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This study introduces newly discovered chrysin derivatives that show potential as
candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b,
among the synthesized compounds, displayed significant inhibitory effects on
monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of
4.71 μM. Furthermechanistic studies demonstrated that4b inhibits the production of
reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and
MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the
transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b
exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-
induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal
models. These results indicate that 4b shows considerable promise as a therapeutic
agent for managing IBD.
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1 Introduction

The pathogenesis of inflammatory bowel disease (IBD) is a multifaceted process that
encompasses the interplay of genetic predisposition, environmental triggers, and immune
dysregulation within the gastrointestinal system (Seyedian S et al., 2019). The etiology of the
disease involves alterations in the innate immune response of the body. TNF-α functions to induce
inflammation by stimulating the synthesis of additional pro-inflammatory cytokines and adhesion
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molecules, facilitating the attachment and transmigration of white blood
cells across the intestinal epithelium (Jang D et al., 2021). The critical
phase in the development of inflammation and tissue damage seen in IBD
entails the influx of additional inflammatory cells into the compromised
intestinal epithelium (Saez A et al., 2021; Wang J. et al., 2023). To date,
TNF-α inhibitors have demonstrated significant efficacy in managing
chronic inflammatory conditions, such as IBD, through their ability to
suppress the expression of pro-inflammatory cytokines and adhesion
molecules (Peng J et al., 2014; Willrich et al., 2015). Currently, the most
effective therapeutic approach for individuals diagnosed with IBD
involves the use of anti-tumor necrosis factor-α (anti-TNF-α)
antibodies, such as infliximab. However, the known toxicities of the
antibody likely hamper its clinical deployment, encompassing infections,
immunosuppression, and malignancies (Hemperly and Vande Casteele,
2018; Parigi et al., 2021). Hence, the advancement of more potent and
secure medications is imperative for the treatment of IBD.

Natural products are considered to be valuable resources for the
initiation of drug discovery (Li et al., 2016; Atanasov et al., 2021).
Chrysin, a naturally occurring flavonoid, exhibits a diverse range of
biological activities including antibacterial, anti-tumor, antioxidant, anti-
allergic, and anti-inflammatory properties (Naz et al., 2019; Oršolić et al.,
2022). Extensive evidence supports the notion that chrysin exerts a wide
array of anti-inflammatory effects by targeting multiple molecular
pathways and their associated targets (Zeinali et al., 2017).
Specifically, chrysin possesses anti-inflammatory effects by reducing
the production of pro-inflammatory cytokines TNF, IL-1, and IL-6
(Ahad et al., 2014; Faheem et al., 2023). However, the therapeutic
effectiveness of chrysin has been hindered by its inadequate aqueous
solubility and low bioavailability (Li Y et al., 2019; Bhowmik et al., 2022).
Consequently, numerous chrysin derivatives have been synthesized with
the aim of augmenting their bioactivities under physiological
circumstances (Wang Q et al., 2014; Ghorab et al., 2023). Especially,
Chen et al. conducted the preparation of various chrysin derivatives
incorporating aromatic substituents or long-chain aliphatic
hydrocarbons (Chen et al., 2020). Likewise, Li et al. prepared a
collection of chrysin derivatives featuring diverse amino acid species.
In comparison to the parent molecule, these derivatives exhibited
enhanced in vitro bioactivities (Li Y et al., 2021). These studies have
illuminated the importance of chrysin derivatization as a promising
method in the development of more effective treatment strategies.

α-Lipoic acid (α-LA) is a ubiquitous biological antioxidant that
traverses the blood-brain barrier and serves as a cofactor for enzymes
crucial to cellular metabolism (Salehi et al., 2019). Its remarkable ability
to neutralize free radicals and uphold cellular oxidoreductive
equilibrium has garnered significant attention, particularly in relation
to its potential therapeutic efficacy in various ailments, including IBD
(Wang Z et al., 2022). In particular, α-LA derivatives bearing the indoles
scaffold demonstrate notable anti-inflammatory efficacy by inhibiting
the production of pro-inflammatory factors such as nitric oxide (NO)
and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)
and interferon gamma (IFNγ)-stimulated RAW 264.7 macrophages
(Prieto-Hontoria et al., 2016). Additionally, the in vivo studies provided
evidence that α-LA effectively attenuated the concentrations of TNF-α.
Therefore, considering the functional specificity of α-LA, the
incorporation of this compound into chrysin holds the potential to
enhance both the bioactivities and physicochemical properties.

In this study, a series of chrysin derivatives were prepared through
introducing α-LA functional group. Next, all synthesized compounds

were subjected to initial in vitro screening to assess their potential anti-
inflammatory effects on the adhesion of monocytes to colon epithelial
cells induced by TNF-α. Among them, 4bwas identified as a promising
candidate molecule. In vitro and in vivo experiments have shown that
4b exhibits notable inhibitory effects on TNF-α-induced adhesion of
monocytic-colonic epithelial cells. The aforementioned findings
collectively indicate that 4b possesses the potential to serve as a lead
molecule in the therapeutic intervention of IBD.

2 Results and discussion

2.1 Design and synthesis

To date, several studies have demonstrated that the introduction of
suitable substituents on the hydroxyl group at seven-position of chrysin
could improve bioactivities. As demonstrated in Figure 1, this study
involved the identification of a series of chrysin derivatives that integrate
α-LA through a pharmacophore fusion strategy, which entailed the
incorporation of α-LA into chrysin using diverse linker groups.
Compounds 4a–d can be prepared using the general procedure
shown in Scheme 1. Specifically, chrysin one underwent a
substitution reaction in the presence of K2CO3, potassium iodide, and
compounds 2a–d containing bromine atom and Boc-protected amino
group to attach the intermediate. The deprotection of the compound was
conducted utilizing trifluoroacetic acid in dichloromethane, followed by
the coupling with 2-chloroethanesulfonyl chloride to yield compounds
3a–d. Finally, compounds 4a–dwere synthesized by amide condensation
reaction of 3a–d and α-LA.

2.2 Biological evaluation

2.2.1 Structure-activity relationship of
synthesized molecules

TNF-α, a prominent cytokine, serves as a key mediator in the
inflammatory response by facilitating the recruitment of white blood
cells to the mucosa (Zhang L et al., 2019). Its pivotal role in initiating
intestinal inflammation, a hallmark of IBD, underscores its significance in
the pathogenesis of this condition (Larabi A et al., 2020). During the
in vitro screening process aimed at identifying potential compounds with
the ability to reduce intestinal inflammation, we assessed the inhibitory
effects of all synthesized compounds (4a–d) on the adhesion ofmonocytes
to HT-29 human colonic epithelial cells induced by TNF-α. Moreover,
chrysin and α-LAwere employed as standard reference compounds in the
assay. As indicated in Table 1, the synthesized compounds 4a–d exhibited
significantly higher inhibitory activities in comparison to positive control
molecules, with IC50 values falling within the low micromolar range.
Furthermore, in comparison to compound 4a containing a polyethylene
glycol linker group, compounds 4b–d incorporating rigid (cycloaliphatic)
linker groups demonstrated increased effectiveness in reducing the TNF-
α-induced adhesionofmonocytic cells to colonic epithelial cells. This effect
is likely attributed to the incorporation of a rigid linker group, which
enhances the equilibrium between in vitro potency and physicochemical
properties, thereby promoting cellular penetration. Among the
synthesized molecules analyzed, compound 4b, which contains a
piperazine group, demonstrated the most potent inhibitory activity, as
indicated by its IC50 value of 4.71 μM.Thus, This could potentially serve as
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a valuable initial step in the process of identifying a chrysin-basedmolecule
that could be efficacious in the treatment of IBD.

2.2.2 Compound 4b suppresses the adhesion
induced by TNF-α in HT-29 cells by
downregulating the expression of chemokine
molecules and inhibiting the associated
signaling pathways

As demonstrated in Figure 2A, compound 4b exhibited
significant inhibitory activity against the adhesion of monocytes

to HT-29 cells induced by TNF-α, with an IC50 value of 4.71 μM.
Subsequently, this study investigated the potential mechanism of
action of 4b by evaluating its influence on TNF-α-stimulated
monocyte-epithelial adhesion in HT-29 cells, with a particular
focus on determining if the inhibitory effect of 4b is due to the
reduction of adhesion molecule expression. Figure 2B demonstrates
that 4b effectively suppressed TNF-α-induced intercellular adhesion
molecule (ICAM)-1 expression in a manner that was dependent on
concentration. Numerous studies have demonstrated that TNF-α
stimulates the expression of monocyte chemotactic protein-1 (MCP-

SCHEME 1
Synthetic routes for the synthesis of chrysin derivatives 4a–d utilizing α-lipoic acid as a precursor. Regents and conditions: (a) K2CO3, KI, acetone,
65°C; (b) CF3COOH, DCM, r. t.; (c) HATU, DIPEA, DMF, α-LA, r. t.

TABLE 1 In vitro inhibitory potency of compounds 4a–d against TNF-α-induced adhesion of monocytes to colon epithelial cells HT-29.

Compd R IC50
a (μM)

4a 9.47 ± 0.48

4b 4.71 ± 0.16

4c 6.73 ± 0.94

4days 5.61 ± 0.32

Chrysin – >30

α-LA – 12.7 ± 0.6

aThe results represent the mean ± standard deviation (SD) of three independent experiments conducted in triplicate.

Frontiers in Chemistry frontiersin.org03

Zhao et al. 10.3389/fchem.2024.1406051

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1406051


1), a chemokine that plays a crucial role in directing the migration of
leukocytes to sites of inflammation (Radaei Z et al., 2020; Navaei-
Alipour N et al., 2021). Furthermore, 4b significantly suppressed the
expression of MCP-1 in a concentration-dependent manner.

Upon interaction with its receptors, TNF-α triggers a cascade of
signaling pathways that ultimately culminate in the activation of
nuclear factor-kappaB (NF-κB), a pivotal transcription factor
involved in the regulation of genes associated with inflammatory
processes (Wang Y. et al., 2023). In order to investigate the potential
relationship between the inhibitory effect of 4b on ICAM-1 and
MCP-1 expression, as well as its impact on NF-κB transcriptional
activity, the inhibitory potency of 4b on NF-κB transcription was
determined. The observed inhibition of NF-κB activity in HT-29
cells by 4b exhibited a dose-dependent effect, as illustrated
in Figure 2C.

2.2.3 ROS production induced by TNF-α is
effectively inhibited by compound 4b

The activation of NF-κB in the downstream signaling of TNF-
α is dependent on reactive oxygen species (ROS), which are
regulated by redox-sensitive transcription factors (Thoma and
Lightfoot, 2018). This study further examined the ability of
compound 4b to inhibit the production of ROS induced by
TNF-α. Firstly, the ROS assay kit was utilized to identify ROS,
and TNF-α-induced HT-29 cells were exposed to varying
concentrations of test compounds for a duration of 48 h.
Subsequently, the cells were treated in accordance with the
manufacturer’s instructions of the kit, and the levels of ROS
were quantified using fluorescence microscopy. As illustrated in
Figure 3, compound 4b demonstrated a notable inhibitory effect

on the generation of ROS induced by TNF-α in a dose-dependent
fashion. These findings are congruent with the outcomes
obtained through flow cytometry analysis.

2.2.4 The advantageous effects of compound 4b in
mitigating TNBS-induced colitis in rat models

The efficacy of 4b in treating IBD was assessed in a rat model of
colitis induced by 2, 4, 6-trinitro-benzenesulfonic acid (TNBS). Next,
the rats received oral administration of 4b at dosages of either 30 or
60 mg/kg. Rats subjected to TNBS colitis displayed manifestations of
inflammation, hematochezia, weight loss, and decreased mobility
relative to the control group. Additionally, TNBS-treated rats
exhibited a substantial decline in body weight, stunted growth, and
a notable increase in colon tissue weight attributed to congested
edema (Figure 4A). The TNBS-induced colitis was effectively
mitigated in a dose-dependent manner following oral
administration of 4b. Significantly, notable improvements were
observed in terms of both body weight loss and inflammation in
the colon tissue. The administration of 60 mg/kg 4b demonstrated the
most significant efficacy in the treatment of TNBS-induced colitis
(Figure 5). Furthermore, in order to investigate the impact of 4b on the
reversal of mucosal inflammation and damage, histological
examination using hematoxylin and eosin (H&E) staining was
conducted on colonic tissue sections from various experimental
groups. The results depicted in Figure 6 demonstrate that
treatment with 4b significantly reduced colonic inflammation and
crypt damage induced by TNBS in mice.

The secretion of pro-inflammatory mediators is a characteristic
feature of colitis induced by TNBS. Our findings in Figure 4B
indicate a significant increase in the levels of IL-1β, IL-6, and

FIGURE 1
Design and synthesis of novel chrysin derivatives containing α-LA.
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TNF-α in the serum following TNBS challenge. Importantly, 4b
demonstrated a dose-dependent inhibition of the production of
these pro-inflammatory cytokines. Furthermore, the JAK/STAT
signaling pathway plays a significant role in inflammatory
processes, as evidenced by numerous studies indicating that
cytokine signaling is initiated through activation of the JAK and
STAT family of kinases. In order to clarify the precise mechanism
underlying the therapeutic effects of 4b in vivo, we conducted an
analysis of various inflammation-related markers through Western
blotting assay, including the pro-inflammatory cytokine IL-6,

phosphorylated JAK2 (p-JAK2), total JAK2, phosphorylated
STAT3 (p-STAT3), and total STAT3. The data presented in
Figure 7 indicates a significant increase in the levels of IL-6,
p-JAK2, and p-STAT3 in the colonic tissues of mice with TNBS-
induced colitis. Furthermore, in comparison to the TNBS-induced
group, 4b demonstrated the ability to inhibit the expression of IL-6,
p-JAK2, and p-STAT3 in a dose-dependent manner. Notably, the
findings demonstrate that 4b did not alter the overall levels of
JAK2 and STAT3 in colonic tissues across all concentrations tested,
indicating that the inhibition of p-JAK2 and p-STAT3 was not

FIGURE 3
Inhibition of ROS production induced by TNF-α through the application of 4b. The HT-29 cells were subjected to pretreatment with test
compounds for a duration of 1 h before being exposed to TNF-α (10 ng/mL) for a period of 30 min. The cells were subjected to treatment as outlined in
the ROS assay kit protocol. Fluorescence microscopy was employed to observe intracellular ROS.

FIGURE 2
Compound 4b demonstrates an in vitro anti-inflammatory effect. (A) The impact of 4b on the adherence of monocytes to HT-29 cells stimulated by
TNF-α was evaluated. Cell viability was assessed through the utilization of the cell-counting kit-8 (CCK-8) assay, which quantifies cell numbers. (B)
Western blotting assay. The study examined the inhibitory impact of chrysin and 4b on the expression of ICAM-1 and MCP-1 in TNF-α-stimulated HT-29
cells. β-Actin was utilized as a reference protein for the purpose of normalization. (C) The test compounds demonstrated inhibition of NF-κB
transcriptional activity induced by TNF-α. The error bar displayed the SD, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001, compared with the
control groups.
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influenced by potential cytotoxic effects of the compound.
Collectively, this data indicates that 4b possesses healing
properties for IBD and may serve as a novel candidate for
IBD treatment.

2.2.5 ADMET profile of synthesized compounds
To assess the drug-likeness and pharmacokinetic characteristics

of the recently developed compounds, an in silicoADMET screening
was conducted. The results, presented in Supplementary Table S1,

include an evaluation of various factors such as molecular weight,
hydrogen-bond acceptor/donor count, blood-brain barrier
permeability, and drug-likeness. The anticipated outcomes
indicated enhancements in the physical and chemical
characteristics of the synthesized compound in comparison to
chrysin. However, despite the favorable safety profile of the
synthesized compounds, their absorption, distribution, and
metabolic data are suboptimal. Additional investigations into the
structure-activity relationship of this series of molecular structures

FIGURE 4
The advantageous effects of compound 4b in mitigating TNBS-induced colitis in rat models. (A) Changes in body weight in rats with colitis induced
by TNBS after treatmentwith the experimental compound. (B) The levels of pro-inflammatory cytokines, specifically TNF-α, IL-1β, and IL-6, in serumwere
measured via ELISA to assess the suppressive impact of 4b on their production. The error bar indicated the SD, **p < 0.01 and ***p < 0.001 comparedwith
the control groups.

FIGURE 5
The positive effects of compound 4b in mitigating TNBS-induced colitis in rat models. The length of the colon was measured following dissection.
The error bar indicated the SD, ****p < 0.0001, compared with the control groups.
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are warranted to identify promising derivatives with favorable
ADMET properties for the management of IBD.

3 Experimental

3.1 Chemistry

Commercially available reagents and solvents were utilized
without any additional purification. Column chromatography was
performed using silica gel (100–200 mesh) as the medium for
purification purposes. A fluorescent indicator was employed for
real-time monitoring of the reaction, while UV light at wavelengths
of 254 and 365 nMwas utilized to visualize the markings on silica gel
plates. A Bruker AV-600 spectrometer (1H, 400 MHz; 13C,
101 MHz) was utilized for the measurement of nuclear magnetic
resonance (NMR) spectra, employing tetramethylsilane (TMS) as
the internal reference compound. In NMR spectra analysis, spin
multiplicities are denoted using the subsequent abbreviations. The
values of coupling constants (J) are expressed in hertz units (Hz).

Proton coupling patterns were denoted as singlet (s), doublet (d),
triplet (t), quartet (q), multiplet (m), and doublet of doublets (dd). In
reference to TMS, chemical shifts were reported using parts per
million notation (ppm, δ). The test compounds were determined to
have a purity exceeding 95% using an analytical high-performance
liquid chromatography (HPLC) instrument (Agilent, Santa Clara,
CA, United States). A GL-C18 reverse phase column (250 mm ×
4.6 mm ×5 μM) was employed with ultra-pure water and methanol
(chromatographic grade) as the mobile phase prior to assessing their
biological activities. The HRMS analysis was carried out employing
Agilent LC/MSD TOF mass spectrometers. Melting point was
obtained by melting point apparatus (SGWX-4, Shanghai
ShenGuang Instrument Co., Ltd, Shanghai, China).

General procedure for the synthesis of 4a–d 5-[1, 2-Dithiolan-
3-yl)-N-(2-(2-(2-(2-((5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-
yl)oxy)ethoxy)ethoxy)ethoxy)ethyl)pentanamide (4a).

Step 1: Chyrisn (1 mmol) was introduced into a vigorously
stirred mixture containing tert-butyl (2-(2-(2-(2-bromoethoxy)
ethoxy)ethoxy)ethyl)carbamate 2a (1.05 mmol), K2CO3 (2 mmol),
and KI (0.1 mmol) dissolved in acetone (20 mL). The reaction

FIGURE 6
Representative H&E staining of colon sections from rat models with TNBS-induced colitis treated with 4b. Scale bar = 100 μM.

FIGURE 7
Western blotting assay. The impact of test compound on the modulation of TNF-α, p-JAK2, total JAK2, p-STAT3, and total STAT3 in colonic tissues
was assessed, with the expression of GAPDH serving as an internal control. ns, not significant. The error bar indicated the SD, **p < 0.01, ***p < 0.001 and
****p < 0.0001, compared with the control groups.
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mixture underwent stirring and reflux at a temperature of 65 °C for a
duration of 16 h. Following the conclusion of the reaction, the
mixture was cooled to ambient temperature. Subsequent filtration
was conducted, and the resultant filtrate underwent further
concentration and purification via column chromatography on
silica gel utilizing a petroleum ether and ethyl acetate mixture in
a 15:1 ratio. This procedure resulted in the formation of a yellow
solid intermediate. Subsequently, the compound was dissolved in
5 mL of dichloromethane and subsequently treated with 2.5 mL of
trifluoroacetic acid. The resulting mixture was stirred for 6 h at room
temperature. To neutralize the reaction solution, saturated aqueous
sodium bicarbonate was employed, followed by extraction with
three portions of dichloromethane, each consisting of 30 mL.
After being separated, the organic layer was washed with a
saturated sodium chloride solution, dried with anhydrous
Na2SO4, and evaporated, leading to the production of a yellow
solid. This solid was utilized in the subsequent reaction without
further purification steps.

Step 2: A solution comprising compound 3a (0.25 mmol),
HATU (0.25 mmol), α-LA (0.27 mmol), and DIPEA (0.5 mmol)
in 30 mL of DMF was subjected to gentle stirring at room
temperature for 20 h. Upon completion of the reaction, the
resulting mixture was quenched by addition to 150 mL of ice-
cold water, leading to the formation of a solid product upon
filtration. The crude product was purified via silica gel
chromatography utilizing a solvent system composed of
methylene chloride and methanol in a 30:1 ratio, resulting in the
isolation of pale yellow solid 4a (0.49 g, 32% yield). mp
223.5°C–225.4°C. 1H NMR (400 MHz, DMSO-d6) δ 12.72 (s, 1H),
7.95–7.80 (m, 3H), 7.56–7.47 (m, 3H), 6.83 (s, 1H), 6.59 (s, 1H), 6.25
(s, 1H), 4.13 (s, 2H), 3.62–3.40 (m, 11H), 3.26–3.20 (m, 2H),
3.13—3.00 (m, 2H), 2.39–2.29 (m, 1H), 2.07 (t, J = 7.3 Hz, 2H),
1.84–1.73 (m, 1H), 1.64–1.43 (m, 5H), 1.34–1.24 (m, 2H). 13C NMR
(101 MHz, DMSO-d6) δ 182.25, 172.65, 172.60, 164.79, 163.65,
161.62, 157.55, 132.33, 130.93, 129.37, 126.65, 126.60, 105.60,
105.31, 98.75, 93.37, 70.88, 70.45, 70.09, 70.04, 69.73, 69.06,
68.44, 56.59, 38.64, 38.52, 35.62, 34.59, 32.46, 28.81, 25.52.
HRMS (ESI) (m/z): [M + H]+ calcd for C31H40NO8S2 618.2190,
found 618.2197. Purity: 98.00% (HPLC, tR = 11.13 min).

7-(2-(4-(5-(1,2-Dithiolan-3-yl)pentanoyl)piperazin-1-yl)ethoxy)-
5-hydroxy-2-phenyl-4H-chromen-4-one (4b) yellow solid (0.20 g,
15% yield); mp 194.7°C–197.0°C. 1H NMR (400MHz, Chloroform-
d) δ 12.66 (s, 1H), 7.79 (d, J = 7.3°Hz, 2H), 7.52–7.45 (m, 3H), 6.56 (s,
1H), 6.41 (s, 1H), 6.25 (d, J = 1.9 Hz, 1H), 4.12 (t, J = 5.5°Hz, 2H), 3.64
(t, J = 4.7 Hz, 2H), 3.49 (d, J = 5.1 Hz, 2H), 3.22—3.01 (m, 2H),
2.88—2.73 (m, 5H), 2.59–2.52 (m, 4H), 2.47–2.39 (m, 1H), 2.33 (t, J =
7.5 Hz, 2H), 1.93–1.85 (m, 1H), 1.66–1.59 (m, 2H), 1.54—1.38 (m,
2H). 13C NMR (101 MHz, Chloroform-d) δ 181.83, 170.78, 164.26,
163.33, 161.62, 157.19, 131.63, 130.67, 128.80, 125.91, 105.24, 98.38,
92.69, 66.29, 56.43, 56.26, 53.51, 53.06, 45.27, 41.27, 40.03, 38.41,
38.33, 36.22, 34.56, 32.65, 31.14, 28.85, 24.80. HRMS (ESI) (m/z): [M+
H]+ calcd for C29H35N2O5S2 555.1982, found 555.1982. Purity:
99.36% (HPLC, tR = 11.84 min).

7-((1-(5-(1,2-Dithiolan-3-yl)pentanoyl)piperidin-4-yl)methoxy)-
5-hydroxy-2-phenyl-4H-chromen-4-one (4c) yellow solid (0.33 g,
28% yield); mp 189.0°C–191.5°C. 1H NMR (400MHz,
Chloroform-d) δ 12.70 (s, 1H), 7.95—7.78 (m, 2H), 7.57–7.49 (m,
3H), 6.65 (s, 1H), 6.50 (d, J = 2.3 Hz, 1H), 6.35 (d, J = 2.1 Hz, 1H), 6.14

(d, J = 5.8 Hz, 1H), 4.19 (dd, J = 5.6, 3.3 Hz, 2H), 3.85 (dd, J = 5.6,
3.3 Hz, 2H), 3.64 (t, J = 5.0 Hz, 2H), 3.58—3.45 (m, 4H), 3.19—3.03
(m, 2H), 2.81 (s, 1H), 2.45–2.38 (m, 1H), 2.19 (t, J = 7.5 Hz, 2H),
1.91–1.83 (m, 2H), 1.68—1.59 (m, 3H), 1.52—1.34 (m, 2H). 13C NMR
(101 MHz, Chloroform-d) δ 182.37, 172.96, 164.63, 164.03, 162.06,
157.64, 131.94, 131.11, 129.11(2), 126.25(2), 105.75, 98.61, 93.18,
70.14, 69.08, 67.92, 56.43, 40.22 (2), 39.14, 38.45, 36.38, 34.60 (2),
28.88, 25.40 (2). HRMS (ESI) (m/z): [M +H]+ calcd for C29H34NO5S2
540.1890, found 540.1946. Purity: 99.36% (HPLC, tR = 11.84 min).

7-[(1-(5-(1,2-Dithiolan-3-yl)pentanoyl)azetidin-3-yl)methoxy)-
5-hydroxy-2-phenyl-4H-chromen-4-one (4days)]

Yellow solid (0.26 g, 19% yield); mp 176.7°C–178.9°C. 1H NMR
(400 MHz, Chloroform-d) δ 12.67 (s, 1H), 7.78 (t, J = 5.6 Hz, 2H),
7.48 (dd, J = 12.5, 7.3 Hz, 3H), 6.55 (d, J = 4.3 Hz, 1H), 6.42 (s, 1H),
6.25 (t, J = 2.6 Hz, 1H), 4.29 (t, J = 8.5 Hz, 1H), 4.20—3.97 (m, 4H),
3.87 (dd, J = 10.1, 5.2 Hz, 1H), 3.66—3.50 (m, 1H), 3.18–3.03 (m,
3H), 2.48–2.39 (m, 1H), 2.12 (t, J = 7.2 Hz, 2H), 1.94–1.85 (m, 1H),
1.74–1.64 (m, 4H), 1.55—1.39 (m, 2H). 13C NMR (101 MHz,
CDCl3) δ 182.18, 173.08, 164.33, 163.81, 162.00, 157.48, 131.87,
130.90, 129.02(2), 126.13(2), 105.57, 98.47, 92.97, 92.94, 69.38,
56.40, 52.47, 49.81, 40.20, 38.48, 34.65, 30.98, 28.97, 27.73, 24.49.
HRMS (ESI) (m/z): [M + Na]+ calcd for C27H29NNaO5S2 534.1379,
found 534.1388. Purity: 100% (HPLC, tR = 10.63 min).

3.2 Biology

3.2.1 Cell culture and antibodies
The HT29 and U937 cell lines, representing a human colonic

epithelial cell line and a pre-monocytic cell line respectively, were
acquired from the Shanghai Cell Bank of the Chinese Academy of
Science (Shanghai, China). The cells were cultured in RMPI
1640 media supplemented with 10% fetal bovine serum and 1%
Penicillin/Streptomycin. The incubation was carried out at a
temperature of 37°C in a CO2-humidified incubator with a
concentration of 5%.

The following antibodies were used in this study: GAPDH (CST,
no. 2118), IL-6 (CST, no. 12912), JAK2 (CST, no. 3230), Phospho-
JAK2 (CST, no. 3771), STAT3 (CST, no. 12640), Phospho-JAK2
(CST, no. 9145), TNF-α (CST, no. 11948), ICAM-1 (CST, no.
67836S), MCP-1 (CST, no. 2029), and E-cadherin (CST, no. 3195).

3.2.2 TNF-α-stimulated adhesion of monocytic
cells to colonic epithelial cells

A previously established method was employed to conduct the
adhesion assay, utilizing a cultured monolayer of HT29 cells and
non-adherent monocytic cell U937 cells. The adhesion of
U937 monocytic cells to colonic epithelial cells was assessed by
utilizing human U937 pre-monocytic cells. These cells were
previously labeled with BCECF/AM (10 μg/mL) for 1 h at a
temperature of 37°C. The HT-29 cells were cultured in 24-well
plates and treated with the test compound for 60 min before being
exposed to TNF-α (10 ng/mL) and IL-6 (5 ng/mL) for an additional
180 min. Following this, the cells were co-incubated with U937 cells
that had been prelabeled with BCECF/AM (1 × 106 cells/well) for a
duration of 30 min at a temperature of 37°C. The U937 cells that did
not adhere were eliminated, while the HT-29 cells and U937 cells
that adhered were rinsed twice with PBS. For quantitative analysis,
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additional cell samples were subjected to lysis using a solution
containing 0.1% Triton X-100 in Tris (0.1 M). The resulting
fluorescence was then measured utilizing a fluorescence-detecting
microplate reader (Synergy MX, Biotek) with excitation and
emission wavelengths set at 580 nm.

3.2.3 NF-κB reporter assay
To assess the activation of NF-κB, HT-29 cells were subjected to

transfection with an NF-κB reporter gene utilizing the CignalTM
NF-κB Reporter luciferase Kit (Qiagen Ltd., Manchester, UK).
Initially, the cells were seeded onto a 24-well culture plate in a
medium supplemented with 10% fetal bovine serum and devoid of
antibiotics. Following a 24-h incubation period, the cells were
transfected with the constructs utilizing Lipofectamine 2000
(Invitrogen, United States) in accordance with the manufacturer’s
guidelines. Following a 24-h period, the transfection media was
substituted with RPMI 1640 supplemented with 10% fetal bovine
serum, allowing the cells an additional day for proliferation. Prior to
subjecting the transfected cells to TNF-α treatment for a duration of
3 h, they were pre-treated with various compounds for 1 hour.
Subsequently, TNF-α was administered and incubated for
another 3 hours. The cell lysates were obtained using a lysis
buffer and analyzed following the manufacturer’s instructions.

3.2.4 TNBS-stimulated colitis
The animal experiments conducted in this study were approved

by the relevant committee at Chengdu University of Traditional
Chinese Medicine and were carried out in accordance with
institutional guidelines for animal research (ethical review
number: 20231012). Female Sprague-Dawley (SD) rats were
utilized to assess the in vivo anti-IBD activity of the test
compounds. Experimental colitis was induced using 2, 4, 6-
trinitrobenzenesulfonic acid (TNBS) as previously described.
Prior to the administration of TNBS, rats underwent a 24-h
fasting period and were lightly anesthetized with diethyl ether.
Subsequently, a solution containing 1.0 mL of TNBS at a
concentration of 5% was gently introduced into the colon,
approximately 7 cm away from the anus. This is achieved by
affixing a polyethylene catheter to a 1 mL syringe. In contrast,
the animal models in the control group underwent a similar
procedure but were administered with ethanol at a concentration
of 50% instead. Following the administration of TNBS, the rats were
placed in an upright position for a duration of 60 s before being
returned to their enclosure. Compound 4 days, at doses of 30 or
60 mg/kg/day and suspended in a solution of 10% DMSO, 15%
sulfobutylether-β-cyclodextrin, and 75% saline, was orally
administered on the day of TNBS administration. On the 15th
day of the experiment, the rats were euthanized, and the severity of
colitis and visible ulcers in the mice was assessed by trained
professionals. The colon tissue located 6–9 cm proximal to the
rectum was surgically removed, followed by analysis of
myeloperoxidase content and histological examination.

3.2.5 Western blotting
The rat colon tissue, weighing 45 mg, was pulverized and

homogenized in 1X PBS using the Bead blaster from Benchmark
Scientific. Following centrifugation of the homogenates, the lysate
was resuspended in RIPA buffer supplemented with a cocktail of

protease inhibitors and phosphatase inhibitors to extract the
proteins. The BCA protein assay kit (Beyotime Biotechnology,
Jiangsu, China) was utilized to quantify the concentration of
protein samples. Nitrocellulose membranes were employed for
transferring equivalent quantities of total protein resolved on
SDS-PAGE gels. Afterwards, the membranes were obstructed
using skim milk with a concentration of 5%. Subsequently,
primary antibodies and their corresponding secondary antibodies
were introduced to the membranes for incubation. Ultimately, the
protein bands were made visible by utilizing the ECL
chemiluminescent HRP substrate.

3.2.6 Hematoxylin and eosin (H&E) staining
The colon samples were surgically removed, preserved in a 4%

formaldehyde solution, encased in paraffin wax, and sliced into
sections. After the removal of paraffin and restoration of moisture,
longitudinal sections with a thickness of 5 μM were subjected to
hematoxylin staining for a duration of 5 min. Subsequently, they
underwent incubation in acid ethanol solution (1% HCl in 70%
ethanol) followed by rinsing with distilled water. The sections were
subsequently stained with eosin for 5 min, dehydrated using a
graded series of alcohol solutions, and cleared in xylene. The
slides that were mounted underwent examination, photography,
and observation for any pathological alterations utilizing a digital
bright-field microscope (BZ-9000, Keyence, Japan).

3.2.7 Analysis of intracellular ROS production
As per the guidelines provided by the manufacturer, the ROS

assay kit from Beyotime Biotechnology was utilized to assess the
levels of intracellular ROS following treatment with the test
compounds. Following this, intracellular ROS production was
assessed using a fluorescence microscopy (MZ16FA, Leica,
Germany). Statistical analysis was performed using
GraphPrism software.

3.2.8 Quantification of levels of cytokines
associated with inflammation

Serum samples were obtained from mice blood through
centrifugation at 4,000 g for 12 min, followed by measurement of
serum cytokine levels using specific ELISA kits from Abcam
(ab181421, ab178013, and ab214025).

3.2.9 Statistical analysis
The validity of the findings was verified through replication in a

minimum of three independent experiments. Data were presented as
means ± standard deviation and subjected to statistical analysis
using GraphPad Prism 8.0 software. Significance levels were
determined by either one-way analysis of variance (ANOVA) or
Student’s t-test, with a threshold of p < 0.05 indicating statistical
significance.

3.2.10 In-silico ADMET analysis
In this research, the utilization of ADMETlab facilitated the

prediction of ADMET properties for synthesized molecules (https://
admetmesh.scbdd.com). ADMETlab, an online computational tool,
offers a variety of models for calculating molecular properties and
pharmacokinetics, encompassing solubility, plasma protein binding,
liver metabolism, renal excretion, among others. These models
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enable the prediction of drug absorption, distribution, metabolism,
and excretion processes within the human body, as well as the
assessment of potential toxicity and safety.

4 Conclusion

At present, natural products are great treasures for the
identification of the novel lead molecules for IBD treatment.
Although chrysin demonstrates a range of biological activities,
studies have shown that the compound has limited water
solubility and low bioavailability. Hence, the use of chrysin as a
precursor for structural modification holds significant promise in
the identification of potential therapeutic agents. In this study, the
incorporation of the essential pharmacophore into α-lactalbumin
has led to the identification of a series of novel chrysin derivatives
derived from α-lactalbumin. These derivatives have shown
promising efficacy in inhibiting the adhesion of monocytes to
colon epithelium induced by TNF-α. Compound 4b exhibited the
highest inhibitory potency compared to the other compounds, with
an IC50 value of 4.71 μM. In vitro experiments demonstrated that
compound 4b effectively inhibited monocyte adhesion to epithelial
cells, reduced ROS production induced by TNF-α, suppressed the
levels of ICAM-1 and MCP-1, decreased NF-κB activity, and
ameliorated TNBS-induced colitis in rat models. This study offers
a novel approach for identifying chrysin-based compounds with
potential therapeutic activity for the treatment of IBD.
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