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The significance of this study lies in its exploration of bioactive plant extracts as a
promising avenue for combating oral bacterial pathogens, offering a novel
strategy for biofilm eradication that could potentially revolutionize oral health
treatments. Oral bacterial infections are common in diabetic patients; however,
due to the development of resistance, treatment options are limited. Considering
the excellent antimicrobial properties of phenolic compounds, we investigated
them against isolated oral pathogens using in silico and in vitro models. We
performed antibiogram studies and minimum inhibitory concentration (MIC),
antibiofilm, and antiquorum sensing activities covering phenolic compounds.
Bacterial strains were isolated from female diabetic patients and identified by
using 16S rRNA sequencing as Pseudomonas aeruginosa, Bacillus
chungangensis, Bacillus paramycoides, and Paenibacillus dendritiformis.
Antibiogram studies confirmed that all strains were resistant to most tested
antibiotics except imipenem and ciprofloxacin. Molecular docking analysis
revealed the significant interaction of rutin, quercetin, gallic acid, and catechin
with transcription regulator genes 1RO5, 4B2O, and 5OE3. All tested molecules
followed drug-likeness rules except rutin. The MIC values of the tested
compounds varied from 0.0625 to 0.5 mg/mL against clinical isolates.
Significant antibiofilm activity was recorded in the case of catechin (73.5% ±
1.6% inhibition against B. paramycoides), cinnamic acid (80.9% ± 1.1% inhibition
against P. aeruginosa), and vanillic acid and quercetin (65.5% ± 1.7% and 87.4% ±
1.4% inhibition, respectively, against B. chungangensis) at 0.25–0.125 mg/mL.
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None of the phenolic compounds presented antiquorum sensing activity. It was,
therefore, concluded that polyphenolic compounds may have the potential to be
used against oral bacterial biofilms, and further detailed mechanistic investigations
should be performed.

KEYWORDS

oral pathogens, bioremediation, polyphenolic compounds, docking, Paenibacillus
dendritiformis

1 Introduction

The natural flora of the oral cavity is very diverse, with over
500 distinct bacterial species from several phyla reported (Aas
et al., 2005). These bacteria occur in a homeostatic mode, and a
slight imbalance can accelerate the development of bacterial
infections in the oral cavity (Minhas et al., 2019). Tooth
erosion (due to acid production by bacteria), periodontitis,
dental abscess, cavities, and gingivitis are common oral
infections (Loesche, 1996). Oral cancer is the worst case of
longer and persistent bacterial infections of the oral cavity
(Siqueira and Rôças, 2022). Most oral infections occur due to
the bacterial capability to adhere within small gingival openings
and outer tooth surfaces, leading to the development of biofilms
(Hora and Patil, 2022).

The bacterial biofilm is a layer of adherent bacteria on oral
cavity surfaces covered by a capsular matrix (Verderosa et al.,
2019; Schulze et al., 2021). Biofilms generally comprise
multispecies of bacteria that demonstrate quite diverse and
versatile microbial interactions (Zhao et al., 2023). The
biofilms mainly produce antimicrobial resistance due to
horizontal gene transfer, oxygen gradient, persister cells,
efflux pumps, and eDNA (Rather et al., 2021). To overcome
this serious health concern, antimicrobial agents and/or their
combination are used in clinical settings to eradicate bacterial
biofilms; however, the side effects are the main concerns
(Cunha, 2001).

Since ancient times, herbs including Syzygium aromaticum,
Salvadora persica, and Juglans regia have been used in
traditional remedies for the treatment of toothache and
bacterial infections (Zakavi et al., 2013; Megersa et al., 2019;
Mekhemar et al., 2021). Researchers have been working
exclusively on plant-based compounds as alternative drug
candidates for oral bacterial infections (Nagpal and Sood,
2013) since they are safe, biocompatible, cost-effective, and
non-resistant compared to their synthetic counterparts
(Kumar et al., 2013). Plant polyphenolic compounds are a
diverse class of compounds (above 8,000), including
flavonoids, phenolic acids, lignans, and tannins (Cheynier,
2005). These are characterized by the presence of more than
two phenolic groups attached to two phenyl rings (Hanhineva
et al., 2010). Polyphenolic compounds are associated with
strong antioxidant potential and possess high penetration
capabilities that result in significant damage to the cell
membrane (Zamuz et al., 2021). Furthermore, polyphenolic
compounds possess significant antimicrobial properties due
to the inhibition of several virulence factors, disruption of
the lipid membrane, and strong antibiofilm features (Rana

et al., 2022). Considering diverse biological activities related
to polyphenolic compounds and the emergence of resistance
toward oral bacteria, the current study aimed to analyze
polyphenolic compounds against resistant clinical isolates
from the oral cavity using in vitro and in vivo models.

2 Materials and methods

2.1 Chemicals and growth media

All chemicals and growth media used in the investigation were
of analytical grade. Chemicals including ferulic acid, gentisic acid,
gallic acid, rutin, quercetin, catechin, caffeic acid, syringic acid,
vanillic acid, and Congo red were purchased from Sigma-Aldrich
(St. Louis, MO, United States). The growth media, including Luria
Bertani (LB) agar, nutrient agar, and triple sugar iron agar (TSIA),
were obtained fromHiMedia (Mumbai, India), whereas MacConkey
agar and eosin methylene blue (EMB) agar were purchased from
Oxoid (Hampshire, United Kingdom). The standard strains,
including Escherichia coli (ATCC 25922), Klebsiella pneumoniae
(ATCC BAA-1705), Pseudomonas aeruginosa (ATCC 15442), and
Staphylococcus aureus (ATCC 33862), were obtained from
Microbiologics™ (United Kingdom). The biomarker strain
Chromobacterium violaceum was obtained from DSMZ, Germany
(DSM 30191).

2.2 Sample processing

Dental plaques from female diabetic patients were obtained by
a dentist at DHQ Teaching Hospital D.I. Khan, Pakistan, with
informed patient consent. The ethical approval for the
investigation was obtained (Approval No. 331/ERB/GU/2022).

TABLE 1 Bacterial identification by 16S rRNA sequencing results.

Strain blast
Length

Normal Q20a

1 Pseudomonas aeruginosa 1,208 958

2 Bacillus chungangensis 945 687

3 Bacillus paramycoides 1,149 1,059

4 Bacillus chungangensis 1,194 1,107

5 Paenibacillus dendritiformis 1,277 1,118

aQuality score greater than 20 (sequencing error rate less than 1%, purity 99%).
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The dental plaques were shifted to growth media (nutrient agar)
and processed further in the laboratory. After 24 h of incubation,
the bacterial cultures were spread on differential media, including
MacConkey agar, TSIA, and EMB agar, for preliminary bacterial
purification and identification.

2.3 Preliminary detection of
biofilm formation

Purified bacterial strains were analyzed on Congo red agar by a
standard procedure (Vestby et al., 2020). In brief, Congo red
(40 μg/mL) and Coomassie brilliant blue (40 μg/mL) were
added to LB agar without NaCl. The tested bacteria were
inoculated onto each plate and incubated at 37°C for 24–72 h.
The colony morphology was examined at each time interval, and
the development of black–brown colonies (pellicle formation) was
considered biofilm producer strains.

2.4 Bacterial identification through 16S rRNA
sequencing

For the authentic identification of bacteria, 16S rRNA
sequencing was used with several steps, including DNA
extraction, DNA quantification, 16S rRNA gene qPCR, and 16S
rRNA gene sequencing (detailed protocols are mentioned in
Supplementary Material).

2.5 In silico analysis

2.5.1 Drug likeness, PASS analysis, and
ADMET analysis

The canonical Simplified Molecular-Input Line-Entry System
(SMILES) of the tested compounds was obtained from PubChem.
Drug likeness and ADMET analysis of polyphenolic compounds was
performed using several in silico tools, including SwissADME,
pkCSM, and the Molinspiration tool (Amin et al., 2020). The

canonical SMILES of the compounds was obtained from PubChem
and loaded on the INPUT area of software. The generated structure
was confirmed, and finally, analyses were performed.

2.6 Molecular docking

The transcription regulator genes (2V50, 50E3, and 2XCT)
were selected based on information from the literature (Aparna
et al., 2014; Patel and Patel, 2014; Shaker et al., 2020). The X-ray
crystallographic structures were obtained from the Protein Data
Bank (PDB). The 3D structures of the tested compounds were
obtained from PubChem in SDF format, and active site
prediction was accomplished using the online tool CASTp 3.0.
Molecular docking was accomplished using the Lamarckian
genetic algorithm included in AutoDock v4.2.6. Docking
interaction analysis was performed using LigPlot+, and
Accelrys DS Visualizer 2.0 and PyMOL were used to analyze
the best-docked molecules with high free energy [ΔG]. For each
regulator gene, nine poses were generated, and all were classified
based on their RMSD values.

2.7 Biological assays

2.7.1 Antibiogram development
Antibiograms (antimicrobial resistance pattern) were determined

using a disk diffusion method (Myemba et al., 2022). In brief,
antimicrobial susceptibility testing disks were placed aseptically in
pre-bacterial-loaded culture medium (nutrient agar) plates and
incubated for 24 h at 37°C. Afterward, the growth of bacteria around
each susceptibility disk was measured, and the results were recorded.

2.7.2 Determination of the minimum inhibitory
concentration

The antimicrobial activity of polyphenolic compounds was
determined using a standard method (Rafey et al., 2021). In brief,
50 μL of the tested compound (0.125–0.25 mg/mL) was loaded into
each well of 96-well microplates and mixed with 50 μL of bacterial

TABLE 2 Lipinski properties of the tested polyphonic compounds.

S. no Compound
Molecular weight
< 500 Da

Log
p < 5

H-bond
donor (5)

H-bond
accepter < 10

Number of
violations

1 Gentisic acid 238.195 1.2354 1 5 0

2 Ferulic acid 194.186 1.4986 2 3 0

3 Gallic acid 170.02 0.78 4 2 0

4 Rutin 610.521 −1.6871 10 16 4

5 Cinnamic acid 148.05 2.22 1 2 0

6 Catechin 290.08 0.53 5 6 0

7 Quercetin 302.04 1.19 5 7 0

8 Caffeic acid 180.04 1.27 3 4 0

9 Syringic acid 198.174 1.1076 2 5 0

10 Vanillic acid 168.04 1.20 2 4 0
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culture (previously adjusted with 0.5 McFarland standard). The plates
were then incubated for 24 h at 37°C. Afterward, a Resazurin solution
(0.015%, 40 μL) was added to each well and incubated further for 2 h.
The results were recorded using a colorimetric method.

2.7.3 Antibiofilm assay
The antibiofilm activity of the tested samples was determined

using a modified method (Rafey et al., 2021). In brief, bacterial
cultures (225 μL, adjusted with 0.5McFarland standard) were loaded
into each well of 96-well microplates and mixed with the tested

compounds (25 μL, 0.125–0.25 mg/mL) and incubated at 37 °C for
24–48 h. To quantify biofilm formation, the crystal violet staining
method was used. After staining, the biofilms were washed thrice
with sterilized saline and mixed with an acetic acid solution to
dissolve the biofilms. Finally, absorbance at 592 nm was recorded
using a 96-well microplate reader. The % inhibition was calculated
using the following formula:

% inhibition � 1 − absorbance of the sample/
absorbance of the control

( )[ ] × 100.

FIGURE 1
Drug-likeness score of the phenolic compounds (the blue peak shows standard drug properties [+1 to −1], the green peak shows non-drug
properties [lower than 1], and red shows our tested molecule).
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2.7.4 Antiquorum sensing
Antiquorum sensing activity of the selected phenolic compounds

was determined using a standard technique with slight modifications
(Rafey et al., 2021). The sterilized culture medium plates (LB agar
plates) were prepared, and a fresh strain (24 h) of C. violaceum was
inoculated on each plate. A 6-mm blank disk loaded with the tested
compound (0.125–0.25 mg/mL) was placed on each plate and
incubated at 30°C for 24–48 h. Afterward, the zones of inhibition
around each disk were measured, and the results were recorded.

3 Results

3.1 Bacterial identification and biofilm
formation assays

Bacterial identification through 16S rRNA sequencing confirmed
bacterial strains like Bacillus chungangensis-1, P. aeruginosa, Bacillus
paramycoides, Bacillus chungangensis-2, and Paenibacillus
dendritiformis. The identified strains were processed for biofilm

FIGURE 2
Bioavailability radars of the phenolic compounds (the pink area shows the optimal region, whereas the white area is an indication of non-optimal
values that can effect bioavailability).
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formation, and it was observed that all isolated clinical strains were
biofilm-positive on Congo red agar (Table 1; Supplementary Material).

3.2 In silico analysis

3.2.1 Drug likeness, bioavailability, and
ADMET analysis

The drug likeness was determined by the Lipinski rule of five
using the Molinspiration tool. It was noted that all tested
polyphenolic compounds exhibited compliance with the Lipinski
rule except rutin, which showed four violations (Table 2; Figure 1).
Bioavailability profiling of compounds was analyzed by using a

bioavailability radar (Figure 2). It was evident that all tested
molecules were within the colored area, indicating drug-like
features except INSATU (unsaturation). A boiled egg model was
used for the determination of compound bioavailability in the brain
(ability to cross the blood–brain barrier). Our findings indicate that
cinnamic acid, ferulic acid, and vanillic acid are capable of
permeating the brain, whereas all other tested molecules are only
absorbed from the gastrointestinal tract (Figure 3).

ADMET profiling was performed using Molsoft and SwissADME
tools. It was noted that flavonoids, including rutin, quercetin, and
catechin, presented high oral absorption, whereas gallic acid and rutin
showed poor intestinal absorption. All other tested molecules
presented >70% absorption rates (Tables 3, 4). Similarly, low skin

FIGURE 3
Boiled egg models of the phenolic compounds (the yellow area shows that the drug can cross the blood–brain barrier, whereas the white area is an
indication of permeability through the gastrointestinal tract).
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permeability was noted in all tested molecules. Furthermore, a low
volume of distribution (Vd) was recorded in the case of the tested
compounds. Furthermore, our findings showed thatmost of the tested
molecules were neither substrates nor inhibitors of cytochrome P450
(Tables 3, 4). Finally, clearance of rutin, quercetin, and catechin was
predicted from the renal route, and no or little toxicity was recorded in
the case of all tested molecules (Tables 3, 4).

3.3 Molecular docking

Polyphenolic compounds were docked with regulator genes for
biofilm production and quorum sensing, including 1ROS, 4B2O, and
5OE3. Docking with 1ROS showed a strong interaction (−5.8 ΔG [kJ
mol‒1]). Amino acids including Asp21, Arg13, Asp17, Glu12, Leu11,
Lys14, His7, and Arg15 at pose 1 participated through H-bonding

TABLE 3 ADMET properties of the phenolic compounds (A).

Properties
Tested molecules

Gentisic acid Ferulic acid Cinnamic acid Rutin Quercetin

TPSA (A°) 89.80 Å2 66.76 Å2 37.30 Å2 269.43 Å2 131.36 Å2

Consensus log Po/w 1.28 1.36 1.79 −1.51 1.23

Absorption

Water solubility (log mol/L) −1.784 −1.603 −2.08 −3.327 −3.275

CaCo2 permeability (log Papp in 10−6 cm/s) 0.34 0.279 1.449 −0.791 0.076

Intestinal absorption (human) (% absorbed) 82.884 93.921 96.809 28.495 73.104

Skin permeability (log Kp) −2.964 −2.881 −2.538 −2.737 −3.368

P-Glycoprotein substrate Yes Yes Yes Yes Yes

P-Glycoprotein I inhibitor No No No Yes No

P-Glycoprotein II inhibitor No No No Yes No

Distribution

VDss (human, log L/kg) −1.229 −0.851 −0.565 −1.597 −1.133

Fraction unbound (human) (Fu) 0.452 0.431 0.395 0.419 0.275

BBB permeability (logBB) −0.592 −0.242 0.256 −2.215 −1.065

CNS permeability (log PS) −3.224 −2.573 −1.443 −4.842 −3.071

Metabolism

CYP2D6 substrate No No No No No

CYP3A4 substrate No No No Yes No

CYP1A2 inhibitor No No Yes No Yes

CYP2C19 inhibitor No No No No No

CYP2C9 inhibitor No No No No No

CYP2D6 inhibitor No No No No No

CYP3A4 inhibitor No No No No No

Excretion

Total clearance (logml/min/kg) 0.838 0.621 0.797 0.187 0.488

Renal OCT2 substrate No No No No No

Toxicity

AMES toxicity Yes No No No Yes

hERG I inhibitor No No No No No

hERG II inhibitor No No No Yes No

Hepatotoxicity No No No No No

Skin sensitization No No Yes No No

Frontiers in Chemistry frontiersin.org07

Mashal et al. 10.3389/fchem.2024.1406869

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1406869


interactions. The interaction analysis of all phenolic compounds is
presented in Table 5; Figure 4. Docking of polyphenolic compounds
with the Bacillus species biofilm target gene (4B2O) showed the
highest H-bonding interactions with rutin. In this case, seven amino
acid interactions were recorded, namely, Leu44, Asp43, Ser140,
Gln112, Asp110, His21, and Lys139, through high free binding

energy [−8.1 ΔG (kJ mol‒1)]. The interaction analysis of all phenolic
compounds with 4B2O is shown in Table 5; Figure 5. Lastly,
compounds were docked against the biofilm producer gene PqsA
(PDB ID = 5OE3). In the case of rutin, a significant H-bonding
interaction was observed with high free energy [−9.4 ΔG (kJ mol‒
1)]. Six amino acids, namely, Gly300, Thr304, Glu305, Asp382,

TABLE 4 ADMET properties of the phenolic compounds (B).

Property
Tested molecules

Gallic acid Catechin Vanillic acid Syringic acid

TPSA (A°) 97.99 Å2 110.38 Å2 66.76 Å2 75.99 Å2

Consensus log Po/w 0.21 0.83 1.08 0.99

Absorption

Water solubility (logmol/L) −0.723 −2.808 −0.992 −2.223

CaCo2 permeability (log Papp in 10–6 cm/s) −0.467 −0.38 0.199 0.495

Intestinal absorption (human)
(% absorbed)

50.311 71.562 75.448 73.076

Skin permeability (log Kp) −3.084 −3.603 −2.941 −2.735

P-Glycoprotein substrate Yes Yes Yes Yes

P-Glycoprotein I inhibitor No No No No

P-Glycoprotein II inhibitor No No No No

Distribution

VDss (human, log L/kg) −1.078 −0.79 −0.907 −1.443

Fraction unbound (human) (Fu) 0.565 0.326 0.496 0.601

BBB permeability (logBB) −0.93 −0.905 −0.295 −0.191

CNS permeability (log PS) −2.816 −3.146 −2.601 −2.701

Metabolism

CYP2D6 substrate No No No No

CYP3A4 substrate No No No No

CYP1A2 inhibitor No No No No

CYP2C19 inhibitor No No No No

CYP2C9 inhibitor No No No No

CYP2D6 inhibitor No No No No

CYP3A4 inhibitor No No No No

Excretion

Total clearance (logml/min/kg) 0.55 0.215 0.626 0.646

Renal OCT2 substrate No No No No

Toxicity

AMES toxicity No Yes No No

hERG I inhibitor No No No No

hERG II inhibitor No No No No

Hepatotoxicity No No No No

Skin sensitization No No No No

Frontiers in Chemistry frontiersin.org08

Mashal et al. 10.3389/fchem.2024.1406869

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1406869


TABLE 5 Docking score and H and non-H-bond interactions of tested compounds (A).

Compound
Binding free
energy ΔG
(kJ mol‒1)

Pose
number

Number of H
bonds

Amino acid interaction
residues

Hydrophobic interactions
with amino acids

1RO5

Caffeic acid −5.2 1 2 Asp17, Asp21, Glu12, Arg13, and
His7

His18, Lys14, and Leu11

Catechin −5.3 3 3 Asp21, Arg13, Leu11, and Glu12 Lys14, His7, and His18

Cinnamic acid −4.0 5 3 His7, Glu12, and Asn9 Lys4, Ala6, Arg5, and Ala2

Ferulic acid −4.6 1 3 Gln42, His24, and Asn 41 Ser39, Lys37, Arg40, Lys20, Phe23, and
Arg27

Gallic acid −4.7 2 6 Arg13, Asp17, Lys14, His7, Glu12,
and Leu11

His18

Gentistic acid −4.3 2 4 Arg27, Val30, Gln34, and Pro31 Leu33 and Asp28

Quercetin −7.5 1 5 Thr144, Phe105, Ile107,
Arg30, and Thr145

Phe27, Trp33, Phe177, Ser109, Val126,
and Val148

Rutin −5.8 1 8 Asp21, Arg13, Asp17
Glu12, Leu11, Lys14, His7, and
Arg15

His18

Syringic acid −4.5 1 2 Asp17 and Arg13 His7, Lys14, Arg15, His18, and Leu11

Vanillic acid −4.2 1 3 His7, Lys4, and Arg5 Asn9, Asp3, Ala2, and Glu12

4B2O

Caffeic acid −4.5 5 4 Lys173, His214, Arg211, and
Gly203

Arg205, Ile215, and Arg204

Catechin −6.0 1 5 Glu89, Leu44, Asp43, Lys139, and
Ser140

Leu85, His214, Asp110, and Ala138

Cinnamic acid −5.5 4 2 Thr145 and Gly162 Lys147 and Tyr160

Ferulic acid −5.5 1 4 Lys95, Arg88, Phe78, and Thr77 Pro91, Glu75, Ile76, and Phe87

Gallic acid −4.3 8 5 Tyr160, Gly162, Arg141, Gly144,
and Thr145

Asp161 and Tyr143

Gentistic acid −5.0 1 2 Arg372 and Ala371 Phe373, Tyr378, Arg379, Leu352, and
Trp377

Quercetin −7.2 1 5 Gln112, Glu89, Asp43, Leu44, and
Lys139

Leu142, Leu85, Asp110, and Ala138

Rutin −8.1 1 7 Leu44, Asp43, Ser140, Gln112,
Asp110, His214, and Lys139

Gln218, Glu89, Leu85, Ala138, Leu142,
and Phe46

Syringic acid −4.0 9 3 Arg205, Ile206, and Lys173 Arg204, Ile215, Arg211, and Gly203

Vanillic acid −5.3 1 2 Ser140 and Tyr80 Lys139, Gly111, and Ala138

5OE3

Caffeic acid −5.0 3 3 Tyr163, Asn84, and Phe208 Thr164, Ile95, Ala91, and Ser87

Catechin −7.7 1 5 Gly279, Gly300, Thr164, Glu305,
and Tyr378

Ile301, Gly302, Ala303, Asp382, Ser280,
His394, and Ala278

Cinnamic acid −5.7 4 2 Pro129 and Tyr25 Ala124, Ala125, Asn61, Ala108, Glu107,
Arg128, Ser65, and Asp132

Ferulic acid −6.4 1 2 Ser87 and Arg88 Asp94, Ala91, Ile83, Asn84, Ile95, and
Pro171

Gallic acid −5.9 3 5 Asp382, Tyr378, Glu305, Thr164,
and Thr304

Ala303, Gly302, and Ile301

(Continued on following page)
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His394, and Gly279, at pose 1 showed a strong H-bonding
interaction with the target site, whereas amino acid residues
including Ala278, Gly302, Ile301, Ala303, Tyr378, Thr164, and
Ser28 showed van der Waals interactions, π–sigma, π–π, and
π–alkyl interactions (Table 5; Figure 4). In the case of quercetin,
a strong H-bonding interaction was recorded with amino acid
residues, including Gly279, Gly300, Thr304, Glu305, Asp382, and
His394 at pose rank 1. The interaction was quite stable with high fee
binding energy [−8.4 ΔG (kJ mol‒1)]. The other amino acids in the
active pocket, including Pro281, Ala278, Gly302, Ile301, Ala303,
Tyr378, Thr164, and Ser280, interacted with quercetin through
hydrophobic interactions (Table 5; Figure 4). Both H-bonding
and hydrophobic interactions are of great significance since they
determine the stability and structure of proteins that are crucial in
therapeutic effects. Molecular docking investigations revealed a
strong interaction of polyphenolic compounds, especially
flavonoids, with target sites, which may indicate the potential
inhibitory effect of these compounds on bacterial growth.

3.4 Antimicrobial resistance pattern

Different antibiotics (14) were used to determine the
antibacterial susceptibility of the isolated clinical oral bacterial
strains, including P. aeruginosa, B. chungangensis, B.
paramycoides, and P. dendritiformis. Almost all the isolated
strains were resistant to antibiotics except imipenem and
ciprofloxacin and, in a few cases, tetracycline (Table 6).

3.4.1 Minimum inhibitory concentrations of
different phenolic compounds against oral
bacterial strains

The standard ATCC strains were investigated against
polyphenolic compounds to compare the activity amongst
resistant and standard strains. In the case of standard strains, all
strains were susceptible to polyphenolic compounds. In the case of
B. paramycoides, amongst clinical isolates, cinnamic acid, catechin,
caffeic acid, and vanillic acid showed significant inhibition (MIC
0.25 mg/mL). Caffeic acid was highly active (MIC 0.25 mg/mL)
against P. aeruginosa, while cinnamic acid showed inhibition against
both strains of B. chungangensis (MIC 0.25 mg/mL) (Table 7). It was

thus evident that polyphenolic compounds were active against
resistant oral pathogens.

3.4.2 Antibiofilm and antiquorum sensing activities
Among the 10 tested phenolic compounds, significant antibiofilm

activity was recorded in the case of ferulic acid (60.3% ± 2.2%),
catechin (73.5% ± 1.6%), quercetin (64.4% ± 1.4%), and vanillic acid
(69.4% ± 1.3%) against B. paramycoides (Table 8). P. aeruginosa
biofilm inhibition was reported by cinnamic acid (80.90%± 1.1%) and
caffeic acid (80.83% ± 1.6%), whereas quercetin presented significant
inhibition (87.4% ± 1.4%) of B. chungangensis-2. Similarly, biofilms
produced by P. dendritiformis were significantly inhibited by syringic
acid (76.4% ± 1.2%) and vanillic acid (75.2% ± 1.6%) (Table 8). All the
selected plant-origin phenolic compounds were checked for
antiquorum sensing activity against C. violaceum, and no
inhibition was noted (Supplementary Figure).

4 Discussion

The oral cavity is a natural reservoir of diversified microbes,
including Staphylococcus spp., Candida spp., Granulicatella spp.,
Streptococcus spp., Veillonella spp. (Gendron et al., 2000), and
several transient bacteria (Singh et al., 2014). Most of these can
colonize the oral cavity and develop biofilms that are resistant to
commonly used antimicrobial agents (Rather et al., 2021).
Considering emerging resistance in oral pathogens and limited
treatment options, we investigated polyphenolic compounds for
their antimicrobial and antibiofilm potential. Nevertheless,
diabetic patients are more susceptible to oral bacterial infections,
including periodontitis and gingivitis, and long-term complications
of the cardiovascular system (Loesche, 1996). The bacterial strains
were isolated from the dental plaque of female diabetic patients
since, in Pakistan, female diabetic patients have high oral infection
ratios due to poor hygiene. This investigation proposes a novel, safe,
natural, and effective solution to these complicated cases. Initially,
the drug likeness of polyphenolic compounds was assessed. All
polyphenolic compounds followed drug rules, except rutin, which
showed violations including a high molecular weight [>500],
H-bond donors [>5], and H-bond acceptor [>10]. As stated in
the literature, the violations must not be greater than 1; otherwise,

TABLE 5 (Continued) Docking score and H and non-H-bond interactions of tested compounds (A).

Compound
Binding free
energy ΔG
(kJ mol‒1)

Pose
number

Number of H
bonds

Amino acid interaction
residues

Hydrophobic interactions
with amino acids

Gentisic acid −5.7 3 4 Arg266, Pro263, Ala265, His294,
and His293

Phe289 and Arg262

Quercetin −8.4 1 6 Gly279, Gly300, Thr304, Glu305,
Asp382, and His394

Pro281, Ala278, Gly302, Ile301, Ala303,
Tyr378, Thr164, and Ser280

Rutin −9.4 1 6 Gly300, Thr304, Glu305, Asp382,
His394, Gly279

Ala278, Gly302, Ile301, Ala303, Tyr378,
Thr164, and Ser280

Syringic acid −6.2 2 4 Gly302, Asp382, Gly279, and
Gly300

Ala278, Ile301, Pro281, His394, and
Ser280

Vanillic acid −5.9 3 4 Ala319, Ala391, Arg393, and
Asp321

Tyr392, Glu3885, Arg386, and Asp387
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the tested molecules may have limited oral absorption
(Tijjani et al., 2022). This is based on the fact that Lipinski
parameters indicate molecule bioavailability, lipophilicity, and
permeation across cell membranes (Kumar et al., 2010; Kenny,
2022). In addition, the score function set by the Molsoft tool is
also helpful in explaining the drug likeness of the molecule and the
permissible range (−1 to +1) for a molecule to be considered a drug.
It was observed that cinnamic acid (−1.17) showed a deviation from
the standard value, i.e., < −1, and, therefore, was considered a
violation. The oral bioavailability of the drug molecules was
predicted using a bioavailability radar (SwissADME). The pink
area on the radar is an indication of the bioavailability of the
drug molecule, and various parameters of the drug must be
within the range of the pink area for good bioavailability (Daina

et al., 2017). Various parameters were taken into consideration, and
it was observed that all tested molecules were within the colored
area, indicating drug-like features except INSATU (instauration),
which indicated slight unsaturation, slightly affecting the
bioavailability of the tested polyphenolic compounds. The effects
of the tested polyphenolic compounds on the CNS were predicted
using the boiled egg model embedded in SwissADME, and it was
evident that cinnamic acid, ferulic acid, and vanillic acid can
permeate the brain, whereas all other tested molecules are only
absorbed from the gastrointestinal tract. These findings propose a
possible route for drug administration; however, the tested
polyphenolic compounds were intended to produce a localized
effect in the oral cavity and can be administered as an oral
emulgel (Daina and Zoete, 2016). The ADMET analysis of drug

FIGURE 4
Interaction analysis of gallic acid pose 1 (A) and rutin pose 1 (B) with transcription regulator IRO5.
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molecules is an important computational estimation that enables the
pharmacokinetic and pharmacokinetic attributes of molecules in
drug repurposing and drug lead discovery (Guan et al., 2018). The
ADMET analysis confirmed previous findings and further indicated
that the tested molecules are neither substrates nor inhibitors of
cytochrome P450 that reflect no modification in the liver. The
cytochrome P450 family largely consists of over 50 enzymes.
However, most of the drug molecules are metabolized by 2C19,
D6, CYP1A2, 2E1, 2C92, 3A4, 3A4, and CYP2D6 (Sliwoski et al.,
2013). Our findings suggested that most of the tested molecules were
good drug candidates for oral intake, as reported previously (Sanz
et al., 2015). The toxicity profile of the analyzed compounds

indicated that all compounds were non-toxic to the skin except
cinnamic acid. This is important since it ensures the usage of the
analyzed compounds for the management of oral infections.

Molecular docking is an effective and extensively used technique
to understand the molecular aspects of proteins and protein–ligand
interactions in the drug discovery process (Murgueitio et al., 2012).
The antimicrobial activity of flavonoids and polyphenols is certainly
due to several mechanisms, specifically through direct damage to the
outer envelope, genetic material, and interference in cell signaling
(Donadio et al., 2021). In molecular docking investigations, the
interaction analysis of polyphenolic compounds was performed
against biofilm and quorum-sensing transcription regulators,

FIGURE 5
Interaction analysis of gallic acid pose 8 (A) and rutin pose 1 (B) with transcription regulator 4B2O.
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including 1ROS, 4B2O and 5OE3. In the case of 1ROS, most
H-bonding interactions were due to Asp17, Asp21, Glu12, Arg13,
His7, Glu12, and His7 amino acids residing within active pockets.
Furthermore, these interactions were stabilized through π–alkyl, π-
stacked, and van der Waals interactions. Here, among flavonoids,
the highest number (eight) of H-bonds was reported with rutin,
involving Asp21, Arg13, Asp17, Glu12, Leu11, Lys14, His7, and
Arg15 amino acids, and quercetin (five), with Thr144, Phe105,
Ile107, Arg30, and Thr145 amino acids. Similarly, among
phenolic acids, gallic acid presented the highest number of
H-bond formations (six), involving Arg13, Asp17, Lys14, His7,
Glu12, and Leu11 amino acids. In 4B2O, rutin presented the
most stable complex formation with Leu44, Asp43, Ser140,
Gln112, Asp110, His214, and Lys139 amino acids, which

occurred due to strong H-bonding. Among phenolic acids, gallic
acid showed the highest number of H-bond formations (five) with
Tyr160, Gly162, Arg141, Gly144, and Thr145 amino acids. A nearly
similar trend was recorded in the case of 5OE3 docking. Rutin
showed highly stable complex formation with high free energy [−9.4
ΔG (kJ mol‒1)] involving Gly300, Thr304, Glu305, Asp382, His394,
and Gly279. Among phenolic acids, gallic acid developed a stable
H-bond formation with Asp382, Tyr378, Glu305, Thr164, and
Thr304. This may indicate the potential inhibitory effect of the
tested compounds on bacterial growth. The H-bond interactions are
of great significance since they determine the stability and structure
of proteins that are crucial in therapeutic effects (Bitencourt-Ferreira
et al., 2019). The aromatic ring of phenolic compounds normally
acts as a strong inhibitor owing to delocalized electrons on the

FIGURE 6
Interaction analysis of gallic acid pose 3 (A) and rutin pose 1 (B) with transcription regulator 5OE3.
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TABLE 6 Antibiogram studies of oral pathogens against selected antimicrobial agents.

Antibiotic Bacterial strain zone
of inhibition (mm)

Bacillus
chungangensis-1

Pseudomonas
aeruginosa

Bacillus paramycoides Bacillus
chungangensis-2

Paenibacillus dendritiformis

Amoxicillin 1 0 0 0 0

Amoxicillin clavulanic acid 0 0 0 0 3

Imipenem 15 11 17 10 16

Tetracycline 15 0 10 4 5

Ciprofloxacin 10 12 9 10 13

Piperacillin 10 3 1 0 15

Ceftriaxone 0 0 0 0 0

Cefoxitin 0 1 1 0 0

Meropenem 0 0 0 0 0

Polymyxin B 4 0 0 0 1

Sulfamethoxazole 0 0 0 5 5

Cefotaxime 0 0 0 0 0

Aztreonam 0 0 0 4 0

Gentamicin 0 4 6 4 6

Green, sensitive; red, resistant.
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aromatic rings and electron-donating and electron-withdrawing
groups (Li et al., 2022). Similarly, the strong interaction of
flavonoids is mainly attributed to specialized structural
conformation (Abd Ghani et al., 2020). The phenolic acids are
mainly provided with an aromatic ring supported by several
phenolic and/or carboxylic groups at the ortho and meta
positions. The specific position of these groups on the aromatic
ring of phenolic acids is the main factor involved in strong H-bond
formation (Oufensou et al., 2021). It was also noted that compounds
with several phenolic groups have high free energy, as noted in the
case of gallic acid in docking with all targets.

The clinical isolates were processed for antibiogram studies to
investigate resistance levels against antibiotics. Ciprofloxacin,
imipenem, and tetracyclines were active against clinical strains
including P. aeruginosa, Bacillus paramycoides, B. chungangensis-
1, B. chungangensis-2, and P. dendritiformis, whereas all other
antibiotics showed resistance as mentioned in the CLSI criteria.
Resistance to antimicrobial therapy has become alarmingly high,
which has greatly increased the health burden (Kathia et al., 2020) in
developing countries like Pakistan, where poverty, non-compliance,
and lack of awareness represent the major contributing factors.
Knowing the current status of antimicrobial resistance in an area can
be an effective tool for designing newer strategies to cope with the
situation (Parmanik et al., 2022). During our investigation, the
isolated oral pathogens were resistant to most of the antimicrobial
agents previously reported in an earlier investigation in Pakistan
(Døving et al., 2020). This is quite alarming since, in addition to
the development of severe infections in the oral cavity, such infections
can lead to dental and oral–maxillofacial cavity disruption (Koren
et al., 2011) and the development of several cardiovascular diseases
(Meinen et al., 2021) due to long-term oral infections.

The MIC analysis of polyphenolic compounds was performed
against clinical pathogens, and significant inhibition was recorded,
ranging from 0.0625 to 0.25 mg/mL, which is interesting against
resistant strains. The resistant strains are difficult to treat due to

several reasons, including genetic mutations and biofilm formation
(Dunai et al., 2019). Polyphenolic compounds are considered
antibacterial since they can disrupt bacterial membranes, inhibit
biofilm formation, and possess several virulence factors
(Miklasińska-Majdanik et al., 2018). Furthermore, polyphenolic
compounds are provided with strong antioxidant activity, and it
has been established that these compounds lower oxidative stress by
inhibiting the generation of reactive oxygen species (ROS), thereby
inhibiting bacterial growth (Ispiryan et al., 2024). In our case, a
concentration-dependent increase in activity was noted, which can
be attributed to the increased inhibition of ROS. Our findings were
consistent with those of previous reports that presented significant
activity of polyphenolic compounds against resistant pathogens
(Flemming et al., 2021).

The antibiofilm activities of polyphenolic compounds were
performed against B. paramycoides, P. aeruginosa, and P.
dendritiformis, and significant inhibition was observed against B.
chungangensis and P. dendritiformis. In this investigation, polyphenolic
compounds, including catechin, cinnamic acid, and quercetin, presented
significant dose-dependent inhibition of isolated strains. Investigators
have suggested that the antibiofilm inhibitory potential of polyphenolic
compounds could be due to the downregulation of certain genes and a
decrease in membrane permeability (Ivanov et al., 2022).

Cell–cell signaling or bacterial quorum sensing is an important
mechanism involved in biofilm formation in addition to cell surface
adhesion, an increase in membrane fluidity, and interference with
energy mechanisms (Cushnie and Lamb, 2011). Polyphenolic
compounds mainly have polar groups (more OH), which
facilitate the easy entry of such molecules within
exopolysaccharides (polymeric matrix) in the bacterial biofilm
and affect cells (Pesci et al., 1999). In this investigation, no
antiquorum sensing was recorded (zone of inhibition = 0 mm); it
was therefore proposed that strong antibiofilm activity could
possibly be due to other underlying mechanisms, including
interference with membrane fluidity and energy mechanisms, cell

TABLE 7 Minimum inhibitory concentration of polyphenolic compounds against clinical strains.

S.
no.

Compound
name

MIC mg/mL

Bacillus
paramycoides

Pseudomonas
aeruginosa

Bacillus
chungangensis

Bacillus
chungangensis

Paenibacillus
dendritiformis

1 Gentisic acid 0.5 0.25 0.25 0.25 0.125

2 Ferulic acid 0.5 0.5 0.5 0.25 0.0625

3 Gallic acid 0.5 0.5 0.5 0.25 0.125

4 Rutin 0.5 0.5 0.25 0.25 0.25

5 Cinnamic acid 0.25 0.25 0.125 0.25 0.25

6 Catechin 0.25 0.5 0.25 0.25 0.5

7 Quercetin 0.5 0.25 0.5 0.25 0.25

8 Caffeic acid 0.25 0.125 0.25 0.25 0.5

9 Syringic acid 0.5 0.5 0.25 0.25 0.5

10 Vanillic acid 0.25 0.5 0.5 0.25 0.25

11 Ciprofloxacin 0.031 0.0078 0.031 0.031 0.25
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wall, and DNA synthesis, as explained previously (Gafforov
et al., 2024).

5 Conclusion

Plant polyphenolic compounds were investigated against
resistant oral pathogens and their biofilms. Both the in silico and
in vitro data suggested that polyphenolic compounds possess
significant potential to eradicate the biofilm produced by
resistant clinical oral bacteria. No antiquorum sensing activity
was reported, which confirms that for biofilm formation, there
can be another mechanism that can be explored in future
investigations. Thus, the use of standardized plant extracts
containing these polyphenolic compounds can be an interesting
approach to designing herbal formulations for the oral cavity. The
outcomes of the investigation are of great interest since they propose
a natural treatment option for the management of oral bacterial
biofilms. The pharmaceutical industry, especially the nutraceutical
industry, can use the outcomes and proceed to use new nutraceutical

polyphenolic formulations against oral bacteria. We further propose
detailed in vivo and formulation design investigations.
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PQ147054, Pseudomonas aeruginosa (SUB14650934 Malp_27F-
1075) is PQ147055, Bacillus paramycoides (SUB14650934 4M_
27F-1050) is PQ147056, Bacillus chungangensis (SUB14650934
U5_27F-986) is PQ147057 and for strain Paenibacillus
dendritiformis (SUB14650934 C14_27F-1050 ) is PQ147058.
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University, D.I. Khan, KPK, Pakistan (No. 331/ERB/GU/2022), and
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TABLE 8 Antibiofilm property of phenolic compounds against oral bacteria.

Compound
Concentration

(mg/mL)

Percent biofilm inhibition of the biofilm produced by oral bacteria

Bacillus
paramycoides

Pseudomonas
aeruginosa (%)

Bacillus
chungangensis-

1 (%)

Bacillus
chungangensis-

2 (%)

Paenibacillus
dendritiformis

(%)

Gentisic acid 0.25 21.8% ± 1.1% 59.5 ± 0.12 11.4 ± 1.3 78 ± 2.1 35 ± 1.21

0.125 3.7% ± 2.1% 29.5 ± 2.0 6.14 ± 1.21 73 ± 1.0 23.7 ± 1.4

Ferulic acid 0.25 60.3 ± 2.2 79.3 ± 1.2 7.4 ± 1.4 69 ± 0.42 21.2 ± 1.2

0.125 22% ± 1.3% 71.4 ± 1.31 1.7 ± 0.2 15.6 ± 1.1 7.2 ± 1.4

Gallic acid 0.25 50% ± 1.4% 69.1 ± 2.4 18.8 ± 2.1 79 ± 1.5 58 ± 1.4

0.125 34.6% ± 1.1% 65.2 ± 2.1 12.9 ± 1.4 58.6 ± 2.3 12.4 ± 1.2

Rutin 0.25 47.1% ± 2.1% 73.7 ± 0.45 23.35 ± 0.4 80 ± 1.8 45 ± 0.31

0.125 40.4% ± 2.22% 53.99 ± 1.2 10.5 ± 0.6 21.8 ± 1.3 26.9 ± 0.45

Cinnamic acid 0.25 34.4% ± 1.2% 80.9 ± 1.1 31.4 ± 0.21 88 ± 1.21 59.5 ± 1.2

0.125 29.9% ± 1.4% 62.4 ± 0.6 28.5 ± 0.23 23.8 ± 1.4 58.5 ± 1.6

Catechin 0.25 73.5% ± 1.6% 78.5 ± 0.81 20.8 ± 1.4 69.4 ± 0.48 62.7 ± 2.1

0.125 53.7% ± 1.6% 44.67 ± 2.1 13 ± 1.3 34 ± 1.3 30.3 ± 2.4

Quercetin 0.25 64.4% ± 1.4% 71.4 ± 0.84 75 ± 2.0 87.4 ± 1.4 50.25 ± 1.4

0.125 63.5% ± 2.1% 54.8 ± 1.6 52.3 ± 2.4 23.3 ± 1.6 25.5 ± 1.2

Caffeic acid 0.25 56.6% ± 1.4% 80.83 ± 1.6 33.8 ± 0.87 76.3 ± 0.85 81 ± 1.3

0.125 28.2% ± 1.6% 77.2 ± 1.8 26.9 ± 2.7 7.6 ± 0.84 62 ± 1.4

Syringic acid 0.25 57.2% ± 1.3% 65.5 ± 2.1 17.6 ± 3.1 63.9 ± 2.1 76.4 ± 1.2

0.125 48.1% ± 0.2% 42.7 ± 1.32 2.75 ± 1.6 27.8 ± 1.4 22.4 ± 1.2

Vanillic acid 0.25 69.4% ± 1.3% 72.4 ± 1.21 60.5 ± 1.7 34.2 ± 1.3 75.2 ± 1.6

0.125 63.2% ± 1.6% 55.9 ± 1.4 25.6 ± 1.21 20.9 ± 1.4 19 ± 1.2

Ciprofloxacin 0.031 72.7% ± 2.1% 81 ± 1.31 54.4 ± 1.3 74.3 ± 1.2 52.6 ± 1.1

0.015 67.2% ± 0.31% 65.7 ± 1.2 43.3 ± 1.2 56.18 ± 1.6 23.5 ± 0.47
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