
Eringen, 1966a):

∇.V � 0, (1)

ρf
∂V
∂t

+ V .∇V( ) � −∇p + μf + k*( )∇2V + k* ∇× v( ) + J × B (2)

ρfj
∂v
∂t

+ v.∇v( ) � α + β + γ( )∇.∇v − γ ∇×∇× v( ) + k* ∇× v( )

− 2kv, (3)

Here, the velocity vector is represented byV � (u, v,w), pressure is
indicated by p, microrotation is shown by v, and current density is
indicated by J � σ(V × B), with σ indicating electrical conductivity
and B indicating the magnetic field. Moreover, the fluid density is
represented by ρf, dynamic viscosity is given by μf, vortex viscosity is
given by k*, microinertia density is given by j, and gyroviscosity
coefficients are given by α, β, and γ. It is noted that there are
restrictions on α, β, γ, μf, and k*.

k*≥ 0, 2μf + k*≥ 0, 3α + β + γ≥ 0, γ
∣∣∣∣ ∣∣∣∣≥ β.

The constitutive equations for the micropolar fluids are
described in greater detail in Eringen (1966a). The equations for
thermal energy and diffusion of nanoparticles, which are based on
the Buongiorno model and obey the laws of Fourier and Fick, are
described in Abbas et al. (2019).

ρfcf
∂T
∂t

+ V .∇T( ) � kf∇
2T, (4)

where the temperature is represented by T, specific heat of the
nanofluid is given by cf, and thermal conductivity is given by kf.

Gyrotactic microorganisms are then taken into consideration
according to Uddin et al. (2016).

∂n
∂t

+ ∇J1 � 0, (5)

where

J1 � nV + n ~V −Dn∇n

The flow of microorganisms caused by fluid convection is
represented by J1, density of the gyrotactic microorganisms is
indicated by n, and diffusivity of the microorganisms is given by
Dn. The cell swimming velocity is represented by the velocity vector
~V � (0, 0, ŵ), where the velocity component along the z axis is
represented by ŵ � (bwc /ΔC)∇C. The maximal cell swimming
speed is indicated by wc, and the chemotaxis constant is
represented by b.

Using cylindrical coordinates, the governing Eqs. (1–6) (Hashmi
et al., 2012; Ashraf and Wehgal, 2012) are simplified by taking into

account amagneticfield of the formB � (0, 0, B(t)), axisymmetricflow,
and a microrotation vector normal to the disc surface (v � (0,N, 0)).

2.3 Eyring–Powell fluid model

The Eyring–Powell model was introduced in 1994 for defining
shear in a non-Newtonian flow. Here, the stress–strain relationship
is shown using the non-Newtonian Eyring–Powell model by the
strain–stress tensor Τ � ΡΙ + τ, where Ι denotes the identity stress
tensor, Ρ signifies the pressure, and τ is the extra stress tensor
satisfying the following relation (Rooman et al., 2022):

τ � μ∇V + 1
β1
sinh−1

1
c1
∇V( ), (6)

where

sinh−1 1
c1
∇V( ) ≈

1
c1
∇V( ) − 1

6
1
c1
∇V( )3

,
1
c1
∇V

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣≪ 1

2.4 Governing equations and boundary
conditions after applying assumptions

The Navier–Stokes flow is a form of fluid motion in which the
typical dimension and flow rotation speed, Uw, are both very small.
Because a small Reynolds number is used to eliminate the inertial term
in the Navier–Stokes equation, the Stokes estimate is frequently
employed to explain the motion of magnetic microorganisms.
Therefore, the fluid speed of the swimming magnetotactic bacteria is
determined by the Navier–Stokes and continuity equations. The
relevant governing equations to investigate the aforementioned fluid
flow are as follows (Abbas et al., 2022; Shi et al., 2021):

�r
∂v
∂r

+ r + R
∂u
∂s

� 0, (7)
u2

�r
− 1
ρhnf

∂p
∂r

� 0, (8)

∂u
∂t

+ ]
∂u
∂r

+ R

�r
u
∂u
∂s

+ u]( ) �

− 1
ρhnf

R

�r

∂p
∂s

+ 1
ρhnf

μhnf + k*( ) + 1
β1c1

( ) ∂
∂r

∂u
∂r

+ u

�r
( )

− 1

6β1c1
3

∂
∂r

∂u
∂r

+ u

�r
( )3

− 1
ρhnf

σhnfB
2 t( )u − μhnf

k1
u − k*

∂N
∂r

( )∂N
∂t

+ v
∂N
∂r

+ Ru

�r

∂N
∂s

� − γ

ρhnfj

∂2N
∂r2

+ 1
�r

∂N
∂r

( )
− k*
ρhnfj

2N + ∂u
∂r

+ u

�r
( ) (9)

where N represents the microrotation velocity. Here, γ* � (μ +
k*
2 ) � μ(1 + K1

2 )j, where K1 � k*
μ represents the material parameter,

j � 2vL
ce

s
L
is the micro inertia per unit mass, and γ* and J indicate the

spin gradient and vortex viscosity, respectively.

Frontiers in Chemistry frontiersin.org05

Deebani et al. 10.3389/fchem.2024.1397066

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1397066


ρCp( )
hnf

∂T
∂t

+ ]
∂T
∂r

+ R

�r
u
∂T
∂s

( ) � 1
�r

∂
∂r

�rkhnf T( ) ∂T
∂r

( )
+ σhnfB

2 t( )u2, (10)
∂ρn
∂t

+ v
∂ρn
∂r

+ R

�r
u
∂ρn
∂s

( ) � Dn
∂2ρn
∂r2

+ 1
�r

∂ρn
∂r

( ) + A n, t( )ρn. (11)

Subject to the boundary conditions as per Ma et al. (2019),
we get

u � Uw � as

1 − ct
, v � 0, T � Tw, ρn � ρn( )w, N � −m ∂u

∂r
, at r → 0,

u → 0,
∂u
∂r

→ 0, T → T∞, ρn → ρn( )∞, N → 0, as r → ∞
(12)

Here, �r � r + R. In the present discussion, it is assumed that
n>Km, a> 0, and c≥ 0 with dimension (time)−1.

2.5 Similarity transformations and
modelled ODEs

Consider the following dimensionless similarity transformation
(Ma et al., 2019):

η �
���������

a

]f 1 − ct( )
√

r, u � as

1 − ct
f′ η( ), p � ρf

as

1 − ct
( )2P η( ),

v � R

�r

�������
a]f
1 − ct( )

√
f η( ), T � T∞ + Tw − T∞( )θ η( ), N � as

1 − ct

���������
a

]f 1 − ct( )
√

g η( )
ρn � ρn( )∞ + ρn( )w − ρn( )∞( )χ η( ), n � n∞ + nw − n∞( )ω η( )

(13)

The continuity equation is met by the dimensionless quantity in
Eq. (13), and upon pressure elimination, the governing Eqs. (7–12)
can be represented as follows:

μhnf
μf

+K1 + α1
⎛⎝ ⎞⎠ fIV + 1

η +K
2f‴ − f″

η +K
+ f′

η +K( )2( )[ ] − f″ + f′
η +K

( )( )
σhnf

σf
M + μhnf

μf
β0⎡⎣ ⎤⎦

− α2

f″2 + 2f′f″
η +K

+ f′2

η + K( )2( )fIV + f″2 − 3f′f″
η +K

− f′2

η + K( )2( ) f″
η + K( )2 + 3f′3

η +K( )5
+2 f″ + f′

η +K
( )f‴2 + 2 3f″2 + 2f′f″

η +K
− f′2

η +K( )2( ) f‴
η +K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−K1 g″ + g′
η + K

( ) + ρhnf
ρf

K f f‴ − f′ f″( )
η +K

+ K ff″ − f′2( )
η +K( )2 − Kff′

η + K( )3⎡⎢⎣
− γ

η + K

η

2
f″ + f′( ) − γ

2
ηf‴ + 3 f″( )] � 0,

(14)

μhnf
μf

+ K1

2
⎛⎝ ⎞⎠ g″ + g′

η + K
( ) + K

η +K
fg′ − K

η +K
f′g

−K1 2g + f″ + f′
η + K

( ) − γ

2
ηg′ + 3g( ) � 0, (15)

FIGURE 2
(A) Schematic for preparation of a hybrid nanofluid. (B)
Schematic for applications of titanium dioxide (TiO2). (C) Schematic
for applications of gold nanoparticles. (D) Flow chart for Homotopy
Analysis Method.
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khnf
kf

1 + β θ( ) θ″ + θ′
η +K

( ) + β θ′( )2[ ] + σhnf
σf

MPrEcf′2

+ ρCP( )hnf
ρCP( )f Pr

Kf

η +K
− γ η

2
( ) θ′[ ] � 0, (16)

χ″ + χ

η +K
+ Lb

Kf

η +K
− γ η

2
( ) χ′ + λ Ω + χ( )[ ] � 0, (17)

Similarly, pressure can be expressed as

P η( ) � μhnf
μf

+K1 + α1⎛⎝ ⎞⎠ f‴ + f″
η +K

− f′
η + K( )2[ ]

+ 1
2

ρhnf
ρf

f f″ − f′2 + f f′
η +K

− η + K

K
γ

η

2
f″ + f′( )[ ]

− η +K

2K

σhnf
σf

M + ρhnf
ρf

β0⎛⎝ ⎞⎠ f′

+ α2 f″ + f′
η +K

( )2

f‴ + f″
η +K

− f′
η + K( )2( ),

(18)

Notations and parameters in the governing equations

Name of parameter Symbol and formula Name of parameter Symbol and formula

Curvature factor K � ������
a

]f(1−ct)
√

R Eyring–Powell fluid model parameter α2 � a3s2

β1c
3
1ρf]

2
f
(1−ct)3

Variable nutrient bacterial growth rate (n, t) � aλ(t) n
(Km+n) Variable thermal conductivity β �

���
π2vf
a2c

√
Magnetic parameter M � σfB2

0
ρfa

Porosity parameter β0 � μf(1−ct)
ρfk1a

Conversion factor Y � (ρn)w−(ρn )∞
nw−n∞

Bioconvection Lewis number Lb � ]f/Dn

Bacterial difference density parameter Ω � (ρn)w
(ρn )w−(ρn)∞

Non-dimensional generation/absorption coefficient Q � 1−ct
a(ρCP)fQ*

Maximum growth rate (t) � λ0
1−ct

Eyring–Powell fluid model parameter α1 � μf
β1c1

Prandtl number Pr � ](ρCP)f
k0

(Pr≈ 21for blood)

FIGURE 3
(A–D) Graphical validations of the HAM with numerical methods for f′(η),g(η), θ(η), and χ(η).
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Subject to boundary conditions

f′ 0( ) � θ 0( ) � χ 0( ) � ω 0( ) � 1,−m0f″ 0( ) � 0, g 0( ) � 0,� 0,
f′ ∞( ) � f″ ∞( ) � θ ∞( ) � χ ∞( ) � ω ∞( ) � 0, g ∞( ) � 0.

(19)

2.6 Thermophysical characteristics of the NF

2.6.1 Hybrid nanomaterial properties
The thermophysical characteristics and relations of the

nano and hybrid nano materials are shown in Table 1 and
Table 2, respectively. The properties and applications of
the considered hybrid nanomaterials are shown in Figures 2A–C.

2.6.2 Physical quantities of relevance
Examining the behaviour of the local skin-friction coefficient

(Cfs) is worthwhile here, along with the Nusselt number (Nus) and

nutrient concentration number (Nnx). With respect to distinct
physical aspects of the Nusselt and nutrient concentration
number outcomes, the nondimensional local skin-friction
coefficient are as follows:

Cfs � τw
ρfU

2
w

, Nus � sqw
kf Tw − T∞( ), Nns � sqn

Dn nw − n∞( ) (20)

where τw, qw, and qn are the wall surface shear stress, heat flux,
and wall nutrient flux concentration, respectively, as given below:

τrs � μnf + k* + 1
βc

( ) ∂u
∂r

+ u

�r
( ) − 1

6βc3
∂u
∂r

+ u

�r
( )3[ ]

r�R
,

qw � −knf ∂T
∂r
[ ]

r�0
, qs � −Dn (21)

These values can be expressed in nondimensional forms as.
From Eq. (13), the non-dimensional equation related to skin friction

TABLE 3 HAM and numerical technique (ND-Solve) validations for f9(η).

″η″ HAMsolution Numerical solution Absolute error

0 ″1.000000″ ″1.000000″ ″0.000000″

1 ″0.391988″ ″0.392072″ ″0.001674″

2 ″0.163974″ ″0.164194″ ″0.004408″

3 ″0.063938″ ″0.064225″ ″0.005738″

4 ″0.020856″ ″0.021091″ ″0.004685″

5 ″0.005242″ ″0.005385″ ″0.002868″

6 ″0.000760″ ″0.000833″ ″0.001462″

7 ″ − 0.000148″ ″ − 0.000115″ ″0.000662″

8 ″ − 0.000187″ ″ − 0.000173″ ″0.000277″

9 ″ − 0.000106″ ″ − 0.000100″ ″0.000111″

10 ″ − 0.000048″ ″ − 0.000046″ ″0.000043″

TABLE 4 HAM and numerical technique (ND-Solve) validations for g(η).

″η″ HAMsolution Numerical solution Absolute error

0 ″1.000000″ ″1.000000″ ″8.881780″ × 10−16

1 ″0.360849″ ″0.360848″ ″0.000459″

2 ″0.133882″ ″0.133881″ ″0.000503″

3 ″0.133882″ ″0.049807″ ″0.000269″

4 ″0.018467″ ″0.018467″ ″0.000092″

5 ″0.006823″ ″0.006823″ ″0.000024″

6 ″0.002516″ ″0.002516″ ″5.105970″ × 10−6

7 ″0.000926″ ″0.000926″ ″9.825230″ × 10−7

8 ″9.825230″ × 10−7 ″0.000341″ ″1.794910″ × 10−7

9 ″0.000125″ ″0.000125″ ″3.321050″ × 10−8

10 ″0.000046″ ″0.000046″ ″6.731680″ × 10−9
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as well as the heat transfer and nutrient concentration are finally
determined as follows:

Cf Res( )1/2 � φ1 + α1( )(f″ 0( ) + f′ 0( )
�ξ
) − α2(f″ 0( ) + f′ 0( )

�ξ
)3

Nus Res( )−1/2 � −θ/ 0( )
Nns Res( )−1/2 � −ω/ 0( ) (22)
where (Res)1/2 �

������
a

]f(1−ct)
√

s is the local Reynolds number.

3 Solution methodology

To solve Eqs. (14–18) under the boundary constraints of
Eq. (19), we employ the homotopy analysis method (HAM) with
the following steps. Figure 2D shows the flow chart for
this method.

The solutions having the auxiliary parameters - adjust and
control the convergence of the results.

The initial guesses are selected as follows:

f0 η( ) � 1 − e−η, g0 η( ) � e−η, θ0 η( ) � e−η, χ0 η( ) � e−η. (23)

The linear operators are taken as Lf, Lg, Lθ , and Lχ :

Lf f( ) � f″ − f′, Lg g( ) � g″ − g, Lθ θ( ) � θ″ − θ, Lχ χ( ) � χ″ − χ,

(24)
with the following properties:

Lf c1 + c2e
−η + c3e

η( ) � 0, Lg c4e
−η + c5e

η( ) � 0, Lθ c6e
η + c7e

−η( )
� 0, Lχ c8e

−η + c9e
η( ) � 0,

(25)
where ci(i � 1 − 9) are the constants in the general solution.

TABLE 5 HAM and numerical technique (ND-Solve) validations for θ(η).

″η″ HAMsolution Numerical solution Absolute error

0 ″1.000000″ ″1.000000″ ″8.881780″ × 10−16

1 ″0.360849″ ″0.360848″ ″0.000459″

2 ″0.133882″ ″0.133881″ ″0.000503″

3 ″0.133882″ ″0.049807″ ″0.000269″

4 ″0.018467″ ″0.018467″ ″0.000092″

5 ″0.006823″ ″0.006823″ ″0.000024″

6 ″0.002516″ ″0.002516″ ″5.105970″ × 10−6

7 ″0.000926″ ″0.000926″ ″9.825230″ × 10−7

8 ″9.825230″ × 10−7 ″0.000341″ ″1.794910″ × 10−7

9 ″0.000125″ ″0.000125″ ″3.321050″ × 10−8

10 ″0.000046″ ″0.000046″ ″6.731680″ × 10−9

TABLE 6 : HAM and numerical technique (ND-Solve) validations for χ(η).

″η″ HAMsolution Numerical solution Absolute error

0 ″1.000000″ ″1.000000″ ″1.110220″ × 10−16

1 ″0.398472″ ″0.400921″ ″0.002448″

2 ″0.154709″ ″0.156267″ ″0.001558″

3 ″0.059141″ ″0.059895″ ″0.000754″

4 ″0.022469″ ″0.022804″ ″0.000335″

5 ″0.008530″ ″0.008675″ ″0.000145″

6 ″0.003245″ ″0.003306″ ″0.000062″

7 ″0.001238″ ″0.001264″ ″0.000026″

8 ″0.000474″ ″0.000485″ ″0.000011″

9 ″0.000182″ ″0.000186″ ″4.690510″ × 10−6

10 ″0.000070″ ″0.000072″ ″1.971020″ × 10−6
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4 Validation of the results

The outcomes of the validations are presented both numerically
and graphically in this work. The numerical (ND-Solved)
approaches are juxtaposed with the semi-analytical HAM results
for the velocity distributions f′(η), g(η), temperature profile θ(η),
and bacterial density field χ(η).

Figures 3A–D display the comparisons of the HAM and
numerical solutions for f′(η), g(η), θ(η), and χ(η). For every
profile, there is outstanding agreement between both outcomes.
The HAM solution outcomes, numerical solution results, and
absolute errors between f′(η), g(η), θ(η), and χ(η) are
presented in Tables 3–6. Between the two sets of results, it is
noted that there is very good agreement for each profile.

5 Results and discussion

In this investigation, the HAM is used to evaluate the efficacy
of several regulating elements, such as the volume fraction ϕ,
curvature factor K, fluid parameter α1, maximum growth rate of
the bacteria λ, unsteady parameter γ, porosity parameter β0,
magnetic parameter M, nondimensional bacterial density
difference Ω, nondimensional generation/absorption coefficient,
bioconvection Lewis number Lb, variable thermal conductivity β

on the temperature θ(ξ), velocity f′(ξ), bacterial density field
χ(ξ), Nusselt number, skin friction, and density of nutrient
concentration number, through graphs.

5.1 Velocity profile

Figure 4A shows the variations between the porosity parameter
β0 and velocity profile f′(η). The porosity parameter is significant in
various fields and disciplines owing to its influence on a wide range
of physical, chemical, and engineering processes. When β0 is
enhanced, the velocity profile declines for the HNF; this is
because a porous medium with increasing porosity usually has
more empty areas. Although this may seem to improve flow at
first glance, it also implies that less solid material is available to
provide flow stability and order. A decrease in the fluid’s effective
flow area therefore causes the velocity profile to diminish. Figure 4B
explains the effect of the unsteady parameter γ on the velocity profile
f′(η). By enhancing the parameter γ, we can reduce the velocity
profile f′(η) because an increase in γ indicates greater impacts of
the time-dependent variables on the fluid flow. Increased fluid
inertia property that tends to resist changes in velocity can result
from this. The fluid may thus respond more slowly to changes in the
external environment, causing the velocity profile to drop. Figure 4C
represents the variation between the curvature factor K and velocity
profile f′(η). Increasing the curvature factor K reduces the velocity
profile because the pressure gradient along a curved surface tends to
get stronger as the curvature increases. A drop in the velocity profile
may occur from this increased pressure gradient creating a greater
barrier to flow. Because of higher pressure forces oppose the flow,
the fluid has a tendency to slow down as it moves around the curved
surface. Figure 4D represents the variation between the magnetic
parameter M and velocity profile. As M increases, there is a decay in
the velocity profile because the strength of the magnetic field
operating on the NF increases with increase in M. The fluid’s
magnetic nanoparticles prefer to align under this greater
magnetic field, which might increase the effective viscosity of the
NF. The velocity profile decreases as a result of the resistance of the
increasing viscosity to flow.

FIGURE 4
(A) Impact of β0 on f ′(η). (B) Impact of γ on f′(η). (C) Impact of K
on f′(η). (D) Impact of M on f′(η).
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5.2 Temperature profile

Figure 5A presents the variation between the porosity parameter
β0 and temperature profile θ(η). When β0 increases, the temperature
also increases because there is usually more space for flow within a
porous medium when the porosity parameter increases. This may
lead to improved convective heat transfer within the medium via
increased fluid velocity and circulation. Figure 5B represents the
variation between the magnetic parameter M and temperature
profile θ(η). An increase in M increases the temperature profile
of the HNF because the intensity of the external magnetic field acting
on the nanoparticles increases with M. The fluid’s nanoparticles
may move and align more significantly as a result of this increased
magnetic force. Figure 5C represents the variation between the
Eckert number Ec and temperature profile θ(η). As Ec increases,
the temperature also increases because the kinetic energy
contribution is greater than the enthalpy change when the Eckert
number increases. This suggests that fluid motion, as opposed to

heat transmission, accounts for a greater percentage of the system’s
energy. More kinetic energy can improve fluid circulation and
mixing, which can help the fluid transfer heat more effectively.
Figure 5D presents the variation of the unsteady parameter γ with
the temperature profile θ(η). As γ increases, the temperature also
increases because the flow parameters will vary more quickly over
time if the unsteady parameter γ is larger. Higher temperatures may
be seen due to the greater heat dispersion and distribution across the
fluid domain brought on by the enhanced fluid mixing. Figure 5E
presents the variation between the variable thermal conductivity β

and temperature profile θ(η). When we increase the variable
thermal conductivity β, the temperature of the HNF increases
because the variable thermal conductivity implies that the fluid’s
capacity to transfer heat changes spatially. Better heat transmission
throughout the fluid domain is made possible by the fluid’s greater
ability to transmit heat when β increases. The fluid’s temperature
may increase as a consequence of this increased heat conduction.

FIGURE 5
(Continued).

FIGURE 5
(Continued). (A) Impact of β0 on θ(η). (B) Impact of M on θ(η). (C)
Impact of Ec on θ(η). (D) Impact of γ on θ(η). (E) Impact of β on θ(η). (F)
Impact of K on θ(η).
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Figure 5F presents the variation between the curvature factor K and
temperature profile θ(η). When we increase the curvature factor K,
the temperature of the HNF decreases because the surface area per
unit volume often increases with increasing curvature; heat is
dispersed from the fluid to the surroundings more efficiently
owing to this larger surface area. As a result of improved cooling
over the curved surface, the temperature of the HNF drops.

5.3 Microrotation profile

Figure 6A presents the variation between the variable thermal
conductivity β and micropolar profile g(η). When we increase the
variable thermal conductivity β, the micropolar profile of the HNF
increases because a rise in β suggests that the thermal conductivity
of the material is increasingly temperature-dependent. Higher
temperatures thus lead to enhanced thermal conduction, which
facilitates heat transmission within the fluid. The micropolar

profile may increase as a result of this improved thermal
conduction, enabling more effective temperature distribution
throughout the fluid. Figure 6B presents the variation between
the micropolar parameter K1 and micropolar profile g(η). When
we increase the micropolar parameterK1, the micropolar profile of
the HNF increases because the strength of the fluid’s
microstructural effects, such as the microrotation and
microdeformation of the fluid constituents, is represented by
the micropolar parameter K1. These microstructural effects
intensify as K1 increases, thereby increasing the fluid’s degree
of micropolar activity. The fluid’s total micropolar profile increases
as a result of this enhanced micropolar behaviour. Figure 6C
presents the variation between the curvature factor K and
micropolar profile g(η). When we increase the curvature factor
K, the micropolar profile of the HNF increases because more
complicated microstructural effects arise within the fluid as a result
of the curved surface’s flow patterns being impacted by the increase
in curvature K. These effects, which are more noticeable in areas

FIGURE 7
(A) Impact of λ on χ(η). (B) Impact of Ω on χ(η). (C) Impact of Lb
on χ(η).

FIGURE 6
(A)Impact of β on g(η). (B) Impact of K1 on g(η). (C) Impact of K
on g(η).

Frontiers in Chemistry frontiersin.org12

Deebani et al. 10.3389/fchem.2024.1397066

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1397066


with greater curvature, include microrotation and
microdeformation of the fluid components. Consequently, the
fluid’s micropolar activity intensifies, which increases the
micropolar profile.

5.4 Bacterial density field

Figure 7A presents the variation between the maximum growth
rate of the bacteria λ and bacterial density field χ(η). When we
increase the maximum growth rate of the bacteria λ, the bacterial
density field of the HNF increases because the bacteria that have a
greater maximal growth rate are believed to multiply more quickly.
Consequently, the fluid produces more bacteria in a given amount of
time, increasing the total bacterial density field. Figure 7B presents
the variation between the bacterial difference density parameter Ω
and bacterial density field χ(η). When we increase the bacterial
difference density parameter Ω, the bacterial density field of the
HNF increases because the density difference between the bacteria
and surrounding fluid is represented by the bacterial differential
density parameter Ω. This suggests that the bacteria become more
buoyant in relation to the fluid asΩ increases. The bacteria multiply
and spread more broadly in the fluid as a result of this enhanced
buoyancy, increasing the total bacterial density field. Figure 7C
presents the variation between the bioconvection Lewis
number Lb and bacterial density field χ(η). When we increase
the bioconvection Lewis number Lb, the bacterial density field of
the HNF increases because the transport of nutrients to the bacterial
cells is more effective when Lb increases. The increase in total
bacterial density field inside the HNF is a result of the increased
nutrition availability, which encourages bacterial growth and
replication.

5.5 Graphical and numerical results of the
skin-friction coefficient, Nusselt number,
and nutrient concentration number

Figure 8A shows how the skin-friction coefficient is affected by
η, β0, M, and K. Changes in the porous structure of the medium
significantly affect the frictional forces, as demonstrated by the

TABLE 7 Numerical values of skin friction Cf(Res)1/2 for several values of
γ, β0 ,M, and K.

M β0 γ K Cf(Res)1/2

0.1 0.1 0.1 0.1 0.7568

0.2 0.7584

0.3 0.7601

0.1 0.7568

0.2 0.7585

0.3 0.7602

0.1 0.7568

0.2 0.7611

0.3 0.7654

0.1 0.7568

0.2 0.7562

0.3 0.7557

FIGURE 8
(A) Variations in skin friction Cf(Res)1/2 for several values of γ, β0 ,M,
and K. (B) Variations in theNusselt numberNus(Res)−1/2 for several values
of β0 ,M, and γ. (C) Variations in the nutrient concentration number
Nns(Res)−1/2 for several values of Lb,Ω, and λ..
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porosity parameter β0 that has the greatest impact on skin friction.
The magnetic parameter M has less of an impact on skin friction
than the porosity parameter β0. This suggests that in terms of
frictional forces, the magnetic field modifies flow behaviour to a
lesser extent. Although not as much as the porosity parameter β0, the
unsteady parameter γ also increases skin friction. This parameter
shows that the frictional forces are influenced by temporal variations
in the flow conditions. Out of all the characteristics examined, the
curvature factor K has the least incremental impact on skin friction;
this implies that the frictional forces are mostly determined by

factors other than the surface geometric curvature, such as porosity,
magnetic fields, and flow unsteadiness.

The changes in the Nusselt number Nus(Res)−1/2 for different
values of β0, M, and γ are shown in Figure 8B. Stronger magnetic
fields appear to inhibit heat transport, as seen by the continuous
decline in the Nusselt number as the magnetic parameter M
increases. This behavior is consistent with the findings of other
studies, which shows that the increased flow mixing brought about
by higher magnetic fields can lower the heat transfer rate. The results
therefore emphasise the necessity of considering magnetic fields
carefully in heat transfer applications, particularly when aiming to
improve or regulate the heat transfer rate. Heat transmission is
impacted by flow unsteadiness, as seen by the decreasing Nusselt
number as the unsteady parameter γ increases. Typically, unsteady
flows show variations in temperature gradients and velocity, which
may interfere with the formation of boundary layers and lower the
effectiveness of heat transmission. As a result, engineering systems
functioning in unstable environments could experience reduced
heat transfer efficiency, requiring countermeasures to preserve
the intended thermal properties. Further investigation is
necessary to fully understand the role of porosity in heat transfer
processes involving magnetic fields and unsteady flows, as evidenced
by the lack of discernible variations in the Nusselt number with
increasing values of the porosity parameter β0. This finding
contrasts with the significant influences of the magnetic and
unsteady parameters.

The fluctuations of the nutrient concentration number for
various values of Lb,Ω, and λ are shown in Figure 8C. There are
substantial associations between these variables, as shown by the
correlations between the influencing factors and nutrient
concentration density provided. A reduction in the density of the
nutrient concentration is observed with increases in the
bioconvection Lewis number Lb, bacterial density difference Ω,
and bacterial maximum growth rate λ. These results have
significant ramifications for medical cancer therapies that use
artificial bacteria and magnetite nanoparticles. One may control
the availability of the nutrients in normal cells and decrease tumour
cell usage of such nutrients at the same time by adjusting the
growth rate and density differential between the bacteria. Because
the healthy cells are fed even as the tumour cells are starved,
this focused strategy may increase the effectiveness of
cancer therapies.

Table 7 illustrates the impacts of varying values of the magnetic
parameter M, porosity parameter β0, unsteady parameter γ, and
curvature factor K on skin friction. The findings indicate positive
correlations between increasing values of these parameters and
heightened skin friction. Notably, the porosity parameter β0
exhibits the most pronounced enhancement in skin friction
compared to the magnetic parameter M, unsteady parameter γ,
and curvature factor K. Conversely, the least incremental effect on
skin friction is observed with the curvature factor K as compared to
the magnetic parameter M, unsteady parameter γ, and porosity
parameter β0.

Table 8 illustrates the trend of the Nusselt number for incremental
values of the magnetic parameter M, porosity parameter β0, and
unsteady parameter γ. The data indicate consistent decreases in the
Nusselt number as the values of the magnetic parameter M and
unsteady parameter γ increase. Conversely, there is no discernible

TABLE 8 Numerical values of the Nusselt number Nus(Res)−1/2 for several
values of β0 ,M, and γ.

M β0 γ Nus(Res)−1/2

0.1 0.9473

0.2 0.9455

0.3 0.9438

0.1 0.9473

0.2 0.9473

0.3 0.9473

0.1 0.9473

0.2 0.9460

0.3 0.9447

TABLE 9 Numerical values of the nutrient concentration number
Nns(Res)−1/2 for several values of Lb,Ω, and λ.

Lb Ω λ Nns(Res)−1/2

0.1 0.8663

0.2 0.8661

0.3 0.8658

0.1 0.8663

0.2 0.8663

0.3 0.8662

0.1 0.8663

0.2 0.8659

0.3 0.8655

TABLE 10 Comparison of skin friction values with literature.

M Present results Elgazery et al. (Elgazery et al.,
2022)

1.0 1.4188276394073485 1.4142165596981353

5.0 2.431230962861769 2.4494934810118005

10.0 3.3163485207768746 3.3166680277801750

50.0 7.184288470017636 7.1414769000363100

100.0 10.038094657157158 10.049923999999939
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variation observed with increasing values of the porosity parameter β0.
This suggests that themagnetic parameterM and unsteady parameter γ
exert significant influences on the Nusselt number, leading to a decline,
while the porosity parameter β0 remains relatively unaffected. Table 9
presents the correlation between the nutrient concentration density and
three influential factors: bioconvection Lewis number Lb, bacterial
density difference Ω, and maximum growth rate of the bacteria λ.
The analysis reveals that increases in the bioconvection Lewis number,
bacterial density difference, and maximum growth rate are correlated
with decreases in the nutrient concentration density. These
mathematical findings suggest careful regulation of the bacterial
density difference and bacterial growth rate in medical cancer
treatments involving magnetite nanoparticles and artificial bacteria.
This regulation may enhance nutrient availability in the normal cells
while reducing nutrient utilisation by the tumour cells. In the context of
medical treatment, it is advisable to augment the applied magnetic
factors while diminishing the ratio of thermal diffusivity to mass
diffusivity; this approach aims to optimise the nutrient consumption
in normal cells while minimising that in tumour cells. Table 10 shows
comparisons for skin friction values with findings from previous work,
and it is seen that these results are in good agreement.

6 Conclusion

A mathematical analysis of the impact of heat generation on
an unsteady magnetised Powell–Eyring micropolar blood-based
hybrid nanofluid over a curved surface is reported in this work.
This model’s objective is to contrast the performances of the HNF
models. The effects of thermal jump and velocity slip are
considered when analysing the curved surface. The
mathematical model was formulated based on the underlying
flow assumptions. The cylindrical surface is utilised to calculate
the flow quantities, and the outcomes are visually presented using
graphs and tables. The following conclusions may be drawn from
the results of this work:

• This study significantly contributes to literature by uncovering
novel flow features that were previously unexplored.

• The utilisation of gold nanoparticles shows potential for
enhancing blood circulation and presents a promising
therapeutic strategy for combating arterial diseases, in
contrast to copper and aluminium oxide nanoparticles.

• The proposed strategy has advantages for effective delivery of
medication through blood, as seen from the graphical findings
and numerical solutions.

• The ratio of fluid to surface increases and rate of heat transfer
decreases when the magnetic field is increased.

• Heat transmission enhancement increases the Biot number
value. It was found that the blood velocity profile could be
improved by increasing the values of the unstable
parameters.

• As the porosity parameter, magnetic parameter, and magnetite
volume percentage increase, the velocity distribution decreases.

• The distribution of blood temperature increases with the
concentration of the magnetite nanoparticles. It is therefore
possible to enhance the physical properties of the blood by
submerging the magnetite nanoparticles.

• The current findings show that boosting the heat transfer rate
is dependent on the magnetic parameter and Eckert number.

• The increasing behaviour of skin friction (Cf) with increasing
values of the magnetic parameter (M) for the HNF is observed.

• The increase in the total bacterial density field inside the HNF
is a result of the increased availability of nutrition, which
encourages bacterial growth and replication.

• As the cooling over the curved surface improves, the
temperature of the HNF drops.
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Nomenclature

Symbols Quantity Units

(r, s) Curvilinear coordinates -

(u, v) Velocity components m/s

N Microrotation velocity m/s

p Pressure N/m2

T Temperature K

R Radius of curvature m

k Thermal conductivity W/m ·K

k1 Permeability constant

n Nutrient concentration mg/L

Dn Diffusivity of nutrient -

K Curvature constraint -

Pr Prandtl number -

Lb Lewis number -

B Magnetic field T

Q Coefficient of generation/absorption -

Greek symbols

α1 ,α2 Fluid parameters kg/m3

μf Dynamic viscosity kg/m · s

ν Kinematic viscosity m2/s

ρ Density kg/m3

β Thermal conductivity parameter W/m ·K

σ Electrical conductivity S/m

k* Vortex viscosity -

j Microinertial density -

Subscripts

hnf Hybrid nanofluid

f Base fluid

p Nanoparticles

w At the curved surface

∞ Far away from the surface (at infinity)
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