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Tyrosinase is one important rate limiting enzyme in melanin synthesis, directly
affecting the melanin synthesis. Quercetagetin is one active ingredient from
marigold. Thence, the inhibition effects of quercetagetin against tyrosinase were
investigated. The results showed quercetagetin could inhibit tyrosinase activity
with IC50 value of 0.19 ± 0.01 mM and the inhibition type was a reversible mixed-
type. Results of fluorescence quenching showed quercetagetin could quench
tyrosinase fluorescence in static process. CD and 3D fluorescence results
showed the interaction of quercetagetin to tyrosinase could change
tyrosinase conformation to inhibit activity. Moreover, docking revealed details
of quercetagetin’s interactions with tyrosinase.
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1 Introduction

As we all know, various diseases affect people’s health (Zhang et al., 2020; Zhang X.
et al., 2021; Shi et al., 2023; Zhou S. et al., 2022). As a therapeutic target, tyrosinase is one
important metal enzyme containing two copper, which widely presents in the organism
(Min et al., 2023; Fan et al., 2017). Tyrosinase has been confirmed to be involved in the
synthesis of melanin (Li et al., 2023; Hassan et al., 2023; Li J. et al., 2021). The first reaction
process is monophenolase activity, in which L-tyrosine is hydroxylated into L-dopa and the
second reaction process is diphenolase activity, in which L-dopa is subsequently oxidized
into dopaquinone (Djafarou et al., 2023; Lee et al., 2023; Zargaham et al., 2023). In the
organism, melanin acts crucial roles to protect the skin from UV radiation (Lu et al., 2023a;
Znajafi et al., 2023). But, excessive elevated melanin content leads to lots of pigmentation
disorders, including age spots and melanoma (Broulier et al., 2023; De Barros et al., 2023;
Xue et al., 2023). Inhibition of tyrosinase activity would reduce melanin generation, thence,
the finding on novel tyrosinase inhibitors is attracting more attention due to their potential
application in medicine and cosmetics fields (Wang andMu, 2021). Although kojic acid and
arbutin (Figure 1) are applied as tyrosinase inhibitors in the medical and industrial fields,
they still have been found to lots of adverse side effects (Wang et al., 2021; Esma et al., 2023).
Now, to find novel tyrosinase inhibitors is essential for treatment of melanin synthesis
(Romagnoli et al., 2022; Nasab et al., 2023).

Natural products have been the vital sources for clinical drugs (Li Y. et al., 2021; Wu et al.,
2021; Chen et al., 2022; Zang et al., 2022). Many natural products display widely biological
activities, such as antioxidant (Zhang Y. et al., 2021; Tao et al., 2022; Tang et al., 2023), anti-
tumor (Liu et al., 2022; Chen et al., 2023; Song et al., 2023), anti-inflammatory (Wang et al., 2020;
Wang X. et al., 2022; Zhou Y. et al., 2022), and so on (Wang Y. et al., 2022; Qi et al., 2022; Ma
et al., 2023). In particular, natural products show low toxicity (Shao et al., 2020; Jiang et al., 2021;
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Pei et al., 2021). Thence the development of natural products as
tyrosinase inhibitors attracts much attention.

Quercetagetin (Figure 1) is one active ingredient frommarigold and
has a chemical structure of 3,3′,4′,5,6,7-hexahydroxyflavone (Bulut and
Yilmaz, 2021; Wang X. et al., 2022). As one polyhydroxyphenol molecule
with multiple hydrogen donor substituents, quercetagetin represents rich
biological activities (Wu F. et al., 2023). For example, quercetagetin shows
strong antioxidant activity and can effectively scavenge DPPH and ABTS
(Fuentes et al., 2021). Quercetagetin also enhances the antioxidant
enzymatic activities in broilers tissue by Nrf2/ARE signal pathway (Wu
et al., 2022). In addition, quercetagetin displays immunomodulatory and
anti-inflammatory to inhibit the release of macrophage-derived
chemokine (Rufino et al., 2021). Besides, quercetagetin display other
beneficial functions, including anti-virus and anti-diabetes (Seyedi et al.,
2016). However, to our knowledge, the inhibition effects of quercetagetin
against tyrosinase have not been reported yet.

Hence, in this study, we investigated the inhibition effects of
quercetagetin against tyrosinase by the multispectral method,
followed by the molecular docking.

2 Results and discussion

2.1 Inhibitory activity

The tyrosinase inhibitory activity of quercetagetin was examined
on mushroom tyrosinase. The tyrosinase activity was measured

under different concentrations of quercetagetin (Figure 2). It
could be observed that tyrosinase relative activity gradually
reduced with quercetagetin concentration (0–0.64 mM), meaning
that quercetagetin could inhibit the tyrosinase activity with
quercetagetin concentration. Its IC50 value was calculated to be
0.19 ± 0.01 mM, which was lower than that of kojic acid. This result
showed that quercetagetin could be used as a natural
tyrosinase inhibitor.

2.2 Kinetic study

There are two kinds of inhibitors, reversible and non-reversible
inhibitors. For a reversible inhibitor, it can reduce the enzyme
activity by the binding to enzyme, which can restore the enzyme
activity through the remove of inhibitor. There are three reversible
inhibitors, including competitive, non-competitive and mixed-type
inhibitors. The inhibition type of quercetagetin on tyrosinase was
subsequently investigated. With different concentration of
quercetagetin and tyrosinase, the absorbance changes were
measured (Figure 3A) and found that the lines of quercetagetin
with different concentration passed origin and slopes reduced with
quercetagetin concentration. The results suggested quercetagetin as
a reversible inhibitor. With different concentration of quercetagetin
and substrate, the absorbance changes were analyzed using
Lineweaver-Burk plots (Figure 3B). The lines of quercetagetin
intersected in the third quadrant and their slops increased with
quercetagetin concentrations. The results indicated that
quercetagetin inhibited tyrosinase in a mixed-type, meaning that
quercetagetin bound to tyrosinase and tyrosinase-substrate complex
to inhibit its activity. Similar phenomena were obtained in inhibition
type of indole-carbohydrazides (Iraji et al., 2022).

Moreover, as shown in Figures 4A, B, the inhibition constants Ki

and Kis were obtained from the secondary curves of inhibitory
kinetics to be 0.24 and 0.12 mM. Smaller Kis value than Ki meant
that binding force of quercetagetin with tyrosinase-substrate
complex was stronger than with tyrosinase. That was to say that
quercetagetin preferred to bind with tyrosinase-substrate complex.

2.3 Fluorescence quenching

The fluorescence quenching process of tyrosinase by
quercetagetin was investigated. For fluorescence spectra of
tyrosinase, they all showed characteristic peaks at 344 nm at 295,

FIGURE 1
Chemical structure of kojic acid, arbutin and quercetagetin.

FIGURE 2
Tyrosinase inhibitory activity of quercetagetin.
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298, and 305 K, respectively (Figures 5A–C). But, quercetagetin did
not show effective fluorescence spectra. Moreover, when treated by
quercetagetin, tyrosinase presented the gradually decreasing peak
intensity (Figures 5A–C), which indicated that quercetagetin bound
to tyrosinase.

The fluorescence quenching data at 295, 298, and 305 K were
future analyzed by Stern-Volmer plots. As is shown in Figure 5D the
Stern-Volmer plots of quercetagetin, lines with different
temperature presented good linearity, meaning that there was
only one quenching type of static or dynamic in quenching
process. Then the quenching constant (Ksv) the bimolecular
quench rate constant (Kq) were obtained (Table 1). The Ksv

results found that Ksv values decreased with the temperature.
And Kq values at 295, 298, and 305 K were higher than 2 ×
1010 L mol−1 S−1. Above results suggested the quenching process
of quercetagetin against tyrosinase was a static process. This
quenching type presented in the quenching of indole derivatives
on α-glucosidase (Hu et al., 2024). The quenching process also was

the process of thermodynamic changes. Thence, the thermodynamic
parameters were calculated (Table 1). The negative ΔG value
unlocked one spontaneous process of quercetagetin binding to
tyrosinase. The positive ΔH and ΔS values suggested
hydrophobic interactions as the important forces between
quercetagetin and tyrosinase.

2.4 CD spectra

The effect of quercetagetin on conformation change of
tyrosinase was investigated using CD spectra. Figure 6 showed
CD spectra of tyrosinase, the characteristic peaks around
210–220 nm stood for the peptide chains of tyrosinase. When
treated with quercetagetin, the CD spectra of tyrosinase appeared
some changes, meaning its conformation change. Then its
secondary structure contents were calculated (Table 2) and found
that quercetagetin treatment (molar ratio: 2:1) caused reduction of

FIGURE 3
(A) Reversible assay of quercetagetin; (B) Lineweaver-Burk plots of quercetagetin.

FIGURE 4
(A) Ki assay of quercetagetin; (B) Kis assay of quercetagetin.
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α-helix and random coils and increase of β-sheet and β-turn. These
results indicated that quercetagetin treatment could lead to
conformation changes of tyrosinase.

2.5 3D fluorescence spectra

3D fluorescence spectra were monitored to further investigate
the effect on conformation of tyrosinase by quercetagetin. As
shown in Figure 7A the 3D fluorescence spectra tyrosinase, two
characteristic peaks appeared, including Peak A for Tyr and Trp
residues and Peak B for peptide backbone. When treated with
quercetagetin, Peak A and Peak B were reduced the intensity by
35.4% and 13.3%, respectively (Figure 7B), which suggested that
quercetagetin treatment would cause the changes of Tyr and Trp

residues, and peptide backbone. That was to say that
quercetagetin treatment would cause the conformation change
of tyrosinase.

2.6 Molecular docking

The interaction of quercetagetin to tyrosinase was simulated by
molecular docking method. As shown in Figure 8A the docking
results, quercetagetin bound to the active pocket of tyrosinase with
trihydroxychromone section in the active catalytic zone of active
pocket. From Figure 8B the docking results in detail, it could be
observed that quercetagetin made one hydrogen bond with
His259 and hydrophobic interaction with Val248, His263,
Val283, and Ala286. The results indicated that the interactions

FIGURE 5
(A–C) Fluorescence quenching spectra of quercetagetin on tyrosinase at 295, 298, and 305 K, respectively; (D) Stern-Volmer plots of quercetagetin.

TABLE 1 Parameters of quercetagetin with tyrosinase.

T (K) Kq (×1012 Lmol−1S−1) Ksv (×10
4Lmol−1) △H (KJ/moL) △G (KJ/moL) △S (J/(mol·K)

295 5.69 5.69 25.34 −23.27 164.78

298 5.45 5.45 −23.76

301 5.40 5.40 −24.26
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between quercetagetin and tyrosinase resulted in the reduction of
tyrosinase activity.

2.7 Copper-chelating activity

The copper-chelating activity of quercetagetin was finally assayed
using copper sulfate. Figure 9A showed the quercetagetin-copper
sulfate mixture. Quercetagetin showed its UV spectra with
characteristic peak at 370 nm. While, after added copper sulfate,
the UV characteristic peak of quercetagetin was gradually
decreased. These results indicated that copper might complex with

quercetagetin to change its UV characteristic peak. The peak intensity
at different molar ratios of quercetagetin to copper sulfate was
analyzed (Figure 9B) and found that the decreasing trend of
quercetagetin peak intensity become equilibrium, meaning that the
binding molar ratio of quercetagetin with copper sulfate was 1. The
copper-chelating activity of quercetagetin also might be one reason of
the reduction of tyrosinase activity.

3 Conclusion

Tyrosinase is one important rate limiting enzyme in melanin
synthesis, directly affecting the melanin synthesis. Quercetagetin is
one active ingredient from marigold. In this study, the inhibition
effects of quercetagetin against tyrosinase were investigated. The
results showed that quercetagetin could inhibit the tyrosinase
activity with IC50 value of 0.19 ± 0.01 mM and the inhibition
type was a reversible mixed-type. Results of fluorescence
quenching showed that quercetagetin could quench tyrosinase
fluorescence in static process. CD and 3D fluorescence results
showed interaction of quercetagetin to tyrosinase could change
tyrosinase conformation to inhibit activity. Moreover, docking
revealed details of quercetagetin’s interactions with tyrosinase.

4 Materials and methods

4.1 Tyrosinase activity assay

Tyrosinase inhibitory activity of quercetagetin was measured
(Lu et al., 2023b). 10 μL of quercetagetin in DMSO solutions was
added into 140 μL of tyrosinase in PBS solution and incubated for

FIGURE 6
CD spectra of tyrosinase with quercetagetin.

TABLE 2 The secondary structure contents of tyrosinase with quercetagetin.

Molar ratio α-Helix (%) β-Sheet (%) β-Turn (%) Random coils (%)

1:0 27.0 23.1 15.6 44.7

1:1 22.2 27.6 16.9 41.1

1:2 19.2 31.4 17.9 38.8

Note: Molar ratio means [tyrosinase]: [quercetagetin].

FIGURE 7
(A,B) 3D fluorescence of tyrosinase and quercetagetin-tyrosinase, respectively.
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10 min. 50 μL of L-dopa (in PBS) was added as the substrates. Then,
the absorbance was measured at 475 nm on a microplate reader.
Kojic acid was selected as the positive control. All experiments were
tested in triplicate. Inhibition rate (%) = [(OD1-OD0)/OD0]×100%.
OD0 and OD1 were the absorbance of tyrosinase and tyrosinase-
quercetagetin mixture.

4.2 Inhibitory kinetics

The reversibility of quercetagetin against tyrosinase was
analyzed at different concentration of quercetagetin with
tyrosinase or L-dopa. And the inhibitory kinetics of quercetagetin
against tyrosinase was analyzed at different concentration of
quercetagetin with tyrosinase or L-dopa. The inhibition constants
Ki and Kis were obtained from the secondary curves of inhibitory
kinetics (Xu et al., 2020; Deng et al., 2022; Lin et al., 2023).

4.3 Fluorescence quenching

To the 3.0 mL of tyrosinase solution, 1 μL of quercetagetin was
added by titration method (Li et al., 2024a; Min et al., 2024). The
mixture was measured fluorescence spectra at excitation of
280 nm. The experiments were conducted at temperatures of
295, 298, and 305 K, respectively. The Stern-Volmer equation
and the vanʼt Hoff equation were employed to obtained
parameters.

4.4 CD spectra

To the 100 μL of tyrosinase solution, 1 μL of quercetagetin was
added. CD spectra were measured at room temperature (Xiao et al.,
2023; Li et al., 2024b). Tyrosinase solution without quercetagetin
was also measured its CD spectra.

FIGURE 8
(A,B) The molecular docking of quercetagetin to tyrosinase.

FIGURE 9
(A) UV spectra of quercetagetin-copper sulfate mixture; (B) UV peak of quercetagetin versus molar ratios of quercetagetin to copper sulfate.
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4.5 3D fluorescence spectra

To the 3.0 mL of tyrosinase solution, 1 μL of quercetagetin was
added. 3D fluorescence spectra were measured (Wu X. et al., 2023).

4.6 Copper-chelating activity

To the 2mL of quercetagetin solution, 5 μL of copper sulfate solution
was gradually added. UV absorption spectra were detected. The molar
ratios of quercetagetin to copper sulfate ranged from 10: 0 to 10: 14.

4.7 Molecular docking

Docking of quercetagetin with tyrosinase was simulated using the
SYBYL software (Zhang et al., 2022; Feng et al., 2024). The tyrosinase
crystal structure (PDB: 2Y9X) was optimized by removing water,
adding hydrogen, and generation of active pocket. Quercetagetin
structure was performed energy minimization. Thence, docking
procedure was run in the default format.
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