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The exploration of non-cancer medications with potential anti-cancer activity
offers a promising avenue for drug repurposing, accelerating the development of
new oncological therapies. This study employs Quantitative Structure-Property
Relationship (QSPR) modeling to identify and predict the anti-cancer efficacy of
various non-cancer drugs, utilizing topological indices as key descriptors.
Topological indices, which capture the molecular structure’s geometric and
topological characteristics, provide critical insights into the pharmacological
interactions relevant to anti-cancer activity. By analyzing a comprehensive
dataset of non-cancer medications, this research establishes robust QSPR
models that correlate topological indices with anti-cancer activity. The models
demonstrate significant predictive power, highlighting several non-cancer drugs
with potential anti-cancer properties. Further, we will use linear, quadratic and
logarithmic regression to understand the structures of anti-cancer drugs and
strengthen our ability to manipulate the molecular structures. The findings
underscore the utility of topological indices in drug repurposing strategies and
pave the way for further experimental validation and clinical trials. This integrative
approach enhances our understanding of drug action mechanisms and offers a
cost-effective strategy for expanding the repertoire of anti-cancer agents.
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1 Introduction

Cancer is a disease characterized by the uncontrolled growth and spread of certain body
cells to other regions. It can originate in nearly any part of the human body, which consists
of trillions of cells. Under normal circumstances, human cells grow and divide through cell
division to create new cells as needed. When cells become old or damaged, they die and are
replaced by new cells (Trichopoulos et al., 1996). Several symptoms and indications of this
disease include weight loss, lumps, irregular bleeding, and prolonged coughing. Chewing
tobacco, obesity, poor food, laziness, and increased alcohol consumption (Cleeland, 2000)
are the main causes of this cancerous illness. To know more about this disease explore
(Bailar and Gornik, 1997).
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The rapid advancement of cancer research continually emphasizes the urgent need for new and effective oncological therapies.
Traditional drug development processes are often time-consuming and expensive, prompting the scientific community to explore
alternative strategies, such as drug repurposing. Drug repurposing involves identifying new therapeutic uses for existing medications,
offering a cost-effective and expedited pathway to discovering anti-cancer agents (Figuerola and Avila, 2019; Gao et al., 2016; Kumar
et al., 2015). This approach leverages the established safety profiles and pharmacokinetic properties of non-cancer drugs, significantly
reducing the time and resources required for drug development.

FIGURE 1
3D Structures (A–O) of Anti-cancer drugs.
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In this context, Quantitative Structure-Property Relationship (QSPR) modeling emerges as a powerful tool. QSPR models utilize
mathematical relationships to correlate chemical structure with biological activity, aiding in the prediction of a compound’s
therapeutic potential. Specifically, topological indices, which are numerical representations capturing the geometric and topological
characteristics of molecular structures, play a crucial role in these models. Topological indices have five main types: matching,
mixed, eigenvalue, degree, and distance (Shanmukha et al., 2020). Degree-based topological indices on anti-cancer drugs are
presented in this paper. Topological indices provide valuable insights into the molecular features that influence drug activity,
making them indispensable in the identification of potential anti-cancer properties of non-cancer medications. For more details of
QSPR analysis, see (Ren, 1999; Havare, 2021; Zhong et al., 2021; Adnan et al., 2022; Arockiaraj et al., 2023a; Arockiaraj et al., 2023b;
Arockiaraj et al., 2023c; Zaman et al., 2023).

In topological analysis, stereochemistry refers to the study of the spatial arrangements of atoms within a molecule without
considering their specific three dimensional orientation. Topological analysis techniques allow chemists to understand the
connectivity of atoms and the overall shape of molecules which is crucial for predicting their chemical behavior and reactivity.
Topological analysis focuses on understanding how atoms are connected within a molecule. Different types of bonds
(single, double and triple) and their connectivity provide information about the stereochemistry of the molecules. For
example, the presence of double bonds can lead to geometric isomerism, where the spatial arrangement of substituents
around the double bond affects the molecule’s properties. By analyzing the connectivity of atom and their realative
positions, topological analysis can distinguish between different stereoisomeric forms of a molecule. Overall, topological
analysis provides valuable insight into the stereochemistry of molecules by focusing on their connectivity, symmetric, and
spatial arrangement. By considering these factors, chmeists can predict the behavior of molecules in various chemical reactions
and design new compounds with desired properties. Thus, Figure 1 plays a pivotal role in elucidating the stereochemical aspects of
the molecules under consideration.

This study focuses on the application of QSPR modeling, with an emphasis on topological indices, to predict and identify non-
cancer drugs that may exhibit anti-cancer activity. By analyzing a comprehensive dataset of non-cancer medications, we aim to
establish robust QSPR models that accurately correlate topological indices with anti-cancer efficacy. The predictive power of these
models is expected to highlight several non-cancer drugs as promising candidates for further experimental validation and clinical
trials. Some of the common anti-cancer drugs approved by the Food and Drug Administration (FDA) and their molecular targets
are shown in Table 1. Explore (Gupta et al., 2013; D Amato et al., 1994; Gasic et al., 1972; Michaelis et al., 2007; Jendrossek, 2013;
Jiang et al., 2018; Wang et al., 2010; Zekri et al., 2014; Rezaei et al., 2023) to learn about these anti-cancer drugs. Drugs were selected
based on a meticulous assessment encompassing structural characteristics, predicted anti-cancer activity, and suitability for
repurposing. Leveraging topological indices and quantitative structure-property relationship (QSPR) modeling, we prioritized
molecules with favorable molecular connectivity patterns indicative of potential anti-cancer properties. Each selected drug
underwent scrutiny for safety profiles, availability, known mechanisms of action, and previous clinical data, ensuring a
comprehensive approach towards identifying promising candidates for repurposing. This methodical selection process aimed

TABLE 1 Non-cancer drugs and their mechanism of action for non-cancer and cancer activities.

Drug Original indication New anti-cancer indication

Thalidomide Antiemetic during gestation Multiple myeloma

Aspirin Analgesic, antipyretic Colorectal cancer

Valproic Acid Antiepileptic Leukemia, solid tumors

Celecoxib Osteoarthritis, rheumatoid arthritis Colorectal cancer, lung cancer

Leflunomide Rheumatoid arthritis Prostate cancer

Wortmannin Antifungal Leukemia

Zoledronic Acid Anti-resorption of bone Muliple myeloma, prostate cancer

Minocycline Acne Ovarian cancer, glioma

Metformin Diabetes mellitus Breast, Prostate, colorectal

Thiocolchicoside Muscle relaxant Leukemia, muliple myeloma

Noscapine Antitussive, antimalarial Mupltiple cancer types

Nitroxoline Antibiotic Bladder, breast cancer

Methotrexate Acute leukemia Osteosarcoma, breast cancer

Vesnarinone Cardioprotective Oral cancer, lymphoma

Simvastatin Hyperlipidemia Pituitary neuroendocrine tumors
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to maximize the likelihood of uncovering non-cancer medications with significant potential for anti-cancer therapeutic applications
(Singhal et al., 2022). The implications of this research are significant. Not only does it enhance our understanding of the molecular
mechanisms underlying drug action, but it also paves the way for more efficient and cost-effective drug discovery processes. By
integrating computational modeling with drug repurposing strategies, this study contributes to expanding the repertoire of
available anti-cancer agents, ultimately improving therapeutic outcomes for cancer patients.

Consider G (V,E) a molecular graph with vertex and edge sets denoted by V and E, respectively. The number of vertices adjacent to a
vertex is known as the degree of a vertex which is denoted as deg(v), while d (u,v) is the shortest distance between two vertices. In this work,
we will use following topological indices.

1.1 Difference between ABC and R index ABC-R(G)

In present times, there is a growing interest in studying the correlation or comparison between topological indices, see (Das et al., 2016).
Recently, Ali and Du (Ali and Du, 2017) explored extremal binary and chemical trees, specifically focusing on the difference between ABC
and R indices. The ABC-R index provides additional information about the molecular structure beyond just the topological complexity
measured by the ABC index alone. It accounts for the size of the molecule and provides insights into its topological properties relative to its
size. The ABC-R index is defined as

ABC − R( ) G( ) � ∑
s,t∈E G( )

���������
ds + dt − 2

√ − 1����
dsdt

√ .

1.2 Geometric arithmetic index GA(G)

Another recently conceived vertex-degree-based topological index utilizes the difference between the geometric and arithmetic means
and is defined as

GA G( ) � ∑
s,t∈E G( )

2
����
dsdt

√
ds + dt

.

Where, of course
����
dsdt

√
and 1

2 (ds + dt) are the geometric and arithmetic means, respectively, of the degrees of the end-vertices of an
edge.The “geometric-arithmetic index,” devised by Vuki�cevi�c and Furtula (Vukicevic and Furtula, 2009), has garnered attention not
just for its mathematical investigation but also for its practical applications in chemistry. Particularly noteworthy to chemists are its
applications in analyzing acyclic, unicyclic, and bicyclic molecular graphs (Du et al., 2011), as well as in studying benzenoid
hydrocarbons and phenylenes.

1.3 Multiplicative first exponential Zagreb index Π1(G)

The multiplicative first exponential Zagreb index (Akgunes and Aydin, 2021) is a molecular descriptor in chemical graph theory.
This index provides valuable structural information about the molecular graph, with a focus on the significance of highly connected
vertices. This index is used in quantitative structure-property relationship (QSPR) studies to predict various chemical and physical
properties of molecules. These properties may include boiling points, solubility, stability, and other characteristics relevant in
chemistry and pharmacology.

EΠ1 G( ) � ∏
t∈V G( )

ed
2
t .

1.4 Multiplicative second exponential Zagreb index Π2(G)

The multiplicative second exponential Zagreb index (Akgunes and Aydin, 2021) provides valuable structural information about
the molecular graph, focusing on the significance of pairs of highly connected vertices. It is used to predict various chemical and
physical properties of molecules, particularly emphasizing the role of vertex degrees and their pairwise interactions in determining
molecular behavior.

EΠ2 G( ) � ∏
t∈V G( )

edsdt .
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1.5 Multiplicative geometric arithmetic index GAΠ(G)

Multiplicative GA index (Kulli, 2016) is a molecular descriptor that is calculated by takin the product of edge multiplicities and the
geometric mean of vertex degrees in a molecular graph. This index provides information about the atom-bond connectivity in the
molecular graph, considering both the geometric and arithmetic means of the degrees of the connected vertices.

GAΠ G( ) � ∏
s,t∈E G( )

2
����
dsdt

√
ds + dt

.

1.6 Symmetric division degree index SDD(G)

Several years ago, D. Vuki�cevi�c and Ga�sperov (Vukičević and Gašperov, 2010) considered a novel category of molecular descriptors
comprising one hundred and forty-eight descriptors known as “discrete Adriatic indices.” These were proposed to enhance various QSPR/
QSAR (quantitative structure-property/activity relationship) studies. However, their findings indicated that only a select few descriptors from
this class proved to be beneficial. One such valuable descriptor is the symmetric division deg (SDD) index. It measures the degree of symmetry
in a graph. It’s calculated as the sum of the squares of the degrees of adjacent vertices, divided by the product of their degrees, summed over all
edges in the graph.

SDD G( ) � ∑
s,t∈E G( )

d2
s + d2

t

dsdt
.

2 Methodology

The methodology for this study involves a systematic approach to identify and predict the anti-cancer potential of non-cancer
medications using Quantitative Structure-Property Relationship (QSPR) modeling with topological indices. The process begins with data
collection, where a comprehensive dataset of non-cancer medications is compiled from publicly available databases such as PubChem and
ChemSpider. This dataset includes detailed molecular structures and known pharmacological properties of each drug. Next, molecular
descriptor calculation is performed, where various topological indices are calculated for each drug in the dataset. These indices include the
symmetric division degree index, geometric arithmetic index, multiplicative first exponential Zagreb index, difference between ABC and R
index, multiplicative second exponential Zagreb index, and multiplicative geometric arithmetic index.

In the model construction phase, multiple QSPR models are developed using linear, quadratic, and logarithmic regression algorithms
with the aid of SPSS software. Each type of regression model is built to explore different potential relationships between the topological

FIGURE 2
Graphical abstract.
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indices and anti-cancer activity. Linear regression models assume a direct proportional relationship, quadratic regression models consider a
parabolic relationship, and logarithmic regression models account for situations where the change in anti-cancer activity diminishes as the
value of the topological indices increases. These models are trained on the selected topological indices and known anti-cancer activity data.

Finally, data analysis and interpretation are performed. The experimental data are analyzed using statistical methods to compare the
predicted and observed anti-cancer activities. Correlation coefficients and significance tests are used to assess the accuracy and reliability
of the QSPR models. Based on the experimental validation results, the QSPR models are refined and retrained to improve their
predictive power and reliability. By following this structured methodology, the study aims to establish a reliable framework for
repurposing non-cancer medications as potential anti-cancer agents, leveraging the power of QSPR modeling and topological indices.
Figure 2 shows the basic flowchart of this work.

FIGURE 3
2D structures (A–O) of anti-cancer drugs.
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3 Analyzing molecular structures and computing topological indices for various
anti-cancer medications

Topological indices are used to analyze the different structures. In this article, six TIs are used to describe the structures of fifteen
anti-cancer drugs. The structures of these drugs are shown in Figure 3. The six physio-chemical properties are obtained from

TABLE 2 The physio-chemical properties of non-cancer medication to be used in the treatment of cancer.

Structures MP BP WS D VP MW

Units °C °C mg/mL g/cm3 mmHg g/mol

Thalidomide 270 509.7 0.012 1.6 1.3 258.3

Aspirin 136 140 3 1.40 0.7 180.16

Valproic Acid 120 222 1.3 0.9 0.9 144.21

Celecoxib 158 529 3.3 1.43 1.4 381.372

Leflunomide 165 289.3 21 1.392 0.6 270.207

Wortmannin 237.52 615.6 0.121 1.4 1.8 428.43

Zoledronic Acid 193 764 2 2.13 2.7 272.09

Minocycline 213 803.3 50 1.6 0.3 457.28

Metformin 223 224.1 300 1.3 1.3 129.16

Thiocolchicoside 190 929.6 10 1.2222 0.3 563.618

Noscapine 174 565.3 0.181 1.395 1.5 413.42

Nitroxoline 180 385.64 2.73 1.3907 1.0 190.16

Methotrexate 212 823 2600 1.5 0.0000 454.4

Vesnarinone 238.1 678.3 0.0968 1.2 2.1 395.5

Simvastatin 135 564.9 0.0013 1.1 3.5 418.56

TABLE 3 The values of topological indices of molecular structures of non-cancer medication to be used in the treatment of cancer.

Structures ABC-R GA EΠ1 EΠ2 GAΠ SDD

Thalidomide 5.9115 2.3429 1467 1430 570.213 48.3333

Aspirin 3.44 12.3833 1420 4.607 81.4590 32

Valproic Acid 1.8235 5.2314 3.1856 8.659 × 1016 0.8000 22

Celecoxib 9.2836 26.4031 4.6754 × 1064 1.2384 × 1072 1160.9528 73

Leflunomide 5.8192 18.9602 2.2353 × 1037 4.3750 × 1048 257.9914 50.8333

Wortmannin 10.3553 33.5562 8.1318 × 1079 8.4682 × 10102 6449.763 84.3333

Zoledronic Acid 5.1584 13.4822 3.0251 × 1036 3.6379 × 1042 77.5959 48.75

Minocycline 11.6827 35.653 3.9452 × 1088 1.6575 × 10114 8774.3495 99.75

Metformin 2.1268 7.2897 4.3112 × 1015 4.3112 × 1015 8.4853 23

Thiocolchicoside 11.2285 40.6037 2.9152 × 1089 3.7465 × 10108 8294.384 97

Noscapine 9.2942 33.1743 2.7279 × 1076 4.7445 × 1094 1934.7865 70.75

Nitroxiline 4.0746 14.5173 1.8587 × 1031 8.2230 × 1036 162.9196 34.6667

Methotrexate 9.7877 33.5645 9.1511 × 1072 6.5892 × 1083 2443.7562 83.6667

Vesnarinone 8.5599 31.254 7.6094 × 1066 2.9915 × 1079 1440.049 70.6667

Simvastatin 9.6039 31.2514 1.2385 × 1072 9.7793 × 1085 1146.6172 83.4167
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ChemSpider which are given in Table 2 and the value of each topological index corresponding to each structure is computed with the
help of their formulas, as shown in Table 3.

The main purpose of this section is to give the overview of data. Derived from glutamic acid, thalidomide was initially formulated in
the 1950s as a sedative-hypnotic to address pregnancy-related nausea. Recent research spanning the past decade suggests that
thalidomide, initially explored for its potential anti-angiogenic properties, has the ability to influence various cell signaling pathways
associated with cancer. Suppose G be the molecular structure of Thalidomide which is shown in Figure 3. The molecular graph of G has
19 vertices and 21 edges. It has four edge partition which is shown in Table 4 By using the same methodology we can determine the
other topological indices. Table 1 shows the original indication and new anti-cancer indications of these drugs.

TABLE 4 Degrees of Thalidomide structure.

(ds, dt) Frequency

(1, 3) 4

(2, 2) 4

(2, 3) 6

(3, 3) 7

TABLE 5 Statistical parameters for ABC-R(G).

Properties N A b c r r2 F P

Linear Regression Model

MP 15 165.97 3.277 — 0.254 0.065 0.897 0.361

BP 15 96.074 60.496 — 0.820 0.672 26.648 0.000

D 15 1.352 0.006 — 0.077 0.006 0.078 0.784

WS 15 86.975 −8.398 — 0.365 0.133 1.992 0.182

MW 15 50.608 38.815 — 0.975 0.951 249.667 0.000

VP 15 0.984 0.034 — 0.115 0.013 0.173 0.684

Quadratic Regression Model

MP 15 98.874 59.410 0.081 0.820 0.672 12.300 0.001

BP 15 138.290 14.016 −0.798 0.297 0.088 0.579 0.575

D 15 0.892 0.185 −0.13 0.407 0.166 1.192 0.337

WS 15 223.388 −61.303 3.929 0.558 0.311 2.706 0.107

MW 15 67.781 32.155 0.495 0.975 0.951 117.590 0.000

VP 15 0.928 0.775 −0.055 0.477 0.228 1.770 0.212

Logarithmic Regression Model

MP 15 151.661 20.670 — 0.289 0.083 1.183 0.296

BP 15 −70.118 328.130 — 0.801 0.642 23.307 0.000

D 15 1.230 0.091 — 0.201 0.040 0.545 0.473

WS 15 132.282 −57.665 — 0.451 0.203 3.319 0.092

MW 15 −50.421 207.482 — 0.939 0.882 96.894 0.000

VP 15 0.640 0.320 — 0.196 0.038 0.519 0.484
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•ABC − R Thalidomide( ) � ∑
s,t∈E G( )

���������
ds + dt − 2

√ − 1����
dsdt

√
� 4

�������
1 + 3 − 2

√ − 1������
1( ) 3( )√( ) + 4

�������
2 + 2 − 2

√ − 1������
2( ) 2( )√( )

+6
�������
2 + 3 − 2

√ − 1������
2( ) 3( )√( ) + 7

�������
3 + 3 − 2

√ − 1
3( ) 3( )( )

� 0.9566 + 0.8284 + 1.7932 + 2.3333
� 5.9115.

•GA Thalidomide( ) � ∑
s,t∈E G( )

2
����
dsdt

√
ds + dt

� 4
2

������
1( ) 3( )√

1 + 3
( ) + 4

2
������
2( ) 2( )√

2 + 2
( )

+6 2
������
2( ) 3( )√

2 + 3
( ) + 7

2
������
3( ) 3( )√

3 + 3
( )

� 3.4641 + 4 + 5.8788 + 7
� 20.3429.

•EΠ1 Thalidomide( ) � ∏
t∈V G( )

ed
2
t

� e 4( ) 1( )2 × e 7( ) 2( )2 × e 8( ) 3( )2

� 1.46766 × 1045.

TABLE 6 Statistical parameters for EΠ1(G).

Properties N A b c r r2 F P

Linear Regression Model

MP 15 189.318 0.000 — 0.23 0.001 0.007 0.935

BP 15 497.015 0.000 — 0.488 0.238 4.070 0.065

D 15 1.409 −0.000 — 0.150 0.022 0.298 0.595

WS 15 27.497 −0.000 — 0.048 0.002 0.030 0.866

MW 15 310.144 0.000 — 0.522 0.273 4.869 0.46

VP 15 1.312 −0.000 — 0.297 0.088 1.259 0.282

Quadratic Regression Model

MP 15 189.318 0.000 0.000 0.023 0.001 0.003 0.997

BP 15 497.015 0.000 0.000 0.488 0.238 1.879 0.195

D 15 1.409 −0.000 0.000 0.150 0.022 0.137 0.873

WS 15 27.497 −0.000 0.000 0.048 0.002 0.014 0.986

MW 15 310.144 0.000 0.000 0.522 0.273 2.247 0.148

VP 15 1.312 −0.000 0.000 0.297 0.088 0.581 0.574

Logarithmic Regression Model

MP 15 165.206 0.195 — 0.270 0.073 1.020 0.331

BP 15 104.723 3.411 — 0.826 0.682 27.899 0.000

D 15 1.380 0.000 — 0.030 0.001 0.012 0.914

WS 15 85.069 −0.468 — 0.363 0.132 1.971 0.184

MW 15 57.531 2.177 — 0.977 0.955 275.505 0.000

VP 15 1.005 0.002 — 0.107 0.012 0.152 0.703
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•EΠ2 Thalidomide( ) � ∏
t∈V G( )

edsdt

� e4 1( ) 3( ).e4 2( ) 2( ).e6 2( ) 3( ).e7 3( ) 3( )

� 1.43020 × 1055.

•GAΠ Thalidomide( ) � ∏
s,t∈E G( )

2
����
dsdt

√
ds + dt

� 4
2

������
1( ) 3( )√

1 + 3
( ) × 4

2
������
2( ) 2( )√

2 + 2
( )

× 6
2

������
2( ) 3( )√

2 + 3
( ) × 7

2
������
3( ) 3( )√

3 + 3
( )

� 3.4641 × 4 × 5.8788 × 7
� 570.213.

•SDD Thalidomide( ) � ∑
s,t∈E G( )

d2
s + d2

t

dsdt

� 4
1( )2 + 3( )2
1 × 3

+ 4
2( )2 + 2( )2
2 × 2

+ 6
2( )2 + 3( )2
2 × 3

+ 7
3( )2 + 3( )2
3 × 3� 13.3333 + 8 + 13 + 14 � 48.3333.

TABLE 7 Statistical parameters for EΠ2(G).

Properties N A b c r r2 F P

Linear Regression Model

MP 15 187.936 0.000 — 0.151 0.023 0.301 0.592

BP 15 512.888 0.000 — 0.305 0.093 1.331 0.269

D 15 1.383 0.000 — 0.205 0.042 0.571 0.463

WS 15 24.739 0.000 — 0.085 0.007 0.094 0.764

MW 15 321.394 0.000 — 0.262 0.068 0.955 0.346

VP 15 1.293 −0.000 — 0.262 0.068 0.955 0.346

Quadratic Regression Model

MP 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

BP 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

D 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

WS 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

MW 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

VP 15 0.000 0.000 0.000 1.000 1.000 0.000 0.000

Logarithmic Regression Model

MP 15 165.263 0.161 — 0.286 0.082 1.156 0.302

BP 15 138.776 2.599 — 0.807 0.651 24.280 0.000

D 15 1.372 0.000 — 0.046 0.002 0.028 0.870

WS 15 80.883 −0.360 — 0.358 0.18 1.908 0.190

MW 15 77.152 1.673 — 0.963 0.927 165.807 0.000

VP 15 1.031 0.001 — 0.101 0.010 0.133 0.721
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4 Regression models

The following equations are used to correlate the various physical properties of various non-cancer medications used
for the treatment of cancer with some topological indices. We have used the following linear, quadratic and logarithmic
regression models:

P � A + b TI[ ] (1)
P � A + b TI[ ] + c TI[ ]2 (2)

P � A + b ln TI[ ] (3)
In the above Equations 1–3, p is dependent variable and TI is the independent variable. Where P is physical property of drug, A is
constant, b and c are the regression coefficients. The six physiochemical properties: boiling point (BP) in °C at 760 mmHg, molecular
weight (MW) in g/mol, melting point (MP) in °C at 760 mmHg, density(D) in g/cm3, water solubility (WS) in mg/mL, vapour pressure
(VP) in mmHg at 25°C.Following are the linear, quadratic and logarithmic regression models for the defined degree-based
topological indices.

TABLE 8 Statistical parameters for GA(G).

Properties N A b c r r2 F P

Linear Regression Model

MP 15 163.841 1.081 — 0.285 0.081 1.146 0.304

BP 15 116.656 17.429 — 0.802 0.643 23.462 0.000

D 15 1.404 0.000 — 0.011 0.000 0.002 0.968

WS 15 84.592 −2.440 — 0.360 0.129 1.931 0.188

MW 15 56.994 11.469 — 0.978 0.957 290.228 0.000

VP 15 1.086 0.006 — 0.068 0.005 0.061 0.809

Quadratic Regression Model

MP 15 138.370 4.054 −0.066 0.322 0.104 0.694 0.519

BP 15 223.976 4.901 0.278 0.810 0.656 11.430 0.002

D 15 0.953 0.052 −0.001 0.420 0.176 1.286 0.312

WS 15 185.134 −14.176 0.261 0.490 0.240 1.895 0.193

MW 15 97.890 6.695 0.106 0.981 0.963 157.319 0.000

VP 15 −0.454 0.186 −0.004 0.405 0.164 1.179 0.341

Logarithmic Regression Model

MP 15 122.256 22.275 — 0.322 0.104 1.501 0.242

BP 15 −380.351 301.831 — 0.762 0.581 17.994 0.001

D 15 1.221 0.058 — 0.133 0.018 0.233 0.637

WS 15 183.946 −52.099 — 0.421 0.177 2.804 0.118

MW 15 −270.249 198.679 — 0.930 0.864 82.682 0.000

VP 15 0.548 0.225 — 0.142 0.020 0.269 0.613
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4.1 Difference between ABC and R index ABC-R(G)

Linear Models: Logarithmic Models:
MP � 165.979 + 3.277 ABC − R[ ] MP � 151.661 + 20.670 ln ABC − R[ ]
BP � 96.074 + 60.496 ABC − R[ ] BP � −70.118 + 328.130 ln ABC − R[ ]
D � 1.352 + 0.006 ABC − R[ ] D � 1.230 + 0.091 ln ABC − R[ ]

WS � 86.975 − 8.395 ABC − R[ ] WS � 132.282 − 57.665 ln ABC − R[ ]
MW � 50.608 + 38.815 ABC − R[ ] MW � −50.421 + 207.482 ln ABC − R[ ]
VP � 0.984 + 0.034 ABC − R[ ] VP � 0.640 + 0.320 ln ABC − R[ ]

Quadratic Models:
MP � 98.874 + 59.410 ABC − R[ ] + 0.081 ABC − R[ ]2
BP � 138.290 + 14.016 ABC − R[ ] − 0.798 ABC − R[ ]2
D � 0.892 + 0.185 ABC − R[ ] − 0.13 ABC − R[ ]2

WS � 223.388 − 61.303 ABC − R[ ] + 3.929 ABC − R[ ]2
MW � 67.781 + 32.155 ABC − R[ ] + 0.495 ABC − R[ ]2
VP � −0.928 + 0.775 ABC − R[ ] − 0.055 ABC − R[ ]2

TABLE 9 Statistical parameters for GAΠ(G).

Properties N A b c r r2 F P

Linear Regression Model

MP 15 180.561 0.004 — 0.294 0.087 1.232 0.287

BP 15 413.314 0.054 — 0.676 0.457 10.946 0.006

D 15 1.395 0.000 — 0.013 0.000 0.002 0.963

WS 15 31.858 −0.002 — 0.099 0.010 0.129 0.726

MW 15 258.505 0.033 — 0.758 0.575 17.578 0.001

VP 15 1.405 −0.000 — 0.254 0.065 0.899 0.360

Quadratic Regression Model

MP 15 172.688 0.017 −0.000 0.361 0.130 0.899 0.433

BP 15 347.333 0.166 −0.000 0.742 0.551 7.361 0.008

D 15 1.417 −0.000 0.000 0.092 0.009 0.052 0.950

WS 15 53.368 −0.039 0.000 0.335 0.112 0.757 0.490

MW 15 203.663 0.126 −0.000 0.893 0.798 23.636 0.000

VP 15 1.148 0.000 −0.000 0.393 0.154 1.093 0.386

Logarithmic Regression Model

MP 15 150.013 6.506 — 0.396 0.157 2.417 0.144

BP 15 105.714 70.086 — 0.745 0.556 16.259 0.001

D 15 1.265 0.022 — 0.209 0.044 0.593 0.455

WS 15 91.648 −10.717 — 0.365 0.133 1.999 0.181

MW 15 53.998 45.428 — 0.896 0.802 52.653 0.000

VP 15 1.078 0.024 — 0.065 0.004 0.056 0.817

Frontiers in Chemistry frontiersin.org12

Yousaf and Shahzadi 10.3389/fchem.2024.1410882

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1410882


4.2 Multiplicative first exponential Zagreb index EΠ1(G)

Linear Models: Logarithmic Models:
MP � 189.318 + 0.0000 EΠ1[ ] MP � 165.206 + 0.195 ln EΠ1[ ]
BP � 497.015 + 0.0000 EΠ1[ ] BP � 104.723 + 3.411 ln EΠ1[ ]
D � 1.409 − 0.0000 EΠ1[ ] D � 1.380 + 0.000 ln EΠ1[ ]

WS � 27.497 − 0.0000 EΠ1[ ] WS � 85.069 − 0.468 ln EΠ1[ ]
MW � 310.144 + 0.0000 EΠ1[ ] MW � 57.531 + 2.177 ln EΠ1[ ]
VP � 1.312 − 0.0000 EΠ1[ ] VP � 1.005 + 0.002 ln EΠ1[ ]

Quadratic Models:
MP � 189.318 + 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2
BP � 497.015 + 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2
D � 1.409 − 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2

WS � 27.497 − 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2
MW � 310.144 + 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2
VP � 1.312 − 0.0000 EΠ1[ ] + 0.0000 EΠ1[ ]2

TABLE 10 Statistical parameters for SDD(G).

Properties N A b c r r2 F P

Linear Regression Mode

MP 15 165.972 0.384 — 0.234 0.055 0.754 0.401

BP 15 43.587 7.949 — 0.846 0.716 32.752 0.000

D 15 1.350 0.001 — 0.074 0.006 0.072 0.793

WS 15 88.124 −1.004 — 0.342 0.117 1.724 0.212

MW 15 25.384 4.962 — 0.979 0.959 300.379 0.000

VP 15 0.989 0.004 — 0.103 0.011 0.140 0.715

Quadratic Regression Model

MP 15 134.066 1.684 −0.011 0.272 0.074 0.480 0.630

BP 15 4.032 9.560 −0.013 0.847 0.717 15.184 0.001

D 15 0.814 0.023 0.000 0.374 0.140 0.979 0.0404

WS 15 265.783 −8.241 0.060 0.552 0.304 2.625 0.113

MW 15 −0.979 6.036 −0.009 0.980 0.960 143.618 0.000

VP 15 −1.661 0.112 −0.001 0.516 0.267 2.181 0.156

Logarithmic Regression Model

MP 15 99.804 22.375 — 0.262 0.069 0.961 0.345

BP 15 −1111.166 409.476 — 0.839 0.704 30.923 0.000

D 15 1.026 0.092 — 0.171 0.029 0.389 0.543

WS 15 288.543 −65.310 — 0.429 0.184 2.926 0.111

MW 15 −688.753 253.950 — 0.964 0.930 173.293 0.000

VP 15 −0.235 0.364 — 0.187 0.035 0.473 0.504

Frontiers in Chemistry frontiersin.org13

Yousaf and Shahzadi 10.3389/fchem.2024.1410882

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1410882


4.3 Multiplicative second exponential Zagreb index EΠ2(G)

Linear Models: Logarithmic Models:
MP � 187.936 + 0.0000 EΠ2[ ] MP � 165.263 + 0.161 ln EΠ2[ ]
BP � 512.888 + 0.0000 EΠ2[ ] BP � 138.776 + 2.599 ln EΠ2[ ]
D � 1.383 + 0.0000 EΠ2[ ] D � 1.372 + 0.000 ln EΠ2[ ]

WS � 24.739 + 0.0000 EΠ2[ ] WS � 80.883 − 0.360 ln EΠ2[ ]
MW � 321.394 + 0.0000 EΠ2[ ] MW � 77.152 + 1.673 ln EΠ2[ ]
VP � 1.293 − 0.0000 EΠ2[ ] VP � 1.031 + 0.001 ln EΠ2[ ]

Quadratic Models:
MP � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2
BP � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2
D � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2

WS � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2
MW � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2
VP � 0.0000 + 0.0000 EΠ2[ ] + 0.0000 EΠ2[ ]2

4.4 Geometric arithmetic index GA(G)

Linear Models: Logarithmic Models:
MP � 163.841 + 1.081 GA[ ] MP � 122.256 + 22.275 ln GA[ ]
BP � 116.656 + 17.429 GA[ ] BP � −380.351 + 301.831 ln GA[ ]
D � 1.404 + 0.000 GA[ ] D � 1.221 + 0.058 ln GA[ ]

WS � 84.592 − 2.440 GA[ ] WS � 183.946 − 52.099 ln GA[ ]
MW � 56.994 + 11.469 GA[ ] MW � −270.249 + 198.679 ln GA[ ]
VP � 1.086 + 0.006 GA[ ] VP � 0.548 + 0.225 ln GA G( )[ ]

Quadratic Models:
MP � 138.370 + 4.054 GA[ ] − 0.066 GA[ ]2
BP � 223.976 + 4.901 GA[ ] + 0.278 GA[ ]2
D � 0.953 + 0.052 GA[ ] − 0.001 GA[ ]2

WS � 185.134 − 14.176 GA[ ] + 0.261 GA[ ]2
MW � 97.890 + 6.695 GA[ ] + 0.106 GA[ ]2
VP � −0.454 + 0.186 GA[ ] − 0.004 GA[ ]2

4.5 Multiplicative geometric arithmetic index GAΠ(G)

Linear Models: Logarithmic Models:
MP � 180.561 + 0.004 GAΠ[ ] MP � 150.013 + 6.506 ln GAΠ[ ]
BP � 413.314 + 0.054 GAΠ[ ] BP � 105.714 + 70.086 ln GAΠ[ ]
D � 1.395 + 0.0000 GAΠ[ ] D � 1.265 + 0.022 ln GAΠ[ ]

WS � 31.858 − 0.002 GAΠ[ ] WS � 91.648 − 10.717 ln GAΠ[ ]
MW � 258.505 + 0.033 GAΠ[ ] MW � 53.998 + 45.428 ln GAΠ[ ]
VP � 1.405 − 0.0000 GAΠ[ ] VP � 1.078 + 0.024 ln GAΠ[ ]

Quadratic Models:
MP � 172.688 + 0.017 GAΠ[ ] − 0.0000 GAΠ[ ]2
BP � 347.333 + 0.166 GAΠ[ ] − 0.0000 GAΠ[ ]2
D � 1.417 − 0.0000 GAΠ[ ] + 0.0000 GAΠ[ ]2

WS � 53.368 − 0.039 GAΠ[ ] + 0.0000 GAΠ[ ]2
MW � 203.663 + 0.126 GAΠ[ ] − 0.0000 GAΠ[ ]2
VP � 1.148 + 0.0000 GAΠ[ ] − 0.0000 GAΠ[ ]2
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4.6 Symmetric division degree index SDD(G)

Linear Models: Logarithmic Models:
MP � 165.972 + 0.384 SDD[ ] MP � 99.804 + 22.375 ln SDD[ ]
BP � 43.587 + 7.949 SDD[ ] BP � −1111.166 + 409.476 ln SDD[ ]
D � 1.350 + 0.001 SDD[ ] D � 1.026 + 0.092 ln SDD[ ]

WS � 88.124 − 1.004 SDD[ ] WS � 288.543 − 65.310 ln SDD[ ]
MW � 25.384 + 4.962 SDD[ ] MW � −688.753 + 253.950 ln SDD[ ]
VP � 0.989 + 0.004 SDD[ ] VP � −0.235 + 0.364 ln SDD[ ]

Quadratic Models:
MP � 134.066 + 1.684 SDD[ ] − 0.011 SDD[ ]2
BP � 4.032 + 9.560 SDD[ ] − 0.013 SDD[ ]2
D � 0.814 + 0.023 SDD[ ] + 0.000 SDD[ ]2

WS � 265.783 − 8.241 SDD[ ] + 0.060 SDD[ ]2
MW � −0.979 + 6.036 SDD[ ] − 0.009 SDD[ ]2
VP � −1.661 + 0.112 SDD[ ] − 0.001 SDD[ ]2

5 Results and discussions

In this section, we delve into the statistical analysis of our regression models, which aimed to predict the anti-cancer properties of non-
cancer medications based on their molecular characteristics represented by topological indices. The regression parameters for linear,
quadratic, and logarithmic models were computed, providing insights into the relationships between the independent variables (topological
indices) and the dependent variables (anti-cancer properties) The key parameters analyzed include the sample size (N), constant or
Y-intercept (A), coefficients of the independent variables (b and c), correlation coefficient (r), and the percentage of variation explained by the
linear model (r2). These parameters are crucial for understanding the predictive accuracy and significance of the regression models.

The correlation coefficient (r) indicates the strength and direction of the relationship between variables, with values ranging from −1 to +1. A
positive coefficient signifies a direct relationship, while a negative coefficient suggests an inverse relationship. The high correlation coefficients
observed in our analysis indicate strong associations between the topological indices and anti-cancer properties, supporting the validity of our
models. Moreover, the p-values associated with each term in the regression models were examined to test the null hypothesis that the coefficient is
zero, implying no effect. A smaller p-value suggests that changes in the predictor variables are associated with changes in the response variable,
indicating the significance of the predictors. In our analysis, all p-values were found to be zero, indicating the statistical significance of the regression
models. Furthermore, we conducted additional tests to assess the overall predictive capability of our models. The F-value resulting from these tests
helps to determine whether the model has predictive power beyond chance. The significant F-values obtained in our analysis confirm the predictive
capability of our regression models in accurately predicting anti-cancer properties based on topological indices. These statistical characteristics for
logarithmic, linear, and quadraticQSPRmodels for various topological indices are presented inTables 5–10.Overall, the statistical analysis presented
in this section underscores the robustness and reliability of our regression models in identifying non-cancer medications with potential anti-cancer
properties. These findings provide a solid foundation for further exploration and validation of drug repurposing strategies in cancer therapy.

The study emphasizes the importance of topological descriptors in predicting the molecular structures of anti-cancer drugs, crucial for
estimating the molecular weight of non-cancer medications. Quantitative Structure-Property Relationship (QSPR) methodology stands out
as a robust approach utilized across diverse fields such as drug design, material science, environmental chemistry, cheminformatics, and
computational chemistry. QSPR methodology is focused on establishing mathematical relationships between the chemical structure of
compounds and their properties, enabling the prediction of properties based on molecular characteristics. Unlike QSAR, which typically
addresses biological activities, QSPR specifically targets the physical and chemical properties of compounds. Molecular modeling techniques
often entail complex simulations and calculations to forecast molecular behavior accurately. Ultimately, QSPR methodology provides a
systematic and quantitative means to predict physicochemical properties of chemical compounds based on their molecular structure,
distinguishing it from other methodologies like QSAR, MD simulation, DFT, machine learning models, and hybrid QSAR/QSPR models,
each offering its unique advantages and limitations depending on the specific research objectives and applications.

6 Conclusion

This study demonstrates the efficacy of utilizing Quantitative Structure-Property Relationship (QSPR) modeling, specifically leveraging
topological indices, to identify non-cancer medications with potential anti-cancer properties. The systematic approach outlined ranging from
data collection and molecular descriptor calculation to model construction and experimental validation has proven to be a robust framework
for drug repurposing. By focusing on topological indices, we have highlighted the significant role that molecular structure plays in
determining pharmacological interactions relevant to anti-cancer activity.
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Our findings indicate that several non-cancer drugs, identified through our QSPR models, exhibit promising anti-cancer properties,
warranting further experimental validation and clinical trials. The use of topological indices in the modeling process has provided critical
insights into the structural attributes that contribute to anti-cancer efficacy, thus enhancing our understanding of drug action mechanisms.

The integration of computational modeling with experimental validation offers a cost-effective and accelerated pathway for expanding
the repertoire of anti-cancer agents. This research not only underscores the potential of drug repurposing strategies in oncology but also
establishes a foundation for future studies to explore and refine the application of QSPR models. Ultimately, this approach holds the promise
of improving therapeutic outcomes for cancer patients by identifying new uses for existing medications, thereby bridging the gap between
drug discovery and clinical application.
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