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Candida auris and Candida haemulonii are two emerging opportunistic
pathogens that have caused an increase in clinical cases in the recent years
worldwide. The differentiation of some Candida species is highly laborious,
difficult, costly, and time-consuming depending on the similarity between the
species. Thus, this study aimed to develop a new, faster, and less expensive
methodology for differentiating between C. auris and C. haemulonii based on
near-infrared (NIR) spectroscopy andmultivariate analysis.C. aurisCBS10913 and
C. haemulonii CH02 were separated in 15 plates per species, and three isolated
colonies of each plate were selected for Fourier transform near-infrared (FT-NIR)
analysis, totaling 90 spectra. Subsequently, principal component analysis (PCA)
and variable selection algorithms, including the successive projections algorithm
(SPA) and genetic algorithm (GA) coupled with linear discriminant analysis (LDA),
were employed to discern distinctive patterns among the samples. The use of
PCA, SPA, and GA algorithms associated with LDA achieved 100% sensitivity and
specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were
essential in selecting the variables (infrared wavelengths) of most importance for
the models, which could be attributed to binding of cell wall structures such as
polysaccharides, peptides, proteins, or molecules resulting from yeasts’
metabolism. These results show the high potential of combined FT-NIR and
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multivariate analysis techniques for the classification of Candida-like fungi, which
can contribute to faster and more effective diagnosis and treatment of patients
affected by these microorganisms.
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discriminant analysis, genetic algorithm-linear discriminant analysis, multivariate analysis

Introduction

Candida is a heterogeneous genus of yeasts, which may or may
not undergo dimorphic transition to pseudohyphae or hyphae
(invasive forms). The main pathogenic species of Candida in
humans are C. albicans, C. parapsilosis, C. glabrata, C. krusei,
and C. tropicalis, and additionally C. haemulonii infections have
been reported more frequently since the year 2000, especially in
tropical areas (Bastos et al., 2021; Françoise et al., 2023). These fungi
can be part of the human body’s microbiota, and are either
commensal or mutualistic. However, due to changes in the host
(such as pregnancy, aging, prematurity, chronic diseases, and stress)
or extrinsic factors (use of antibiotics, corticosteroids,
contraceptives, antiblastic drugs, surgical interventions, trauma,
and burns), it can transition to a parasitic stage, causing
infectious diseases collectively called candidiasis (Colombo et al.,
2013). In addition to these classically known species of Candida,
Candida auris, an emerging pathogenic fungus, has become the
target of more recent studies due to its ability to infect hospitalized
patients, causes outbreak, to manifest severe forms of the disease, to
be persistent in the hospital environment and patient’s skin, and to
also be resistant to antifungals (Ahmad and Alfouzan, 2021).

Candida auris was first described in 2009, when it was isolated
from the ear canal of a patient in Japan, hence the name “auris.”
Since then, C. auris infections have been reported in more than a
dozen countries, including the United States, Canada, Colombia,
Germany, India, Israel, Japan, Kenya, Norway, Pakistan, Spain,
South Africa, South Korea, United Kingdom, Venezuela, Kuwait,
Oman, and, recently, in Brazil (Carvajal et al., 2021; de Almeida
et al., 2021). C. auris can be recovered from various clinical
specimens, including sterile body fluids, ear, wounds, and
mucocutaneous swabs. However, the main clinical manifestations
are invasive and bloodstream infections (Rudramurthy et al., 2017).

Correctly identifying C. auris presents a challenge due to its close
phylogenetic proximity to other species, such as those in the
Candida haemulonii complex. Consequently, C. auris and the C.
haemulonii complex share several phenotypic characteristics,
complicating their differentiation (Osei Sekyere, 2018). Both
species typically display yeast-like growth on standard laboratory
media, forming smooth, creamy colonies with similar
morphological features, as observed under microscopy.
Furthermore, they exhibit resistance to multiple classes of
antifungal drugs, including azoles, echinocandins, and polyenes,
which complicates treatment strategies and emphasizes the
importance of precise identification (Osei Sekyere, 2018).

Distinguishing between C. auris and C. haemulonii poses
significant challenges in clinical laboratories. Conventional
phenotypic assays, such as biochemical profiling and
morphological characterization, often fail to provide conclusive

results due to overlapping traits and variations within the
Candida genus. Moreover, the absence of species-specific
diagnostic markers complicates accurate differentiation, leading
to misidentification and potential treatment failures. In fact,
misidentifications by biochemical methods are frequent, even
with updated databases (Gómez-Gaviria et al., 2023). Therefore, a
more accessible, simple, and effective identification becomes
essential for studying these multidrug-resistant microorganisms
to recognize their specific characteristics. Precisely, there is a
need for a more accurate diagnosis for treating infections more
quickly and efficiently, without prescribing incorrect medications
that ultimately may generate drug-resistant microorganisms. Thus,
efforts are needed for discoveries and development of new methods
for identification and diagnosis of microorganisms in order to fill
gaps and offer medical professionals more possibilities, agility, or
precision, depending on their needs.

Infrared spectroscopy is a vibrational technique that has the
ability to analyze biological systems, as complex molecules such as
proteins, lipids, carbohydrates, and nucleic acids exhibit distinct
vibrational behaviors according to their structural and molecular
conformation (Neves et al., 2016). Through the emission of
electromagnetic radiation in the near-infrared (NIR)—a smaller
portion of the infrared spectrum between 900 and 2600 nm—a
rapid and accurate diagnosis can be obtained for pathogens isolated
from hospital environments and patients (de Sousa Marques
et al., 2013).

The use of NIR in recent years has proven to be highly effective
for the analysis of various organic, inorganic, and biological
substances. NIR offers several advantages, such as rapid
identification of various parameters. This efficiency enhances the
accuracy of diagnoses, preventing erroneous sample identifications
(Cebrián et al., 2021). As NIR is a non-destructive technique
requiring little or no sample preparation, it also reduces
environmental damage by avoiding or minimizing the use of
reagents, which often cause harm to nature. However, for
biological samples, this technique itself may not provide
sufficient specificity in the search for biomarkers, as many
biomolecules are contributing to the entire signal, leading to a
large amount of complex data. On the other hand, multivariate
analysis has proven to be effective in overcoming this disadvantage
(Neves et al., 2016).

There are two classes of multivariate analysis techniques for
pattern recognition: unsupervised and supervised methods. The
former aims to detect similarities and differences within a dataset
composed, for example, of spectra from different classes without
prior information about the class to which they belong. Principal
component analysis (PCA) is the most popular unsupervised
method. On the other hand, in supervised methods, there is prior
information of different classes. They are based on two successive
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steps: first, samples whose class is known are used to build a model
with suitable parameters that optimize the discrimination between
data from different classes, and then, unknown samples are assigned
to an appropriate class using the parameters optimized during the
first stage. Linear discriminant analysis (LDA) is an effective
supervised approach (Lasalvia et al., 2022).

All measured spectra can be represented as a dataset or matrix X,
with n rows corresponding to measured samples and m columns,
each corresponding to the spectral signal for a specific wavenumber
value. The first objective of PCA is to reduce the dimensionality of
large datasets by finding new variables, which are linear functions of
those in the original dataset, which successively maximize variance
and are uncorrelated with each other (Lasalvia et al., 2022).

LDA is based on a linear transformation of m variables
describing n samples belonging to different classes so that
samples of the same class are close, but samples from different
classes are distant from each other. This goal is achieved through a
mathematical classification algorithm (based on calculating the
Mahalanobis distance between samples for each class) that
maximizes the distance between the means of the classes, while
minimizing the variance within each class. Thus, a predicted class is
assigned to each sample. After building the classification model, it is
used to allocate new and unknown samples to the most likely class.
However, the LDA method is generally restricted to problems with
few dimensions and cannot be applied when the number of spectral
variables is greater than the number of samples (m < n) due to the
risk of overfitting since the large number of variables have a high
collinearity/redundancy (Morais et al., 2019). This problem can be
solved by combining LDA with algorithms that reduce these
dimensions, such as PCA, successive projection algorithm (SPA),
and genetic algorithm (GA) (José et al., 2005; Lasalvia et al., 2022).

The objectives of this work are to overcome the difficulties of
differentiation between two much related species of Candida, C.
auris and C. haemulonii, with a new reliable, fast, and relatively less
costly method for optimizing diagnoses and methods of research for
identifying these yeasts.

Methodology

Microorganisms and growth

We used two strains of Candida auris and Candida haemulonii:
C. auris CBS10913 from the Westerdijk Institute collection and C.
haemuloniiCH02, provided byDr. André Dos Santos.C. haemulonii
CH02 was isolated from a patient and identified phenotypically
using CHROMagar Candida (CHROMagar Company) and VITEK
2 (bioMérieux) with the YST card. Additionally, it was identified by
sequencing the ITS1-5.8S-ITS2 gene (Ramos et al., 2015).

The yeast strains were cryopreserved in brain heart infusion
(BHI) growth medium supplemented with 10% glycerol at −80°C
until required for experimentation. For experimental procedures,
fungi from frozen stocks underwent two successive subcultures on
Sabouraud dextrose agar (SDA) for 48 h at 37°C, followed by another
cultivation cycle on SDA under the same conditions. Subsequently,
isolated colonies were subjected to NIR spectroscopy. The
experiment was conducted across 15 plates, with three colonies

selected from each plate to generate spectra. In total, 45 colonies per
strain were analyzed.

Preparation of samples for NIR spectra
acquisition

One of the advantages and suggestions of this study was the
acquisition of spectra without any sample preparation. Using a
transflectance probe, each spectrum was obtained by placing the
probe directly above the plates containing the colonies. The samples
could be used for further analysis following the above method by
other researchers, avoiding time loss and reagent consumption.

Obtaining near-infrared spectra

The 90 colonies, 45 per species, were subjected to NIR
spectroscopy by a Fourier transform spectrometer ARCspectro
ANIR (ARCoptix, Switzerland) with a 99% reflectance reference
underneath, in the region between 900 and 2,600 nm. The detector
gain was adjusted to extreme, at one scan, and a Boxcar filter was
applied every 10 nm in triplicate (isolated colonies) to obtain as
much variability within the same sample and among
different samples.

Multivariate analysis of infrared data

MATLAB software (MathWorks Inc, Natick, MA, USA) was
used to import the dataset, perform pretreatment, and construct
multivariate classification models (PCA-LDA, SPA-LDA, and GA-
LDA). A total of 30 samples were separated for model training and
15 for testing, applying the Kennard–Stone algorithm for infrared
spectra (Kennard and Stone, 1969), i.e., a proportion of 70%–30%
for training and testing, respectively. Training samples were used to
build and optimize the models (selection of variables using the SPA
and GA algorithms), while the test samples were used to evaluate
their classification using LDA.

A dataset with many variables can be problematic for LDA
classification since the probability functions between classes can
spread and overlap very easily. Therefore, the number of variables
can be simplified by performing data reduction. PCA is a well-
known method for reducing the number of variables, creating new
ones called principal components, which are linear combinations of
the original variables, in which the spectral matrix X is decomposed
as follows:

X � TPt + E,

where X is the I × J data matrix, T is the I × A matrix of score vectors
(representing the sample projection in the new space), the score
vectors are orthogonal (TtT � diag(λa) and λa are the eigenvalues
of the matrix XtX), P is the J × A matrix of loading vectors (weights
of the variables), and E is the I × J residual matrix. I is the number of
objects, J is the number of variables, and A is the number of
calculated components (de Sousa Marques et al., 2013).
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One strategy to avoid overfitting in the SPA-LDA and GA-LDA
models is to use a validation set to guide variable selection. The
optimal number of variables for SPA-LDA and GA-LDA was
determined from the minimum of the cost function G calculated
for a given validation dataset as (de Sousa Marques et al., 2013)

G � 1
Nv

∑Nv

n�1
gn,

where Nv is the number of validation samples and gn is defined as

gn � r2 xn, mI n( )( )
minI m( )≠I n( ) r2 xn, mI n( )( ),

where I(n) is the true class index for the nth validation object xn; the
numerator r2(xn,mI(n)) is the squared Mahalanobis distance
between the object xn (of class index I(n)) and the sample mean
mI(n) of this true class; and the denominator is the squared
Mahalanobis distance between object xn and the error center of
the nearest class, i.e., the wrong class (Neves et al., 2016).

To obtain a discriminant profile, the LDA classification score
(Lij) is calculated for a given class k by the following equation:

Lik � xi − �xk( )TΣ−1
pooled xi − �xk( ) − 2 loge πk,

where xi is an unknown measurement vector for the sample i; �xk is
the measurement vector for the mean of the classes k; Σpooled is the
pooled matrix of covariance; and πk is the prior probability of class k
(Neves et al., 2016).

The GA algorithm was set to a minimum of 40 generations and a
maximum of 80 generations. Crossover and mutation probabilities
were set to 60% and 10%, respectively, and repeated three times,
starting from different random initial populations.

Accuracy (number of samples correctly classified considering
true and false negatives) (Morais et al., 2020), sensitivity (SENS, the
confidence that a positive result for a sample of the label class is
obtained) (Morais et al., 2020), specificity (SPEC, the confidence that
a negative result for a sample of the non-label class is obtained)
(Morais et al., 2020), G-score (model performance not accounting
for class size) (Morais et al., 2020), and AUC (area under the curve
that measures the relation between true positives and false positives,
giving the probability of a model to classify a random positive
example higher than a random negative example) (López et al.,
2013) were calculated as important quality parameters in test
evaluation.

Accuracy %( ) � TP + TN

TP + FP + TN + FN
× 100,

SENS %( ) � TP

TP + FN
( ) × 100,

SPEC %( ) � TN

TN + FP
( ) × 100,

Gscore � �������������
SENS × SPEC,

√

AUC � 1 + TPR − FPR,

2

where

TPR � TP

TP + FN
( ),

and

FPR � FP

FP + TN
( ).

TPR and FPR are true-positive rate (percentage of positive
instances correctly classified) and false-positive rate
(percentage of negative instances misclassified), respectively,
FN is defined as false negative, and FP is false positive. TP and
TN are defined as true positive and true negative, respectively
(López et al., 2013).

Herein, for all calculations, C. auris CBS1093 samples were
considered the positive class (“disease group”) and C. hemulonii
CH02 samples as the negative class (“control group”). Figure 1
shows a flowchart describing the methodology of this work.

Results and discussion

Differentiating between C. auris and C. haemulonii complex
species is challenging in clinical practice because these species have
phylogenetic proximity and share similar morphological and

FIGURE 1
Flowchart describing the methodology.
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physiological characteristics. Figure 2 shows the macro-morphology
of the colonies (Figure 2A) and the micro-morphology of the cells
(Figures 2B, C) of the two species, highlighting how they are

morphologically similar. Both species typically display yeast-like
growth on standard laboratory media, forming smooth, creamy
colonies with similar morphological features observed under
microscopy (Figure 2).

Figures 3A, B show the raw NIR spectra obtained for individual
colonies (Figure 2A) of C. auris CBS10913 and C. haemulonii CH02,

FIGURE 2
(A)Candida aurisCBS10913 andC. haemulonii CH02 samples for
visual comparation. Microscopy of C. auris CBS10913 (B) and (C) C.
haemulonii CH02 in methylene blue at ×100 magnification by an
optical microscope.

FIGURE 3
Raw infrared spectra for (A) Candida auris CBS10913 and (B)
Candida haemulonii CH02 samples. (C) All pretreated spectra for both
species and (D)mean pretreated spectra for both species wereC. auris
CBS10913 and C. haemulonii CH02 are represented by red and
blue lines, respectively.
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respectively. Figure 3C shows all spectra, for both species, after
pretreatment. Figure 3D presents the mean pretreated spectra for
both species. The region between 2,200 and 2,600 nm from the raw
NIR spectra (Figures 3A, B) showed a poor signal-to-noise ratio (S/
N) and was removed before building the discrimination models as it
may not provide any useful information. As pretreatments,
Savitzky–Golay smoothing filter (5 points window) and extended
multiplicative scatter correction (EMSC) were applied, both from
the PLS ToolBox (Eigenvector Research, Inc., Manson,WA, USA) in
the MATLAB environment, to improve the signal and correct it for
light scatterings, respectively. Figure 3D shows the spectral similarity
between classes. The spectra are slightly shifted downward, relative

to each other, but these are mean spectra, and distinguishing an
isolated spectrum from another to separate the sample class is very
difficult, necessitating computational analysis to identify markers
responsible for differences between species.

First, an exploratory analysis was carried out by applying
hierarchical cluster analysis (HCA) and PCA to observe the
behavior of samples regarding their division in clusters related
to the species of Candida without the need of any prior class
information. To perform the HCA, it is necessary to have a metric
function for sample distances (in this case the Mahalanobis
distance was applied), a linkage criterion among groups
(Ward’s linkage was used), and the agglomerative hierarchical

FIGURE 4
HCA (A) of NIR for Candida auris CBS10913 (red) and C. haemulonii CH02 (green). PCA scores for Candida auris CBS10913 and C.
haemulonii CH02 (B).
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clustering technique was used. Initially, each sample is
considered an individual cluster, and subsequently, pairs of
clusters are merged based on their similarities. This process

results in a dendrogram, a two-dimensional tree-like diagram
that shows the groups of merged samples (Neves et al., 2021). The
dendrogram in Figure 4A shows the presence of two main

FIGURE 5
(A) PCA-LDA discriminant function over the NIR spectra forC. auris CBS10913 and C. haemulonii CH02. (B) SPA-LDA discriminant function over the
NIR spectra for C. auris CBS10913 and C. haemulonii CH02. (C) GA-LDA discriminant function over the NIR spectra for C. auris CBS10913 and C.
haemulonii CH02.
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clusters, where the two classes of Candida are mixed, highlighting
their similarities. When the NIR data are analyzed by PCA, two
distinct groups for each class are formed, as shown in the PCA
score plots (Figure 4B). Although the first two principal
components of PCA accounted for 89.4% of the explained
variance and were able to separate the two distinct groups for
each class, a mathematical function is still needed to predict the
classes so that the model can be used for unknown samples in
future diagnoses.

Candida auris CBS10913 vs. Candida
haemulonii CH02

Figure 5A represents the Fisher discriminant function for PCA-
LDA. Only two PCs were needed to explain 92.22% of data variation
and showed good separation. Although the PCA-LDA model
satisfactorily discriminated the classes, considering attempts to
correlate classification results with biomarker searches by
attributing functional groups and/or chemical bonds reflected in
NIR wavelengths, PCA-LDA may not be the best option available
due to its nature of creating a new space and losing the original
information. An alternative to that issue is using SPA and GA
algorithms to select the most important variables (wavelengths) for
the model. Figures 5B, C show the discriminant function over the
spectral observation points for SPA-LDA and GA-LDA,
respectively. In addition to selecting the ideal number of
variables, these algorithms were able to increase the visual
separation.

Table 1 displays the confusion matrix showing real and
predicted classes and the number of samples in which each
algorithm classified them. For this case, the positive class is
represented by C. auris CBS10913 and the negative class is
represented by C. haemulonii CH02. As shown in Table 2, the
three methods were capable of classifying the species with maximum
sensitivity (meaning their capability to correctly identify patients
positive for C. auris infection) and specificity (meaning the
capability of models to identify patients positive for C. hemulonii
infection). Although PCA-LDA results are equally satisfactory, SPA-
LDA and GA-LDA have identified the most important variables for
the models, as depicted in Figures 6A, B.

SPA-LDA selected the following wavelengths in nanometers:
931, 953, 1389, 1830, and 1894. These wavelengths are associated
with the third overtone of C-H bonds in hydrocarbons, alcohol
secondary overtones, C-H combination bands associated with long
aliphatic molecules, O-H/C-H combination bands of
polysaccharides, and C=O stretch second overtone of carboxylic
acids, respectively. GA-LDA selected 940, 1135, 1384, 1557, 1830,
and 1903. These wavelengths are associated with the second
overtone of alcohol combination bands, hydrogen bond
secondary amide second overtone, C-H combination bands
associated with long aliphatic molecules, hydrogen bond
secondary amide first overtone, O-H/C-H combination bands of
polysaccharides, and hydrogen bond in P-OH group first overtone,
respectively (Siesler et al., 2001; Workman and Weyer, 2008). The
wavelengths selected by SPA-LDA and GA-LDA correspond highly
to the subtle spectral differences observed between the species,
which could be attributed to important intrinsic variations such
as different polysaccharides, peptides, or protein structures in the
cell wall and metabolic products (Garcia-Rubio et al., 2019; Oliver
et al., 2020).

The discriminatory ability of the models presented herein is not
only equivalent but also outstanding when considering the results
achieved for all the quality performance parameters evaluated in this
study, as seen in Table 2. However, it is important to note that,
among the other reduction algorithms in this study, SPA has the
advantage of being deterministic, i.e., it always returns the same
selected variables each run. In contrast, GA may vary slightly in the
selection of variables across different runs due to its random nature,
while the original variables are not present in PCA anymore, as it
generates two new latent variables to explain the variance within the
data. This aspect of SPA might play an important role when
considering the assignment of the main variables responsible for
the discrimination and their correlation with groups of molecules
that may act as biomarkers. The area under the curve (AUC) of

TABLE 1 Table of confusion from PCA-LDA, SPA-LDA, and GA-LDA models.

Actual class C. auris C. haemulonii

PCA-LDA

C. auris 15 0

C. haemulonii 0 15

SPA-LDA

C. auris 15 0

C. haemulonii 0 15

GA-LDA

C. auris 15 0

C. haemulonii 0 15

TABLE 2 Quality performance values from PCA-LDA, SPA-LDA, and GA-LDA models.

Quality performance feature PCA-LDA SPA-LDA GA-LDA

Accuracy (%) 100 100 100

Sensitivity (%) 100 100 100

Specificity (%) 100 100 100

G-score 100 100 100

AUC 1 1 1
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prediction samples for SPA-LDA, which evidences the model’s
capacity to truly classify and not just give random results,
accounted for the maximum value of 1.

In addition to differentiating two emergent yeast species, our
results are very important in the context of clinical practice.
Individuals who are at risk of acquiring C. auris infections are
primarily hospitalized and nursing home patients. These patients
generally have comorbidities that, together with the multidrug-
resistant nature of the yeast, contribute to the lethality of this

infection, which can reach up to 60% of cases (Wang et al., 2018).
Additionally, Candida haemulonii has emerged as an
opportunistic pathogenic fungus associated with nail
infections, onychomycosis, paronychia, vaginal candidiasis,
blood infections, and several fungemia related to catheters,
osteitis, and outbreaks in ICUs (Leite-Jr et al., 2023). The
rapid identification of these species, facilitated by the method
employed in this study, enables the prompt application of
targeted treatments.

FIGURE 6
(A) Variable selection of SPA-LDA over themean pretreated spectra forCandida aurisCBS10913 (orange line) andC. haemuloniiCH02 (blue line). (B)
Variable selection of GA-LDA over the mean pretreated spectra for Candida auris CBS10913 (orange line) and C. haemulonii CH02 (blue line).
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Standard methods to diagnose candidiasis, in general, can be
laborious or highly costly. For example, through direct mycological
examination (slides of biological material, whether oral, vaginal, or
bloodstream mucosa) treated with KOH solution and stained with
an appropriate dye and/or by cultivation in specific mycological
media, with subsequent identification of the pathogen by
microscopic examination of its structures, through automation,
MALDI-TOF, or molecular methods (Colombo et al., 2013;
Montes et al., 2019). On the other hand, our study provides a
more efficient, simple, and cost-effective method to discriminate
between Candida auris and Candida haemulonii since there is no
need for highly specialized personnel, sample preparation, or very
expensive materials and equipment.

Previous studies have recognized the potential of NIR
spectroscopy in mycology. For instance, Cebrián et al. (2021)
presented data demonstrating the utility of NIR in identifying
substances produced by molds, while Santos et al. (2010)
demonstrated the capability of identification and characterization
of filamentous fungi and yeast forms through Fourier transform
infrared spectroscopy (Santos et al., 2010; Cebrián et al., 2021).
Essendoubi et al. (2005) used Fourier transform infrared
spectroscopy with hierarchical clustering analysis to distinguish
Candia species (Candida albicans, Candida glabrata, Candida
parapsilosis, Candida tropicalis, Candida krusei, and Candida
kefyr) (Essendoubi et al., 2005). However, our study marks the
first instance of employing NIR spectroscopy in conjunction with
supervised algorithms for this specific purpose. This approach has
been shown to be more precise than unsupervised methods, as
discrimination is based on a mathematical function that calculates
the probability of a sample belonging to a given class, i.e., creates a
model. Notably, our methodology successfully differentiated
between two Candida species, highlighting its efficacy.

Conclusion

This study successfully differentiated between the closely
related species C. auris CBS10913 and C. haemulonii
CH02 using NIR spectroscopy combined with multivariate
analysis. The SPA-LDA and GA-LDA models achieved 100%
accuracy, sensitivity, and specificity in distinguishing these
species. These models identified crucial spectral features,
demonstrating robust discriminatory capabilities. SPA-LDA
showed a significant advantage in biomarker identification due
to its deterministic nature. The selected wavelengths correlated
with subtle spectral variations, potentially linked to
polysaccharides, peptide or protein structures, and metabolic
products. These findings suggest that NIR spectroscopy,
coupled with advanced multivariate analysis, can offer a rapid,
accurate, and cost-effective method for yeast identification,
improving clinical diagnostics and treatment strategies.
Further validation with larger datasets is recommended to
extend this approach to other Candida species.
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