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Background: Rearranged during transfection (RET), an oncogenic protein, is
associated with various cancers, including non-small-cell lung cancer
(NSCLC), papillary thyroid cancer (PTC), pancreatic cancer, medullary thyroid
cancer (MTC), breast cancer, and colorectal cancer. Dysregulation of RET
contributes to cancer development, highlighting the importance of identifying
lead compounds targeting this protein due to its pivotal role in cancer
progression. Therefore, this study aims to discover effective lead compounds
targeting RET across different cancer types and evaluate their potential to inhibit
cancer progression.

Methods: This study used a range of computational techniques, including
Phase database creation, high-throughput virtual screening (HTVS), molecular
docking, molecular mechanics with generalized Born surface area (MM-GBSA)
solvation, assessment of pharmacokinetic (PK) properties, and molecular
dynamics (MD) simulations, to identify potential lead compounds
targeting RET.

Results: Initially, a high-throughput virtual screening of the ZINC database
identified 2,550 compounds from a pool of 170,269. Subsequent molecular
docking studies revealed 10 compounds with promising negative binding
scores ranging from −8.458 to −7.791 kcal/mol. MM-GBSA analysis further
confirmed the potential of four compounds to exhibit negative binding scores.
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MD simulations demonstrated the stability of CID 95842900, CID 137030374, CID
124958150, and CID 110126793 with the target receptors.

Conclusion: These findings suggest that these selected four compounds have the
potential to inhibit phosphorylated RET (pRET) tyrosine kinase activity and may
represent promising candidates for the treatment of various cancers.

KEYWORDS

phosphorylated rearranged during transfection tyrosine kinase, cancer, high-throughput
virtual screening, extra precision docking, docking validation, phase database, molecular
mechanics with generalized Born surface area, molecular dynamics simulation

FIGURE 1
Mechanism of action and inhibition of phosphorylated RET tyrosine kinase activity by potential compounds. (A) Role of phosphorylated RET tyrosine
kinase in cancer progression. Phosphorylated RET, throughmutations and aberrant activation, promotes uncontrolled cell growth and inhibits apoptosis,
leading to tumor development and metastasis. RET fusion and mutation are implicated in various cancers, including NSCLC, papillary thyroid cancer
(PTC), and medullary thyroid cancer (MTC). (B) Study’s efforts to identify potential compounds that can effectively inhibit phosphorylated RET
tyrosine kinase, offering an alternative to the existing inhibitor, vandetanib.
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1 Introduction

Cancer remains a pressing global health concern, with its
incidence increasing due to various lifestyle factors (Mathi et al.,
2014). The World Health Organization (WHO) reported
approximately 9.6 million cancer deaths in 2018, (Ravi Kumar
et al., 2020), with projections indicating an increase to
11.5 million by 2030 (Gurung et al., 2021). An important
characteristic of cancer is aberrant cell proliferation, which is
caused by dysregulation of the cell cycle. There are several factors
that govern the cell cycle in order to ensure that the cells divide
regularly and in a programmed manner (Asadi-Samani et al., 2022).
Key players in this process are cell surface receptors, particularly
receptor tyrosine kinases (RTKs), which control vital signaling
pathways involved in various cellular processes, including cell
growth, differentiation, and survival (O’Leary et al., 2019).
Dysregulation of RTKs, notably the rearranged during
transfection (RET) kinase, contributes to tumorigenesis in
various cancers.

RTKs are multifaceted proteins crucial for modulating cell
activities like growth, differentiation, and survival (Mahato and
Sidorova, 2020; Lemmon and Schlessinger, 2010). Mutation-
induced dysregulation of RTKs promotes uncontrolled cell
growth and prevents cell death, promoting tumor progression
and metastasis (Zhang and Li, 2023). The aberrant activation of
RTKs, particularly by RET fusion and mutation, is implicated in
numerous cancers, spanning non-small-cell lung cancer (NSCLC) to
breast cancer (Bhujbal et al., 2021). The RET gene encodes a receptor
tyrosine kinase that, upon binding with its ligands, undergoes
dimerization and auto-phosphorylation on specific tyrosine
residues within its intracellular domain (Figure 1A). This
phosphorylation triggers the activation of downstream signaling
pathways, including the RAS/MAPK, PI3K/AKT, and JAK/STAT
pathways, which are essential for regulating cell growth,
differentiation, and survival (Ardito et al., 2017). Mutations and
gene fusions involving RET lead to its constitutive activation,
meaning that the kinase remains continuously active without the
need for ligand binding (Liu et al., 2020). This aberrant activation
results in uncontrolled cellular proliferation, resistance to apoptosis
(programmed cell death), and increased cell migration, all of which
contribute to tumorigenesis and cancer metastasis (Neophytou et al.,
2021). Consequently, therapeutic strategies targeting RTKs,
specifically RET, have gained traction in anticancer research
(Hojjat-Farsangi, 2014). By inhibiting RET signaling, we can
disrupt the abnormal cellular processes it initiates, offering a
promising treatment option. Targeting RET has shown significant
success, particularly in cancers characterized by specific genetic
alterations involving the RET kinase (Parate et al., 2022b).

Over the past two decades, small molecule-based tyrosine kinase
inhibitors (TKIs) have emerged as promising therapies for various
cancers (Saraon et al., 2021). First-generation RET inhibitors like
vandetanib and their second-generation counterparts, such as
selpercatinib, have shown efficacy in inhibiting RET kinase
activity. However, adverse effects like hypertension and diarrhea
pose significant clinical challenges (Sharma et al., 2016). The search
for novel RET inhibitors with improved safety profiles remains
crucial to optimize therapeutic outcomes and mitigate side effects
(Puji et al., 2021).

To address these challenges, computational approaches have
innovated drug discovery efforts (Daoui et al., 2023). Employing
techniques like structure-based drug design, molecular docking,
molecular dynamics (MD) simulation, molecular mechanics with
generalized Born surface area (MM-GBSA), absorption,
distribution, metabolism, excretion, and toxicity (ADMET), and
others, researchers have accelerated the identification of novel RET
inhibitors with enhanced potency and selectivity. Therefore, this
study aimed to provide a comprehensive overview of RET kinase
inhibitors, encompassing their mechanisms, efficacy, and safety
profiles. Using computational approaches, including high-
throughput virtual screening (HTVS), molecular docking, and
MD simulation, we identified lead compounds with promising
therapeutic potential (Figure 1B). Our findings underscore the
pivotal role of computational drug discovery in advancing
precision oncology, paving the way for tailored therapeutic
interventions in RET-driven malignancies. Cancer remains a
significant challenge, necessitating innovative therapeutic
strategies (Sabe et al., 2021). By understanding the landscape of
RET kinase inhibitors and using computational methodologies, we
aim to translate these insights into clinical practice, ultimately
enhancing patient outcomes and revolutionizing cancer
treatment paradigms.

2 Materials and methods

2.1 Protein retrieval and preparation

The crystal structure of the phosphorylated RET (pRET)
tyrosine kinase region (PDB ID: 2IVU) complexed with
vandetanib (ZD6474), a native inhibitor, was obtained from the
Protein Data Bank (https://www.rcsb.org/) (Knowles et al., 2006).
Due to the presence of heteroatoms, water molecules, and solvents in
the structure, it was unsuitable for molecular docking and further
studies. Hence, the Schrödinger Protein Preparation Wizard was
employed to optimize the protein structure. This involved the
addition of hydrogen atoms and missing residues, adjustment of
formal charges on hetero groups, establishment of tautomeric and
ionization states at physiological pH (7.0), and removal of water
molecules beyond a distance of 5 Å from the protein’s natural ligand.
Additionally, the protein structure was minimized until the heavy
atoms reached a root mean square deviation (RMSD) of 0.30 using
the OPLS-3e Force Field (Harder et al., 2016). Conformational
energies essential for biological function were restored through
the adjustment of torsional parameters.

2.2 Active site identification and grid-box
generation

Understanding the active site of the protein is essential for
conducting molecular docking studies in computer-aided drug
design (Ko et al., 2005). Co-crystallized ligand binding sites were
chosen to define the protein’s active sites (Alam et al., 2021). To
identify the active sites, UCSF ChimeraX was used, and residues
involved in binding the co-crystallized ligand were visually inspected
to determine the active site region. Using the Glide v11.3 module, we
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constructed a grid box with dimensions of 72 Å3. This grid box was
strategically positioned at the center of a smaller secondary box
measuring 27 Å3 in X, Y, and Z coordinates, allowing for accurate
docking calculations (Friesner et al., 2006). Adjustments to the van
der Waals radius were made with a selected cutoff value of 0.25, and
partial atomic charges were scaled to 1.0. Importantly, no
consideration was given to rotating groups during this process.

2.3 Generation of the Phase database

A total of 170,269 compound retrievals were conducted using
the Asinex Chemical Library available from the ZINC database
(www.asinex.com) (Asinex.com, 2022—screening libraries (all
libraries)—product types— screening libraries, n. d.) Compounds
within the pH range of 6–8 were selected, and their 3D structures
were downloaded in SDF format. The Phase module, specifically
LigPrep and Epik v4.6, was used to generate a Phase database (Dixon
et al., 2006; Greenwood et al., 2010). This process involved extending
the protonation and tautomeric states of eachmolecule, and their 3D
structures were used to determine ligand chirality. QikProp
properties were then assigned, ensuring adherence to Lipinski’s
rule of five to filter potential ligands (Lipinski et al., 2012).
Notably, reactive functional groups were excluded during the
generation of the Phase database to mitigate false-positive results
(Karthikeyan and Vyas, 2014).

2.4 High-throughput virtual screening

In our study, we conducted HTVS to efficiently identify
potential drug-like components from a large ligand library
database (Dhasmana et al., 2019). This approach is particularly
effective in searching for compounds that can interact with the
protein’s AS (Subramaniam et al., 2008). For ligand-based virtual
screening, we used the HTVS protocol within the Glide module.
Parameters were set to restrict the maximum number of atoms and
rotatable bonds to 500 and 100, respectively. Default settings were
applied for van der Waals radius scaling, and post-docking
reduction was performed, limiting the number of poses per
ligand to a maximum of five.

2.5 Molecular docking for binding
score analysis

Molecular docking is a computational technique used to predict
the binding mode and affinity of small molecules (ligands) to their
target proteins. This method aids in identifying potential drug
candidates by assessing the strength of interactions between the
ligand and the protein (Kandakatla and Ramakrishnan, 2014). In
recent years, molecular docking has become an invaluable tool in
computational drug discovery within structural biology (Khamouli
et al., 2022). In our study, we used the Glide v11 module to
investigate the binding mechanism of the target protein with the
screened ligands (Friesner et al., 2004; Halgren et al., 2004). The
molecular docking procedure was conducted using both standard
precision (SP) and extra-precision (XP) modes. These modes enable

the evaluation of interactions based on various scoring functions,
with the aim of identifying ligands with the highest affinity for the
target protein. Visual examination of the protein–ligand complexes
and their associated chemical interactions was facilitated using the
Maestro Viewer. This analysis provided insights into the specific
binding modes and key interactions driving the binding affinity
between the ligands and the target protein.

2.5.1 Molecular docking validation
To validate the docking protocol, the co-crystallized inhibitor

vandetanib (PDB ID: 2IVU) was redocked into the active site of the
pRET tyrosine kinase using Glide software. The protein structure
was prepared using the Schrodinger Protein Preparation Wizard,
ensuring correct protonation states, hydrogen bonding, and proper
orientation of side chains. Initially, vandetanib was prepared using
LigPrep to generate its 3D structure and optimize its conformational
states. A grid box was generated around the active site of pRET
tyrosine kinase, encompassing the co-crystallized ligand binding
site. The prepared vandetanib ligand was docked into the grid box
using the Glide docking algorithmwith SP parameters. The resulting
docked pose of vandetanib was compared with its co-crystallized
pose in the protein structure. The RMSD between the docked and
co-crystallized poses was calculated to assess the accuracy of the
docking protocol.

2.6 Post-docking MM-GBSA calculation

To investigate the free binding energies of the protein–ligand
complexes, we performed an MM-GBSA analysis (Borkotoky et al.,
2016). This approach allows for the analysis and visualization of
compounds with the lowest binding energy and was implemented
using Maestro v12.5.139 and Glide v8.8 (Borkotoky and Banerjee,
2020). The MM-GBSA score was calculated using the Prime MM-
GBSA v3.059 package. This method integrates OPLS engineering
molecular mechanics (EMM) energies with a VSGB polar solvation
model (GSGB) and a nonpolar solvation term (GNP), which
includes nonpolar solvent-accessible surface areas (SASAs). The
MM-GBSA score, along with docking scores, served as a
benchmark for assessing the utility of newly screened drugs.
Using Maestro v12.5.13948, we analyzed binding interactions,
identified residues involved, and calculated binding free energy
(Vijayakumar et al., 2014).

2.7 Pharmacokinetics and toxicity prediction

Pharmacokinetic (PK) properties play a critical role in screening
drug-like molecules and assessing preclinical safety (Saxena et al.,
2017). Factors such as absorption, distribution, metabolism, and
excretion (ADME) significantly influence the pharmacological and
clinical effectiveness of potential drug candidates. Therefore, we
used the SwissADME server (http://www.swiss-ame.ch/) to evaluate
the pharmacological properties of the ligand molecules (Daina et al.,
2017). This platform assesses the compounds’ compliance with
Lipinski’s rule of five, gastrointestinal (GI) permeability, and
blood–brain barrier (BBB) penetration, all of which are essential
considerations in rational drug design (Lipinski et al., 2001).
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Additionally, it is important to assess the potential toxicity of
small molecules, as they can pose risks to various organs in the
human body, including cytotoxicity, carcinogenicity, hepatotoxicity,
immunotoxicity, and mutagenicity. Thus, toxicity prediction is a
crucial aspect of drug development. In our study, we used ProTox-II
(https://tox-new.charite.de/) to predict the toxicity of the selected
compounds (Banerjee et al., 2018).

2.8 Molecular dynamics simulation

To comprehensively understand the behavior and stability of
protein–ligand complexes in complex biological environments, MD
simulations are indispensable (Alam et al., 2021). These simulations
provide dynamic insights into the interactions between the ligands
and proteins, crucial for assessing binding stability and activity
within the active site cavity (Samad et al., 2022). In our study, we
conducted MD simulations spanning 150 nanoseconds using the
Desmond module from Schrödinger (Release 2020-3) in a Linux
environment (Bowers et al., 2006). This allowed us to observe the
atomic movements of ligands within protein molecules and capture
the complex dynamics of the system. To accurately represent the
membrane environment, we employed the TIP3P water model to
maintain appropriate water density and electrical permittivity. The
system was neutralized with Na+ and Clˉ ions to maintain a
physiological salt concentration of 0.15 M. Periodic boundary
conditions were applied with an orthorhombic box shape (10 ×
10 × 10 Å̂3) to maintain a constant volume. MD simulations were
performed under NPT ensemble conditions at 300 K, 1.01325 bar
pressure, and 1.2 ns. Interactions within the solvated protein–ligand
system were described using the OPLS-2005 Force Field, with
molecules reattached every 15 picoseconds (Harder et al., 2016).
These conditions ensured an accurate representation of the
biological system and provided information regarding the
dynamics of protein–ligand interactions.

3 Results

3.1 Phase database creation and HTVS

The Phase database creation process involved rapidly screening
a compound library to facilitate efficient virtual screening. Using the
Phase module of the Asinex Chemical Library, we curated a database
comprising 170,269 compounds with pH levels ranging from 6 to 8.
From a total of 509,809 conformations generated using the LigPrep
function, 98,189 compounds passed through rigorous filtering
criteria, including the Lipinski filter and the reactive filter. These
filters ensured the selection of compounds meeting essential drug-
like properties while minimizing the presence of reactive functional
groups. Our results demonstrate the successful establishment of a
comprehensive database containing numerous chemical
compounds in their optimal conformations. Subsequent docking
of molecules from the Phase database into the active site of RET,
facilitated by grid-box construction, enabled HTVS. This screening
identified 2,550 compounds as potential candidates capable of
binding to the target cavity with high affinity.

3.2 Molecular docking for binding
score analysis

Molecular docking is a powerful computational method used to
predict the binding affinity between a ligand and a protein within a
complex, providing valuable insights for optimizing potential drug
candidates. In this study, we used various molecular docking
approaches, including HTVS, SP docking, and XP docking, to
evaluate the binding interactions of small-molecule compounds with
the target protein. The analysis identified the top 10 intramolecular
chemical structures based on their docking scores shown in Figure 2 and
listed in Supplementary Figure S1. These compounds, along with the
native ligand, were further scrutinized for their binding affinities. The XP
docking approach revealed a binding score ranging from −7.791 kcal/
mol to −8.458 kcal/mol across the selected compounds.

From the comprehensive docking analysis, four compounds
exhibited superior binding affinities compared to the control
compound (vandetanib), as shown in Figure 2. Specifically, these
lead compounds demonstrated binding scores of −8.458 kcal/
mol, −8.33 kcal/mol, −8.324 kcal/mol, and −8.14 kcal/mol,
respectively. Vandetanib (CID 30811361), serving as the native
ligand, exhibited a binding score of −8.11 kcal/mol.

3.2.1 Docking validation
The redocking of vandetanib into the active site of pRET

tyrosine kinase yielded a docked pose that closely resembled its
co-crystallized pose (Figure 3). The RMSD between the docked and
co-crystallized poses was 0.22 Å, which is within an acceptable
range, indicating the reliability of the docking protocol (Figures
4A–D). This validation procedure confirms the suitability of Glide
software for docking new compounds into the active site of pRET
tyrosine kinase for further virtual screening studies.

3.3 Protein–ligand binding interaction

Binding studies were conducted using Maestro (v12.5) to visualize
the interaction bonds with residues, as shown in Figure 4. The
interactions between the ligands and the target protein were
analyzed, and the results are presented in Figure 5 and
Supplementary Table S1. These interactions revealed a diverse array
of non-bonded interactions, including hydrogen bonds, hydrophilic
and hydrophobic interactions, electrostatic links, and polar bonds.

The presence of hydrogen bonds in the interactions was found to
contribute significantly to the stability of the protein–ligand
complex. Specifically, CID 95842900, CID 124958150, and CID
110126793 exhibited two hydrogen bonds, while CID
137030374 and vandetanib demonstrated only one hydrogen
bond (Figure 5A). Interestingly, compared to the control drugs,
the three ligands showed a higher number of hydrogen bonds.
Remarkably, all selected compounds interacted with a common
residue, ALA807, via hydrogen bonding. Additionally, several other
residues, including LEU730, GLY731, VAL738, ALA756, ILE788,
VAL804, GLU805, TYR806, LYS808, TYR809, GLY810, SER811,
LEU881, and SER891, were identified as common interacting
residues (Figure 5B). These residues engage in various types of
bonds, such as hydrophobic, glycine, charged, and polar bonds.

Frontiers in Chemistry frontiersin.org05

Talukder et al. 10.3389/fchem.2024.1407331

https://tox-new.charite.de/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1407331


3.4 Post-docking MM-GBSA analysis

TheMM-GBSA calculations were conducted to evaluate the binding
free energy of selected four compounds, namely, CID 95842900, CID
137030374, CID 124958150, and CID 110126793 (Figure 6), and the top
10 hit binding scores are exhibited in Supplementary Table S2 and
Supplementary Figure S2. The compound CID 95842900 binding free
energy is estimated to be approximately −41.98 kcal/mol. This value
comprises various energy components, including Coulombic interaction
energy (ΔG_bind Coulomb) of −21.93 kcal/mol, covalent interaction
energy (ΔG_bind Covalent) of 5.90 kcal/mol, hydrogen bonding energy
(ΔG_bind Hbond) of −2.34 kcal/mol, lipophilic interaction energy (ΔG_
bind Lipo) of −14.36 kcal/mol, packing interaction energy (ΔG_bind
Packing) of −0.31 kcal/mol, solvation energy (ΔG_bind Solv GB) of
20.62 kcal/mol, and van der Waals interaction energy (ΔG_bind vdW)
of −29.56 kcal/mol (Figures 6A–G). The compound CID
137030374 shows a binding free energy of −32.33 kcal/mol. It is
comprised of Coulombic interaction energy of −15.63 kcal/mol,
covalent interaction energy of 5.88 kcal/mol, hydrogen bonding
energy of −1.03 kcal/mol, lipophilic interaction energy of −12.44 kcal/
mol, packing interaction energy of −0.42 kcal/mol, solvation energy of
23.69 kcal/mol, and van derWaals interaction energy of −32.38 kcal/mol
(Figures 6A–G). The binding free energy for CID 124958150 is
approximately −52.90 kcal/mol. This value includes Coulombic
interaction energy of 32.60 kcal/mol, covalent interaction energy of

1.03 kcal/mol, hydrogen bonding energy of −1.41 kcal/mol, lipophilic
interaction energy of −18.39 kcal/mol, packing interaction energy
of −0.46 kcal/mol, solvation energy of −27.77 kcal/mol, and van der
Waals interaction energy of −38.51 kcal/mol (Figures 6A–G). The
calculated binding free energy for CID 110126793 is −50.20 kcal/mol.
It consists of Coulombic interaction energy of 58.40 kcal/mol, covalent
interaction energy of 2.75 kcal/mol, hydrogen bonding energy
of −2.30 kcal/mol, lipophilic interaction energy of −13.45 kcal/mol,
packing interaction energy of −0.30 kcal/mol, solvation energy
of −58.66 kcal/mol, and van der Waals interaction energy
of −36.64 kcal/mol.

3.5 Pharmacokinetics and toxicity
properties’ analysis

Drug discovery and development necessitate a thorough
understanding of pharmacokinetic features, including absorption,
distribution, metabolism, excretion, and toxicity. Predicting
pharmacokinetic properties is crucial in computational drug
discovery as it aids in understanding preclinical failures and drug
distribution within the human body (Lipinski et al., 2012).
Toxicology prediction is an essential aspect of drug development
regulation, as it informs us about the potential harm that chemicals
may pose to humans, animals, and the environment. In this study, the

FIGURE 2
Molecular docking scores (kcal/mol) of the top ten hit compounds and native ligand evaluated through different docking approaches. Here, the first
column represents the high-throughput virtual screening (HTVS), the second column represents the standard precision (SP), and the third column
represents the extra precision (XP) docking scores for respective compounds. The yellow to blue color denotes the elevation of the negative
binding score.
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four compounds with the highest binding affinity, namely, CID
95842900, CID 137030374, CID 124958150, and CID 110126793,
along with the control drug vandetanib, were screened for ADME
and toxicity.

The ADMET predictions for these compounds are presented in
Figures 7A, B and listed in Supplementary Tables S3, S4. The
selected compounds were found to comply with Lipinski’s rule,
indicating favorable pharmacokinetic properties. They exhibited
high GI tract permeability, suggesting enhanced bioavailability at
the target site (Figure 7A). Moreover, these compounds showed no
signs of hepatotoxicity, carcinogenicity, immunogenicity,
mutagenicity, or cytotoxicity. Consequently, the selected
compounds were deemed non-toxic to humans and categorized
into toxicity classes III, IV, III, IV, and IV, respectively (Figure 7B).

3.6 Molecular dynamics simulations

The MD simulation can predict the thermodynamic stability
that investigates the authenticity of the post-molecular docking
study. In our study, we used MD simulations with an orientation
time of 150 ns to analyze the trajectories of the top four compounds,
with a native inhibitor (vandetanib) as the control compound and
one control structure (apo) to determine the actual motion of atoms
and macromolecules. Analysis of the trajectory and pose in this MD
simulation was performed using several different metrics, including
RMSD of protein and ligand, root mean square fluctuations (RMSF),
radius of gyration (rGyr), SASA, molecular surface area (MolSA),
polar surface area (PSA), hydrogen bond analysis, ligand torsions,
protein–ligand contact, and ligand–protein contact.

FIGURE 3
Docking validation of vandetanib with phosphorylated RET tyrosine kinase (PDB: 2IVU). (A) Native complex form of the crystal structure of
phosphorylated RET tyrosine kinase bound to vandetanib. (B) Redocking position of vandetanib with phosphorylated RET tyrosine kinase, demonstrating
the docking process. (C) Superimposition of the crystal structure and the dockedmodel, showing the root mean square deviation (RMSD) to illustrate the
accuracy of the docking process. (D) Active site pocket and surface view highlighting vandetanib in the active pocket before docking (red) and after
docking (green). This panel demonstrates the changes in vandetanib’s position and conformation within the binding site after the docking procedure.
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3.6.1 RMSD analysis of proteins
The RMSD analysis was conducted to assess the equilibrium

state of the MD simulation. RMSD calculates the average shift in
atoms between frames, indicating structural changes in the
protein–ligand complex over time (Opo et al., 2021). In this
study, the average RMSD variation for the protein–ligand
complexes remained within an acceptable range of 1–3 �A (Alam
et al., 2021). Deviations beyond this range suggest substantial
conformational shifts in the protein structure, indicating whether
the chosen ligand–protein complexes are appropriately compared
with the apo protein control. To evaluate the structural consistency
of the selected complexes (CID 95842900, CID 137030374, CID
124958150, and CID 110126793), RMSD values were compared with
both the apo-form and the control–drug complex (vandetanib) over
a 150 ns simulation period, as shown in Table 1 and Figure 8, and
Supplementary Figure S3. These complexes exhibited average
RMSD values of 2.352 Å, 2.442 Å, 2.301 Å, and 2.217 Å,

respectively, compared to the apo structure, and 2.303 Å and
2.49 Å, respectively, compared to the control compound.
Notably, all selected compound complexes showed lower
fluctuations than the control complexes and overlapped with the
apo protein.

The compound CID 95842900 displayed a maximum RMSD of
2.949 Å and a minimum RMSD of 1.155 Å, as shown in Figure 8.
Similarly, the CID 137030374 complex exhibited a maximumRMSD of
3.101 Å and a minimum RMSD of 1.047 Å. The CID
124958150 complex exhibited a maximum RMSD of 2.874 Å and a
minimum RMSD of 1.044 Å, while Figure 8 depicts the CID
110126793 complex with corresponding maximum and minimum
RMSD values of 3.279 Å and 1.051 Å. Compared to the apo
structure, the highest and lowest RMSD values were 3.005 Å and
1.241 Å, respectively (Table 1). When compared to the control ligand
vandetanib, the highest and lowest RMSD values were 3.253 Å and
1.216 Å, respectively, as shown in Figure 8. All complexes exhibited

FIGURE 4
Molecular docking interactions between the pRET tyrosine kinase and the four selected compounds, presented in both 3D and 2D formats. (A–D)
Interactions of CID 95842900, CID 137030374, CID 124958150, and CID 110126793, respectively.

FIGURE 5
Residual interactions and proximity analysis of the selected four compounds. (A). Various types and numbers of residual interactions observed
between the four selected compounds and vandetanib, the control compound. Each bar indicates the count of specific interaction types and shows how
the selected compounds differ in their binding characteristics compared to vandetanib. (B). The residues unique to proteins and the selected four
compounds are presented alongside the types of contacts established. The closeness of these compounds to proteins identifies the specific
residues involved in their interactions.

Frontiers in Chemistry frontiersin.org08

Talukder et al. 10.3389/fchem.2024.1407331

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1407331


significant similarities between their maximum and minimum RMSD
values, comparable to the vandetanib structure, indicating less deviation
from the control ligand. Furthermore, the selected complexes
demonstrated stability after 30 ns of simulation, with deviations
similar to the apo structure, while the control complexes exhibited
larger deviations until the 90 ns timeframe.

3.6.2 Ligand fit protein RMSD
Ligand fit protein Cα RMSD of 150 ns simulation was analyzed

to indicate the ligand being stable when bound to the protein
binding site. The four selected complexes (CID 95842900, CID
137030374, CID 124958150, and CID 110126793) and the
control compound complex (vandetanib) (black) had calculated
average values of 2.390 Å, 4.524 Å, 2.966 Å, 1.073 Å, and
1.410 Å, respectively, as illustrated in Table 1 and Figure 9, and
Supplementary Figure S4. From this evaluation, CID
137030374 shows significant diffusion from the control drug
complexes, CID 95842900 and CID 110126793 exhibit less
deviation, and CID 124958150 overlaps with the control drug
complexes from the start to the end of the 150 ns simulation.

3.6.3 RMSF analysis
The RMSF allows us to determine macromolecule

heterogeneity and steady state and provides insight into the
local conformational changes in amino acid residues
(Bharadwaj et al., 2021). Figure 10 shows that the largest
changes happened in the residual positions of LEU712,
GLU734, LEU746, GLU762, SER795, SER819, GLU901, and
GLN910. All of the compounds’ amino acid residues showed
the least amount of change compared to the apo protein, except
LEU712 from the vandetanib (control), which showed the biggest
change of 8.446 Å. All of the other compounds showed the least
amount of change. The average fluctuation was 1.056 Å, 1.158 Å,
1.009 Å, 0.998 Å, 1.008 Å, and 1.002 Å for CID 95842900, CID
137030374, CID 124958150, and CID 110126793, compared with
the control compound, vandetanib (native drugs), respectively, as
shown in Table 1 and Supplementary Figure S5. When compared
with apo and control compounds, the average fluctuation of the
selected complexes was the least, indicating that the protein
complex was the most flexible without altering its
macromolecular structure.

FIGURE 6
Scatter plots depicting the relationship between Δ G Bind (binding energy) and various binding energies for selected four compounds. Each panel
corresponds to a specific type of binding energy and shows its correlation with ΔG Bind for the chosen compounds, which are distinguished by different
colors. The black line in each panel represents the linear regression fit for the data points. Plot (A): ΔGBind vs. ΔGBind Coulomb. Plot (B): ΔGBind vs. ΔG
Bind Covalent. Plot (C): ΔGBind vs. ΔGBind H-bond. Plot (D): ΔGBind vs. ΔGbind Lipo. Plot (E): ΔGBind vs. ΔGBind Packing. Plot (F): ΔGBind vs. Δ
G Bind Solv GB. Panel (G): Δ G Bind vs. Δ G Bind vdW. This visualization aids in understanding the relationship between Δ G Bind and various binding
energies for the compounds under study.
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FIGURE 7
Overview of pharmacokinetic properties for selected compounds. Herein, (A) provides a comprehensive assessment of various pharmacokinetic
properties of the four selected compounds. It covers a wide range of parameters including physicochemical properties, lipophilicity, water solubility,
pharmacokinetics, drug-likeness, medicinal chemistry and blood-brain barrier (BBB) permeability. Where, (B) represents the parameters such as,
hepatotoxicity, carcinogenicity, immunogenicity, mutagenicity, and cytotoxicity.
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3.6.4 Radius of gyration analysis
The rGyr is the square of the radial distance between the center

of mass of the targeted protein–ligand complexes, and it is used to
quantify the stiffness and mobility of a protein at its terminal (Molla
et al., 2023). It is the usual shift in protein–ligand compactness due
to macromolecule structural activity. Therefore, in this 150 ns
simulation, rGyr is explored for CID 95842900 (red), CID
137030374 (orange), CID 124958150 (gray), and CID 110126793
(yellow), compared with control structures of the vandetanib
(control) (green), as presented in Table 1, and Supplementary
Figure S6 shows the average rGyr values of 3.694 Å, 4.015 Å,
3.566 Å, 3.940 Å, and 5.952 Å, respectively. The rGyr outcome
shows that all the selected complexes exhibit a lower radial distance
than control drugs. In Supplementary Figure S6A, the rigidity
measurements of CID 95842900 (red) and CID 110126793
(yellow) are approximately less than 1 Å, where CID 137030374

(orange) shows a large peak for 5 ns time after 100 ns simulation and
CID 110126793 (yellow) measured a smaller peak at 80–85 ns.
Except for this time mentioned, all the complexes indicate that the
receptor’s active site does not undergo any significant
conformational changes after binding with the ligands.

3.6.5 Surface area analysis
The measurement of the surface area is essential in

comprehending the dynamic nature of ligand–protein binding. It
additionally provides information regarding the optimization of a
site, the identification of the binding site, and the accessibility of
ligands in macromolecular environments (Imon et al., 2023). In this
study, SASA, MolSA, and PSA of the surface area were carried out
over the course of a 150 ns simulation of proteins in complex with
the four lead compounds, namely, CID 95842900 (red), CID
137030374 (orange), CID 124958150 (gray), and CID 110126793

TABLE 1 Four lead compounds, along with the control drug (vandetanib), generated different parameters including the highest, lowest, and average values
from the 150 ns molecular dynamics simulation.

Parameter Value Apo CID
95842900

CID
137030374

CID
124958150

CID
110126793

Vandetanib

Protein Cα RMSD H. RMSD (�A) 3.27 2.949 3.101 2.874 3.005 3.253

L. RMSD (�A) 1.24 1.15 1.04 1.04 1.05 1.21

A. RMSD (�A) 2.3 2.35 2.44 2.3 2.21 2.49

Ligand Cα RMSD H. RMSD (�A) N/A 4.443 7.484 9.744 2.101 2.35

L. RMSD (�A) N/A 0.543 1.032 0.426 0.485 0.581

A. RMSD (�A) N/A 2.39 4.52 2.96 1.07 1.41

Protein Cα RMSF H. RMSD (�A) 11.9 6.377 7.043 9.35 8.083 8.743

L. RMSD (�A) 0.38 0.41 0.423 0.369 0.353 0.379

A. RMSD (�A) 1.08 1.05 1.15 1 0.99 1.02

Radius of gyration H. RMSD (�A) N/A 3.951 4.499 3.786 4.22 6.125

L. RMSD (�A) N/A 3.497 3.374 3.018 3.617 5.712

A. RMSD (�A) N/A 3.69 4.01 3.56 3.94 5.95

Solvent-accessible surface
area

H.
RMSD (�A2)

N/A 182.57 238.636 314.04 117.456 232.198

L. RMSD (�A2) N/A 77.59 55.327 55.942 44.368 117.691

A.
RMSD (�A2)

N/A 141.85 132.65 143.33 73.1 181

Molecular surface area H.
RMSD (�A2)

N/A 296.937 293.454 297.316 315.317 410.737

L. RMSD (�A2) N/A 280.284 271.442 263.236 295.858 393.956

A.
RMSD (�A2)

N/A 291.1 285.56 289.7 308.88 405.13

Polar surface area H.
RMSD (�A2)

N/A 173.101 116.514 74.952 151.03 151.04

L. RMSD (�A2) N/A 143.236 81.359 55.799 124.92 124.93

A.
RMSD (�A2)

N/A 162.89 102.72 65.65 136.71 136.72

H, highest; L, lowest; A, average.
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(yellow). These were compared with the control ligand vandetanib
(green), and the results were calculated and are presented in Table 1
and Supplementary Figure S6. Supplementary Figure S6B shows that
the minimal and maximal SASA values were calculated as (77.59-
182.57) Å2 for CID 95842900, (55.327-238.636) Å2 for CID
137030374, (55.942-314.04) Å2 for CID 124958150 (gray), and
(44.368-117.456) Å2 for CID 110126793, and in comparison, the
control drug complex vandetanib exhibited SASA values of
(117.691-232.198) Å2, indicating that the amino acids of the
targeted protein have lower exposure from the active site when
complexed with the lead compounds (Table 1). Supplementary
Figure S6C shows that the average MolSA values of the lead
compounds are 291.106 Å2, 285.565 Å2, 289.704 Å2, and 308.889
Å2, respectively, while the control drug has 405.139 Å2. The four lead
compounds exhibit a lower molecular surface area than control
drugs, indicating that the protein–ligand complexes facilitate an in-
depth understanding of their flexible and adaptable nature over the
150 ns simulation time. Finally, in Supplementary Figure S6D, the
PSA analysis showed the average values of 162.899 Å2, 102.721 Å2,

65.65 Å2, 136.713 Å2, and 48.974 Å2 for CID 95842900 (red), CID
137030374 (orange), CID 124958150 (gray), CID 110126793
(yellow), and control ligand vandetanib, respectively (Table 1).
The control drug has lower PSA values, whereas the PSA values
of lead compounds are also within an acceptable range, except for
CID 95842900, which has a larger polar surface area than other
compounds. The PSA analysis of the protein–ligand complexes
confirmed the stability of these complexes, suggesting strong
binding between the protein and the drug molecules.

3.6.6 Hydrogen bond analysis
Hydrogen bonds can help characterize a drug-binding site that

plays an acute role in drug and desired protein interaction and
influences drug specificity, metabolism, and adsorption (Bharadwaj
et al., 2021; Opo et al., 2021). Therefore, the number of hydrogen
bonds of the selected four complexes, namely, CID 95842900, CID
137030374, CID 124958150, and CID 110126793, compared with
the control ligand vandetanib, was computed for systems by
considering conformations every 150 ps, as signified in Figure 11.

FIGURE 8
Graphs representing the MD simulation for the selected protein–ligand complexes, focusing on protein Cα RMSD over a 150 ns simulation period.
The compounds CID 95842900, CID 137030374, CID 124958150, and CID 110126793 are depicted in blue, yellow, green, and orange, respectively, in
comparison to the control compound vandetanib (black).
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From the beginning of the 150 ns simulation to the end, the number
of hydrogen bonds formed was calculated. Multiple hydrogen
bonds, from approximately 230 to 290, formed in each molecule
simultaneously. As a result, the ligand–receptor interaction will be
considerably strengthened and stabilized by the presence of all
the molecules.

3.6.7 Protein–ligand contact analysis
Using the simulation interaction diagram (SID), we have

analyzed the intramolecular interactions between the target
protein complex and the selected small biological molecules (CID
95842900, CID 137030374, CID 124958150, and CID 110126793)
and the control drug (vandetanib) over the course of the 150-ns MD
simulation represented in Figure 12. Many diverse binding
interactions are engaged when a protein complex interacts with
its ligand. Six different amino acids, LEU730, VAL738, ALA756,
TYR806, ALA807, and SER811, have been identified as participating
in shared binding interactions between the control and four selected
molecules in the protein–ligand contacts. LYS728, LYS808, and
TYR809 positions were common in the three ligand and control
drugs except for CID 110126793. A stable interaction between the

drug and its target protein requires the use of a binding site that is
highly conserved. Identical residues were discovered to participate in
many binding interactions across all complexes, with high
interaction fraction values at common binding locations
indicating the presence of hydrogen bonds and other types of
bonding. The ligand–protein interaction analysis determined how
the ligand atoms strongly bind with protein residues. For all selected
ligands and the control drug, the common binding residue was
ALA807, indicating that this binding stabilizes throughout the entire
150 ns simulation.

4 Discussion

The prevalence of cancer has increased over the past generation,
making it the leading cause of death around the world (Thun et al.,
2010). Therefore, malignant growth poses a significant threat to
human health (Huang et al., 2021). Oncogenesis is frequently
associated with the activation of RET, which plays an important
role in regulating various oncogenic signaling pathways. The RET
gene encodes a protein that is essential for the normal functioning of

FIGURE 9
RMSD values extracted for protein–ligand complex alpha carbon (Cα) atoms of the selected four compounds (ligands) during a 150 ns simulation
period. The compounds CID 95842900, CID 137030374, CID 124958150, and CID 110126793 are represented in blue, yellow, green, and orange,
respectively, while the control compound vandetanib is depicted in black for comparison.
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FIGURE 10
RMSF values of pRET tyrosine kinase were reclaimed from protein Cα atoms of the protein–ligand docked complexes. The compounds CID
95842900, CID 137030374, CID 124958150, and CID 110126793 are represented in blue, yellow, green, and orange, respectively, while the control
compound vandetanib is depicted in black for comparison.

FIGURE 11
Number of hydrogen bonds formed of the selected four compounds in a complex with the desired pRET tyrosine kinase and control drug complex
during the 150 ns molecular dynamics simulation. The last plot represent the combined hydrogen bond number of selected four compounds CID
95842900, CID 137030374, CID 124958150, CID 110126793, and control compounds of vandetanib, respectively.
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cells. However, mutations or fusions in RET can result in abnormal
proteins, which can fuel uncontrolled cell growth, prevent
programmed cell death, and stimulate the growth of new blood
vessels feeding the tumor. These alterations contribute to the
progression of diverse cancers where RET function is disrupted.
In this study, we aim to develop a potential drug candidate from the

Asinex ZINC database targeting pRET tyrosine kinase. To explore
novel lead compounds, we use high-throughput virtual screening,
molecular docking, post-docking MM-GBSA, ADME/T, and MD
simulation procedures. HTVS is a method to screen a large number
of compounds that are difficult to screen experimentally (Tripathi
and Bandyopadhyay, 2022). HTVS revealed 98,189 compounds

FIGURE 12
During the 150 ns MD simulation, the various forms of bonding that took place along the protein–ligand interface are illustrated. The four selected
compounds (A) CID 95842900, (B) CID 124958150, (C) CID 137030374, (D) CID 110126793, and control compounds (E) vandetanib are presented.
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based on Lipinski filtration and reactive group filtration. Lipinski
filtration identifies drug-like compounds, while reactive group
filtration focuses on molecules that are particularly reactive or
prone to forming bonds with other molecules (Bruns and
Watson, 2012). Molecular docking is a key technique that
assesses binding affinity and intermolecular interactions at the
atomic level between a target protein and bioactive compounds
(Daoui et al., 2022). Through this study, we screened 10 biologically
active compounds that have promising negative binding energy,
indicating a significant interaction with the targeted protein. Among
these 10 compounds, four showed an upper binding affinity
compared to vandetanib (a native inhibitor) and shared multiple
common interactive amino acid residues, confirming possible
binding in the active site of the protein, as presented in
Supplementary Table S1. The redocking/docking validation
protocols accessing the accuracy of molecular docking methods
predict the binding pose for new small molecules in the drug
discovery process (Parate et al., 2022a). We performed docking
validation techniques that provided an acceptable range of RMSD
(0.220 �A) and ensured that the hits bind to the protein active site.
The MM-GBSA method is employed to compute the binding free
energy between a protein and a ligand. In the MM-GBSA study, the
lowest ΔG Bind score (the most negative score) represents the best
ΔG Bind score (Zhang et al., 2017). In the MM-GBSA analysis, four
compounds were found to have higher net negative binding free
energy values than the control (−13.537833144 kcal/mol). As MM-
GBSA analysis validated the docking score, the obtained outcome
suggests that the selected four compounds remain stable in
protein–ligand complexes. As a result of the ADME/T analysis,
we determined that all four ligands have promising pharmacokinetic
properties with no toxicity profile, which suggests the potentiality of
being a lead compound (Chtita et al., 2022).

Molecular dynamics simulations are used to determine the
stability of a protein when it is complexed with its ligand.
Furthermore, it has the ability to determine the stability and
rigidity of proteins and their ligands in a specific artificial human
body-like environment (Pavan et al., 2022). The MD simulations
conducted in this study provided valuable insights into the
conformational stability and dynamics of the protein–ligand
complexes over a 150 ns timescale. Based on MD simulations,
RMSD values are used to calculate the stability of the
protein–ligand complex (Coutsias et al., 2004). Cα atoms are
crucial parameters of MD simulations. Using this parameter, we
can calculate the deviation of the backbone of a single frame in a
dynamic environment (Stark et al., 2003). The RMSD analysis
confirms the stability of the selected four compounds in an
artificial human environment. RMSF is a useful tool for
evaluating structural movement and flexibility. Studying
protein–ligand interactions relies heavily on monitoring the
behavior of several key residues in the active pocket, which
contributes to an understanding of the binding site (Li et al.,
2020). As each amino acid in a protein is simulated, its RMSF
value is used to identify its mobility and flexibility (Benson and
Daggett, 2008). RMSF with a higher value indicates a more
flexible residue, whereas RMSF with a lower value indicates a
more stable system (Sadr et al., 2021). In this study, the selected
four compounds showed a promising RMSF value that indicates
firm attachment to the target protein binding pocket. A lower

rGyr value indicates higher compactness, while a larger rGyr
value signifies the dissociation of the compounds from the
protein. The selected four compounds showed lower rGyr
values than the control (vandetanib), thus denoting higher
compactness (Supplementary Figure S6). A larger SASA value
suggests a less stable structure, whereas a lower value indicates a
tightly contracted complex of water molecules and amino acid
residues (Ahammad et al., 2021). Higher stability was found for
the selected four compounds (Supplementary Figure S6). Both
MolSA and PSA are other two crucial parameters for the drug
discovery process: MolSA quantifies the surface area of a
molecule, and PSA indicates the surface area occupied by
polar groups in protein–ligand complexes. Lower MolSA and
PSA values denote high structural stability. In this study, the
selected four compounds showed lower MolSA values than
controls, and three compounds showed lower PSA values than
controls except for CID 95842900, indicating higher structural
stability (Supplementary Figure S6). Protein–ligand contact
analysis in MD simulation identifies the protein residues that
are commonly implicated in the dynamic motions of
protein–ligand complexes. It also quantifies the strength of the
interactions between the protein and ligands based on the specific
amino acids involved (Pokhrel et al., 2021). In our study, multiple
common interacting residues were found in hits and control
ligands, indicating that the selected compounds bind to the
protein’s active site. Simulation snapshots in 3D and 2D
structures (0 ns and after 150 ns) (Supplementary Figures S7,
S8), ligand torsions, and ligand–protein contact (Supplementary
Figure S9) also demonstrate that the selected four biological
compounds have strong binding capabilities in the protein
active cavities. However, computational approaches can only
predict the efficiency of drug candidates in an artificial
environment. Varying outcomes were corroborated by
evaluating four compounds according to distinct dimensions.
So, further model organism trials are required to establish our
study. This study can motivate researchers to conduct further wet
lab experiments for cancer research.

5 Conclusion

Signaling pathways involving pRET tyrosine kinase regulate
cell growth, proliferation, survival, differentiation, and hunger,
which are responsible for several types of cancers. Drugs
targeting pRET may reduce cancer progression by inactivating
tumor metastasis and eliminating cancer stem cells by affecting
their activity. The screening of compounds that can ameliorate
cancer development is the primary focus of this research.
Consequently, the study aims to identify potential lead
compounds that impede the protein’s activity, thereby
hindering the development of cancer. In this study, high-
throughput virtual screening, molecular docking, ADME/T,
MM-GBSA, and MD simulations revealed four compounds
(CID 95842900, CID 124958150, CID 137030374, and CID
110126793) that can inhibit the activity of pRET tyrosine
kinase, leading to a potential anticancer drug. Nevertheless, in
vivo and in vitro studies are required to confirm the compounds’
activity against cancer.
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