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Introduction: Smart multifunctional surfaces targeting intricate biological events
or versatile therapeutic strategies are imminent to achieve long-term
transmucosal implant success.

Methods: This study used dopamine (DA), graphene oxide (GO), and type IV
collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their
universal adhesive and biomimetic properties to design a versatile and
bioactive titanium implant. The characterization of DGCn on different titanium
surfaces was performed, and its loading capacity, release profile, in situ gene
delivery, and in vitro biological properties were preliminarily evaluated.

Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide
a better platform for the DGCn coating thanmachined Ti and air-TiO2 nanotubes.
The H-DGC10 displayed the most stable surface with excellent loading capacity,
sustained-release profile, and in situ gene transfection efficiency; this could be
due to the high specific surface area of H and GO, as well as the functional groups
in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for
human oral epithelial cells and promoted the expression of integrin β4 and
laminin 332, both being hemidesmosome-related proteins.

Discussion: Our findings suggest that H-DGCn can be designed as a smart
multifunctional interface for titanium implants to achieve long-term
transmucosal implant success and aid in versatile therapeutic strategies.
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1 Introduction

The long-term success of dental implants is not only limited to stable osseointegration
but also to the sealing effect of transmucosal soft tissues. Firm soft-tissue integration can
resist mechanical stress, microbial invasion, and marginal bone resorption (Saso and Lee,
2018; Ahamed et al., 2021; Kunrath and Gerhardt, 2023). However, the implant–soft-tissue
interface can exhibit inferior sealing functionality compared with natural teeth, leading to
various biological complications such as peri-implant mucositis and peri-implantitis
(Iacov-Craitoiu and Craitoiu, 2020; Weinstein et al., 2020). Titanium—the preferred
biomaterial for dental implants—has been widely investigated to facilitate

OPEN ACCESS

EDITED BY

Agata Blacha-Grzechnik,
Silesian University of Technology, Poland

REVIEWED BY

Rajnish Kumar,
University of North Carolina at Chapel Hill,
United States
Preeti Gupta,
Leibniz Institute for Solid State and Materials
Research Dresden (IFW Dresden), Germany
Kui Xu,
Anhui University of Chinese Medicine, China

*CORRESPONDENCE

Su Chen,
chensu@mail.ccmu.edu.cn

RECEIVED 02 May 2024
ACCEPTED 17 June 2024
PUBLISHED 05 July 2024

CITATION

Wang C, Lu R, Cao X, Mu Y and Chen S (2024),
Multifunctional and bioinspired titanium surface
with multilayer nanofilms for novel dental
implant applications.
Front. Chem. 12:1426865.
doi: 10.3389/fchem.2024.1426865

COPYRIGHT

© 2024 Wang, Lu, Cao, Mu and Chen. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 05 July 2024
DOI 10.3389/fchem.2024.1426865

https://www.frontiersin.org/articles/10.3389/fchem.2024.1426865/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1426865/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1426865/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1426865/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1426865&domain=pdf&date_stamp=2024-07-05
mailto:chensu@mail.ccmu.edu.cn
mailto:chensu@mail.ccmu.edu.cn
https://doi.org/10.3389/fchem.2024.1426865
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1426865


osseointegration. Currently, well-modified titanium surfaces for
soft-tissue sealing are at the forefront of implant research.

Nanostructured, biomimetic, and antibacterial surfaces have
been demonstrated to modulate soft-tissue integration and
reduce biofilm formation (Guo et al., 2021; Areid et al., 2024;
Shrivas et al., 2024). However, most modified surfaces have been
developed with a single function for a specific objective, and may
not cope with intricate peri-implant microenvironments. In
practice, versatile surfaces are required. Mathur et al. (Mathur
et al., 2022) fabricated a gelatin electrospun mat scaffold
embedded with silver nanoparticles on a titanium alloy surface
to improve fibroblast adhesion, differentiation, and antimicrobial
activity. Boda et al. (Boda and Aparicio, 2022) introduced
adhesive peptides and anti-inflammatory biomolecules into a
dual-function titanium coating to reduce the inflammatory
response and improve soft-tissue adhesion. Another study
fabricated multilayer alginate/chlorhexidine coatings on
titanium surfaces and demonstrated that the modified coatings
inhibited plaque biofilm formation and decreased inflammation
in vivo (Wu et al., 2023). Importantly, the coatings led to the
adhesion and proliferation of fibroblasts, even in a bacterial
environment. However, these methods are often designed to
load a specific substance for a specific biological effect, which
is not conducive to their general application or popularization.
Consequently, a smart multifunctional surface with bioactive,
immunomodulatory, and antibacterial properties that targets
complicated and diverse biological events and versatile
therapeutic strategies (such as bioactive molecule/drug/gene
delivery during soft-tissue integration), is urgently needed.

Dopamine (DA) is a biomimetic substance derived from mussel
adhesive proteins that can produce polydopamine (PDA) with more
functional groups via self-polymerization under alkaline conditions.
PDA is widely used to construct multifunctional bioengineering
materials owing to its excellent interfacial interactivity, bioactivity,
and antioxidant capacity (Liu et al., 2016; Ball, 2018; Xie et al., 2021).
Qin et al. (Qin et al., 2022) used PDA to immobilize BMP-2 gene
encapsulated in aminated poly (lactic-co-glycolic acid)
microspheres on polyetheretherketone. They verified that the
PDA coating enhanced biological activity and that gene delivery
effectively improved osteogenic differentiation. Another study
developed a multifunctional nanosystem with macrophage cell
membrane-camouflaged oseltamivir-PDA nanoparticles (Liu
et al., 2023b). PDA nanoparticles have been shown to suppress
inflammatory storms by removing reactive oxygen species, leading
to controlled drug release. Based on these properties, DA was
employed as a biomimetic substance and an adhesive interface
between titanium surfaces and other layers in this study.

Graphene oxide (GO) has recently emerged as a promising
material for biological applications. Sharma et al. (Sharma et al.,
2022) coated a polylactic acid scaffold with PDA-reduced GO, and
the designed coating exhibited antioxidant and antimicrobial
properties, as well as pro-angiogenic and osteoinductive
functionality. Kutwin et al. (Kutwin et al., 2021) used graphene-
based complexes as miRNA vectors to support anticancer therapy.
In another study, GOwas coated on collagenmembranes to enhance
their biocompatibility (Radunovic et al., 2017), with the GO-
modified membranes inducing stem cell differentiation and
reducing inflammation. Additionally, GO possesses a high

specific surface area and abundant active groups (such as
hydroxyl, carboxyl, and epoxy groups), which induce biochemical
and bioconjugation reactions (Tiwari et al., 2020). In this study, we
sought to take advantage of DA and GO to develop a flexible and
versatile titanium coating to achieve excellent multifunctional
integration. Impressively, GO has been widely applied in the
regeneration, antimicrobial, anti-inflammatory, and gene/drug
delivery fields (Hoseini-Ghahfarokhi et al., 2020; Raslan et al.,
2020; Ramirez and Osendi, 2022; Inchingolo et al., 2023).
Recently, bioactive coatings incorporating GO have been
constructed using the layer-by-layer (LBL) technology. A
previous study employed LBL to fabricate a multilayer coating on
magnesium alloy surface, utilizing chitosan-functionalized GO
(GOCS) and heparin (Hep). This coating not only improved
corrosion resistance but also enhanced biocompatibility with
endothelial cells (Gao et al., 2020). In another study, a
bioinspired PDA/GO/collagen coating was constructed using
LBL, serving as a multifunctional carrier for bioactive
components (Xu et al., 2021). Furthermore, You et al. (You
et al., 2024) developedε-poly-L-lysine (PLL)/GO self-assembly
multilayers, demonstrating that 20 layers of PLL/GO exhibited
remarkable antibacterial properties without any biological toxicity.

Biomimetic natural extracellular matrix (ECM) components
provide a comparable microenvironment for cell communication,
mechanotransduction, structural integrity, and signal regulation in
biomedical engineering (Tamayo-Angorrilla et al., 2022; Liu et al.,
2023a; Zhu et al., 2023). Type Ⅳ collagen (COL-Ⅳ)—a pivotal
component of the basement membrane (BM), a specialized thin
matrix of ECM that is critical for peri-implant soft tissue
sealing—can integrate with laminin polymeric networks for
epithelial cell anchoring. Coelho-Sampaio et al. (Coelho-Sampaio
et al., 2020) fabricated a flat BM-like network by assembling COL-Ⅳ
with poly-laminin, which was shown to be conducive to the
formation of stratified cell layers, organized F-actin, and tight
junctions. Another study designed a dense COL-Ⅳ and/or
laminin layer on type Ⅰ collagen film to mimic the Descemet’s
membrane (Palchesko et al., 2016). Moreover, Zeng et al. (Zeng
et al., 2020) developed a multilayer COL-Ⅳ/laminin nanofilm, and
demonstrated that the mimetic BM improved cell adhesion and
spreading, while inhibiting cell migration. Consequently,
constructing a biomimetic BM structure is potentially beneficial
for sealing transmucosal soft tissue.

In this study, we designed a biomimetic, flexible, and versatile
system as a template to target diverse biological events and develop
therapeutic strategies to promote peri-implant soft-tissue sealing.
Accordingly, multilayer DA/GO/COL-IV nanofilms were coated
onto different titanium surfaces using a LBL technique. The
surface characteristics, loading/delivery capabilities, and inherent
bioactivities of the modified surfaces were evaluated.

2 Materials and methods

2.1 Materials

Machined titanium specimens (99.99%) were purchased from
Cuibolin Nonferrous Metal Industry Co., Ltd. (Beijing, China).
Acetone, ethyl alcohol, ethylene glycol, and ammonium fluoride
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were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). XFNANO (Nanjing, China) provided us with
graphene oxide (GO) dispersion water (2 mg/mL, lateral size
50–200 nm). Dopamine (DA) hydrochloride, type Ⅳ collagen
(COL-Ⅳ), bovine serum albumin (BSA), and QuantiPro BCA
Assay Kit were purchased from Sigma-Aldrich (Merck,
Darmstadt, Germany). Sirius Red Total Collagen Detection Kit
was supplied by Chondrex, Inc. (Woodinville, WA,
United States). Recombinant adenoviral vectors expressing
mCherry (Ad-mCherry) were constructed by HANBIO
(Shanghai, China). Human oral epithelial cells (HOECs) were
purchased from Wuhan Pricella Biotechnology Co., Ltd. (Wuhan,
China). Anti-adenovirus type 5 antibody, rabbit antibody targeting
integrin β4, and DyLight 488-conjugated anti-rabbit IgG were
supplied by Abcam (Cambridge, United Kingdom).
Paraformaldehyde (4%), Triton X-100, goat serum, 3-(4, 5-
Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide
(MTT), and Calcein/PI Live/Dead Assay Kit were purchased
from Beyotime Biotechnology (Beijing, China). 4′,6-Diamidino-2-
phenylindole (DAPI) was purchased from ZSGB-BIO (Beijing,
China). Dulbecco’s Modified Eagle Medium (DMEM), fetal
bovine serum (FBS), and penicillin/streptomycin were obtained
from Gibco (Thermo Fisher Scientific Inc., United States). TRIzol
Reagent kit was purchased from Invitrogen (Carlsbad, CA,
United States). PrimeScript RT Reagent kit was purchased from
TaKaRa (Shiga, Japan). RT-PCR reagent was obtained from CWBio
(Beijing, China). The primer sequences for the target genes were
constructed by Shenggong (Shanghai, China).

2.2 Pretreatment of titanium specimens

Machined titanium specimens (10 mm× 10mm× 0.2 mm) were
used in this study. Ultrasonic cleaning was performed by rinsing the
specimens with acetone, ethyl alcohol, and distilled water for 5 min,
respectively. Anodic oxide specimens were then prepared by means
of an electrochemical method (at 50 V for 15 min) using Ti as the
anode and ethylene glycol (0.5 wt% ammonium fluoride and 10 vol
% deionized water) as the electrolyte. After annealing at 500°C for
2 h in air, the specimens were labeled as air-TiO2 nanotubes (A
group). Subsequently, hydrogenated TiO2 nanotubes (H group)
were prepared using a thermal hydrogenation technique under a
hydrogen atmosphere (0.95 × 105 Pa, 500°C, and 4 h). Machined
titanium (T) specimens were used as controls.

2.3 Preparation ofmultilayer DA/GO/COL-Ⅳ
(DGC) nanofilms

The layer-by-layer (LBL) self-assembly method was employed to
fabricate multilayer DGC nanofilms on the surfaces of the T, A, and H
groups. First, the specimenswere dipped in aDA/Tris solution (2.0mg/
mL, pH = 8.5) at 25°C. After 5 min, the specimens were washed thrice
and immersed in a GO suspension (0.5mg/mL) for another 5min. The
specimens were then assembled with COL-IV in a COL-Ⅳ/acetic acid
buffer solution (50 μg/mL, pH = 4.5) for 5 min. Following each
immersion, the specimens were cleaned three times with deionized
water to remove unbound components. By repeating this process 5, 10,

and 20 times, multilayer DGC nanofilms (DGCn, where n denotes the
number of DGC layers) were fabricated on the surfaces of the T, A, and
H groups (denoted as T-DGCn, A-DGCn, and H-DGCn, respectively).
All specimens intended for in vitro experiments were disinfected using
an ultraviolet device for 20 min on both sides.

2.4 Characterization of specimens

Scanning electron microscopy (SEM, SU8010, Hitachi, Ltd.,
Tokyo, Japan) was employed to observe the surface morphology
of the specimens. To determine the thickness of the nanofilms, the
specimens were embedded in resin, and cross-sectional slices were
obtained for SEM analysis. The elemental distribution on the
specimens was analyzed through energy dispersive spectroscopy
(EDS) equipped with SU8010 SEM. The surface roughness was
analyzed using atomic force microscopy (AFM; Dimension ICON,
Bruker, Germany). The contact angles (CAs) of the specimens were
measured using an optical system (OCA20; Data Physics
Instruments, Esslingen, Germany). The bonding strengths of the
nanofilms were assessed using a nanoscratch test (TI 980, Bruker).
Surface elemental composition and chemical state analyses were
performed using X-ray photoelectron spectroscopy (XPS; ESCALAB
Xi+, Thermo Scientific, United States).

2.5 Evaluation of COL-Ⅳ encapsulation

To evaluate the encapsulation capacities of the T-DGCn,
A-DGCn, and H-DGCn, quantitative amounts of COL-IV were
evaluated. Briefly, the T-DGCn, A-DGCn, and H-DGCn

specimens were placed in a 24-well plate, before being repeatedly
scraped with a pipette tip in 0.05 M acetic acid (350 μL/well) to
collect the encapsulated nanofilms. Subsequently, ultrasonic
treatment was performed for 10 min. The collected samples were
analyzed using the Sirius Red Total Collagen Detection Kit
according to the manufacturer’s instructions. The optical density
(OD) was measured at 520 nm using a microplate
spectrophotometer (SpectraMax Paradigm, Molecular Devices,
CA, United States). The amount of COL-IV encapsulated in the
DGC multilayers was calculated using regression analysis based on
the standard curve. The T-DGC10, A-DGC10, and H-DGC10

specimens were stained with Sirius Red and observed under a
stereoscopic microscope (Leica, Hamburg, Germany). The optical
images were captured using a digital camera.

2.6 Evaluation of protein release

To evaluate the release profile of the DGC nanofilms, BSA was
used as a model bioactive compound loaded onto the A-DGC10 and
H-DGC10. In brief, specimens were immersed in a BSA solution
(1 mg/mL) for 5 min between GO and COL-Ⅳ assembly during
fabrication of each DGC layer. After 10 repeated cycles, the A and H
specimens loaded with BSA-encapsulated DGC multilayers were
denoted as A-DGBC10 and H-DGBC10, respectively. The A-DGBC10

and H-DGBC10 specimens were then dipped into 350 μL phosphate
buffered saline (PBS, pH = 7.4), followed by incubation at 37°C and
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98% relative humidity. After 2, 4, 6, 8, 12, 24, 48, 72, 120, 168, 240,
and 336 h of incubation, 100 μL PBS containing the released protein
(COL-Ⅳ and BSA) was removed at each time point and 100 μL fresh
PBS was added. The collected protein samples were quantitatively
detected using a QuantiPro BCA Assay Kit according to
manufacturer’s instructions. After 168 and 336 h of release, the
A-DGBC10 and H-DGBC10 specimens were removed and washed
three times with deionized water. The surface morphology was
observed using SEM (Hitachi Ltd., Japan).

2.7 Transfection efficiency

To evaluate the capability of the DGC nanofilms as an in situ gene
delivery system, the transfection efficiency of cells on different
specimens was evaluated. Ad-mCherry was used as gene vector
models. An anti-adenovirus-functionalized surface, as described
previously (Lin et al., 2010) was used as the positive control. In
brief, the H-DGC10 samples were incubated with anti-adenovirus type
5 antibody (Ab; 1:1,000) overnight at 4°C. After three washes with
PBS, the samples were labeled as H-DGC10-Ab. Subsequently, the H,
H-DGC10, and H-DGC10-Ab were incubated with Ad-mCherry (0.1,
0.5, 1.0, and 2.0 × 108 PFU/mL) in 24-well plates at 37°C for 4 h.
Following three cycles of washing to remove the unbonded Ad-
mCherry, HOECs were seeded on the specimens at a density of
1 × 105 cells/well. After being transfected for 3 days, the cells were fixed
with 4% paraformaldehyde and stained with DAPI. The samples were
observed under a fluorescence microscope (Olympus). The
percentage of mCherry-positive cells in three randomly selected
microscopic fields was calculated using ImageJ software.

2.8 Evaluation of biological effects
on HOECs

2.8.1 Cell culture
The HOECs were cultured in a complete DMEM supplemented

with 10% FBS and 1% penicillin/streptomycin at 37°C in a 5% CO2

atmosphere.

2.8.2 Cell viability and proliferation
The effects of the T, A, H, T-DGC10, A-DGC10, and H-DGC10

on cell viability were evaluated using live/dead cell staining and the
MTT assay. The HOECs were seeded onto the specimens at a density
of 3 × 105 cells/well in 24-well plates. After culturing for 24 h, the
cells were stained using a Calcein/PI Live/Dead Assay Kit according
to the manufacturer’s instructions. The samples were observed
under a fluorescence microscope (BX51; Olympus, Tokyo, Japan),
and representative images were captured. The quantitative living cell
ratio (%) was analyzed using ImageJ software.

To assess cell proliferation on the T, A, H, T-DGC10, A-DGC10,
and H-DGC10 surfaces, the HOECs were seeded in 24-well plates (3 ×
105 cells/well). After incubation for 1, 3, and 5 days, the cell
proliferation was evaluated using MTT. Briefly, at each time point,
the medium was replaced by 350 µL complete medium containing
10% 5 mg/mL MTT solution in each well. The MTT was reduced to
formazan pigment by living cells after being incubated at 37°C for 4 h.
Subsequently, formazan pigment was dissolved using 350 µL dimethyl

sulfoxide, and the solution was transferred to 96-well plates (100 µL/
well). The OD values were measured using a microplate
spectrophotometer (SpectraMax Paradigm, United States) at 570 nm.

2.8.3 Immunofluorescence
Integrin β4, a hemidesmosome-related protein, was determined

using immunofluorescence assay. The HOECs were cultured on
different surfaces at a density of 5 × 104 cells/well in 24-well plates
for 48 h. After three washes with PBS, the cells were fixed with 4%
paraformaldehyde at room temperature for 15 min, followed by
permeabilization with 0.1% Triton X-100 for 10 min. Subsequently,
the cells were blocked with 10% goat serum for 30 min and
incubated with a specific primary rabbit antibody targeting
integrin β4 (1:250 dilution) overnight at 4°C. After three washes,
the cells were incubated with DyLight 488-conjugated anti-rabbit
IgG (1:400 dilution) in the dark for 1 h at room temperature and
with DAPI for 5 min. Fluorescent images were obtained using a
fluorescence microscope equipped with a camera (Olympus,
Tokyo, Japan).

2.8.4 Quantitative real-time polymerase chain
reaction (RT-PCR)

RT-PCR was conducted to evaluate the relative gene expression
levels in HOECs on different surfaces. HOECs were seeded on T, A,
H, T-DGC10, A-DGC10, and H-DGC10 at a density of 5 × 105 cells/
well in six-well plates. After 48 h of incubation, total RNA was
extracted from the HOECs using a TRIzol Reagent kit. Subsequently,
all samples underwent reverse transcription with a PrimeScript RT
Reagent kit. The expression levels of integrin β4 (ITGB4) and
laminin 332 (LAMA3) were then determined using RT-PCR
reagent. To normalized the Ct values, GAPDH expression was
used as an internal control. The relative gene expression was
calculated using the 2(−ΔΔCt) method. The primer sequences for
the target genes are listed in Table 1.

2.9 Statistical analysis

All quantitative values were indicated as means ± standard
deviation. Statistical analyses were performed using SPSS 19.0
(International Business Machines Corporation, NY,
United States) via one-way analysis of variance (ANOVA) or the
Kolmogorov-Smirnov test. Statistically, p < 0.05 was considered
significant.

3 Results

3.1 Characterization of specimens

The SEM topographies of the T-DGCn, A-DGCn, and
H-DGCn [where n represents 0, 5, 10, or 20 layers of
dopamine/graphene oxide/type Ⅳ collagen (DA/GO/COL-Ⅳ,
DGC)] are shown in Figure 1A. It is evident that group T
exhibits relatively smooth surfaces, whereas groups A and H
exhibit uniform nanotubes with diameters of approximately
100 nm. TiO2 nanotubes (TNTs) with large diameters, such as
100 nm, have been reported to exhibit increased surface energy
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and hydrophilicity. This enhanced property allows for greater
loading capacity of proteins/drugs, ultimately leading to
improved drug elution performance (Peng L et al., 2009;
Kulkarni et al., 2015; Martinez-Marquez et al., 2020; Lin et al.,
2021). Therefore, in this study, TNTs with a diameter of 100 nm
were used as the initial platform for coating DGC nanofilms.
Following assembly with five DGC layers, nanoparticles are

evident in the T group, whereas nanofilm structures are
formed on the nanotubes in the A and H groups (the
nanofilm on the H surface covering a larger area than that on
the A surface). The nanotubes in groups A and H are completely
and uniformly covered with 10 and 20 DGC nanofilm layers,
respectively. More GO ruffles (arrowheads) are evident in the
H-DGC10 than in the A-DGC10. However, uneven and porous

TABLE 1 Primer pairs used in RT-PCR analysis.

Gene Forward primers (5′ to 3′) Reverse primers (5′ to 3′)

LAMA3 CGTCTTGGCTCACTCTGTATT GGCTGACTTCCGATGTGTATTA

ITGB4 AGAACCTGAACGAGGTCTACA TCCACAATGGTGTGGTCTTG

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

FIGURE 1
Surface topography and cross-sectional observation of different samples by SEM. (A) Surface topography of different samples (×30,000).
Arrowheads: GO ruffles; arrows: uneven and porous defects. Cross-sectional observation and EDSmapping images of (B) the A-DGC10 group (×30,000)
and (C) the H-DGC10 group (×30,000). The dashed line marks the DGC nanofilms on the surface of titanium dioxide nanotubes. The straight line marks
the boundary between the titanium substrate and the nanotubes. (D) Thickness of nanofilms on the A-DGC10 and H-DGC10 determined from cross-
sectional SEM and EDS mapping images. a, p < 0.05 vs the thickness of the A-DGC10 group.
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defects (arrows) appear on the surfaces of A-DGC20 and
H-DGC20, indicating instability of the nanofilms. Additionally,
the thicknesses of the DGC10 nanofilms were analyzed via cross-
sectional observation and EDS mapping (Figures 1B,C), with the
quantitative values indicating the thicknesses of the A-DGC10

and H-DGC10 to be 177 and 219 nm, respectively (Figure 1D).
Unfortunately, the thickness of the T-DGC10 could not be
reliably obtained, which may have been due to the DA/GO/
COL-Ⅳ failing to form nanofilms on the T surfaces.

Two-dimensional images of the surface topography obtained
by AFM are shown in Figure 2, and the surface features of the
different groups are consistent with those of the SEM
observations. The surface roughness (Ra) of the different
groups was analyzed using AFM. As shown in Figure 3A, the
DGC coatings increase the Ra values of the T surfaces and
decrease those of the A and H surfaces. The Ra values of the
H-DGC10 and H-DGC20 are lower than that of group A. For
DGC10 and DGC20 in all groups, increasing the number of layers
of DGC has no effect on the surface roughness (p > 0.05).

Figure 3B shows the contact angle (CA) values of different
samples. It is evident that the DGC coating decreases the CA values
of the T surfaces and increases those of the A and H surfaces. The

CA values of the T-DGCn and H-DGCn groups does not change
significantly when the number of DGC nanofilms increases from
5 to 20 layers.

On behalf of DGCn on different titanium substrates, the
microtribological properties of the T-DGC10, A-DGC10, and
H-DGC10 were evaluated using a nanoscratch test. As shown in
Figure 3C, the critical loads for the T-DGC10, A-DGC10, and
H-DGC10 are approximately 16, 30, and 45 mN, respectively.

The XPS spectra of the A groups and H groups are shown in
Figure 4. With the coating of DGC nanofilms, the Ti2p signal
disappears, whereas the N1s signal derived from the DA and COL-
Ⅳ appears along with enhanced C1s signal in the DGCn groups
compared to the A or H group (Figures 4A,E). The XPS spectra of
the A, A-DGC5, A-DGC10, andA-DGC20 groups reveal element signals
that closely resemble those observed in the corresponding H groups.
The high-resolution C1s spectra of theDGCn groups were resolved into
five peaks assigned to C-C/C=C/CHx, C-N, C-O, C=O, and O-C=O,
respectively (Figures 4B–D and Figure 4F–H). The percentage of C-N
in the H-DGC5 group (5.1%) is lower than that in the H-DGC10 (7.3%)
and H-DGC20 (8.0%). However, it is worth noting that the percentages
of C-N in the A groups are comparatively lower than those in the
corresponding H groups.

FIGURE 2
Reconstructed two-dimensional topographical images of different samples by AFM.
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3.2 Evaluation of COL-Ⅳ encapsulation

Quantitative results of the COL-IV encapsulation in the
T-DGCn, A-DGCn, and H-DGCn are shown in Figure 5A. The

COL-Ⅳ contents in DGC10 and DGC20 are similar to each other
irrespective of the group (p > 0.05). When loading the same number
of DGC layers, the COL-Ⅳ content in the T group is the least,
followed by the A group, with the H group exhibiting the most COL-

FIGURE 3
Surface physical characteristics of samples. (A) Surface roughness (Ra) of different surfaces determined by AFM. a, p < 0.05 vs the Ra value of the
DGC0 group; b, p < 0.05 vs the Ra of the DGC5 group. (B)Water contact angles (CAs) of different surfaces. a, p < 0.05 vs the CA of the DGC0 group; b, p <
0.05 vs the CA of the DGC5 group; c, p < 0.05 vs the CA of the DGC10 group. (C) Nanoscratch test of the T-DGC10, A-DGC10, and H-DGC10 with critical
points at 16, 30, and 45 mN, respectively.

FIGURE 4
XPS results of samples. (A) XPS spectra of the A, A-DGC5, A-DGC10, and A-DGC20. High-resolution XPS spectra of C1s for the (B) A-DGC5, (C)
A-DGC10, and (D) A-DGC20. (E) XPS spectra of the H, H-DGC5, H-DGC10, and H-DGC20. High-resolution XPS spectra of C1s for the (F) H-DGC5, (G)
H-DGC10, and (H) H-DGC20.
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Ⅳ content. The inserts in Figure 5A show the surface COL-Ⅳ
staining of the T-DGC10, A-DGC10, and H-DGC10, with the COL-Ⅳ
being distributed more evenly and abundantly on the
H-DGC10 surface.

3.3 Evaluation of protein release

It can be difficult to measure the protein release in the
T-DGC10 group because of the small amount of protein
loading. Therefore, only the protein release profile of
A-DGBC10 and H-DGBC10 are shown in Figure 5B. During the
initial 24 h, proteins are rapidly released in both groups. In
particular, the accumulated protein release in the A-DGBC10

group is up to approximately 60%, whereas it is at 45% in the
H-DGBC10 group. Importantly, the protein release in the
A-DGBC10 and H-DGBC10 groups is relatively slow and
sustained until day 14, especially in the H-DGBC10

group. Within 336 h, the accumulated protein release from the
A-DGBC10 and H-DGBC10 groups was 95% and 64%, respectively.
The surface topographies of the A-DGBC10 and H-DGBC10 groups
after 168 and 336 h of protein release are shown in Figure 5C. With
the protein release, the nanofilms on the surfaces of the A-DGBC10

and H-DGBC10 groups disintegrate into nanoparticles. Moreover,
the remaining DGBC components on the H-DGBC10 surfaces are
greater than those on the A-DGBC10 surfaces. Some nanofilm
structures remained on the surface of H-DGBC10 even after 336 h.

3.4 Evaluation of gene delivery

The transfection efficiency of the human oral epithelial cells
(HOECs) was used to evaluate the capability of different groups as
gene delivery systems. Representative fluorescence images of
mCherry expression on different surfaces are shown in
Figure 6A. Quantitative analysis showed that transfection
efficiency in the HOECs was low in all groups at a titer of 0.1 ×
108 PFU/mL (Figure 6B). Modification of the H surface with DGC
nanofilms significantly increased the transfection efficiency of the
HOECs when the titer of Ad-mCherry was no less than 0.5 ×
108 PFU/mL (p < 0.05). The transfection efficiency of the HOECs on
the H-DGC10 and H-DGC10-Ab was above 85% at titers of 1.0 and
2.0 × 108 PFU/mL without significant differences (p > 0.05).

3.5 Evaluation of biological effects
on HOECs

3.5.1 Cell viability and proliferation
Representative live/dead cell-staining images are shown in

Figure 7A. It is evident that there are few dead cells in all groups,
indicating the excellent cytocompatibility of all surfaces. The quantitative
results showed that the living cell ratio of all groups was above 97%
(Figure 7B). As shown in Figure 7C, theDGCnanofilms on the T,A, and
H surfaces slightly increases cell proliferation, although the difference is
not statistically significant (p > 0.05). Cell proliferation significantly

FIGURE 5
Protein content and protein release of samples. (A) COL-Ⅳ encapsulation in different groups. a, p < 0.05 vs the COL-Ⅳ content of the DGC5

group. The inserts show the surfaceCOL-Ⅳ staining of the T-DGC10, A-DGC10, andH-DGC10. (B) Accumulated protein release behavior of the A-DGBC10

andH-DGBC10 surfaces after incubation in PBS at 37°C for 336 h. (C) Surface topographies of the A-DGBC10 andH-DGBC10 after 168 and 336 h of protein
release by SEM (×30,000).
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improves in the H and H-DGC10 groups compared to the T
group (p < 0.05).

3.5.2 Immunofluorescence
The expression of integrin β4 in the HOECs cultured on

different surfaces is displayed in Figure 8. It is evident that
integrin β4 is diffusedly distributed around the nuclei of the
HOECs on the T and A surfaces, while clustered integrin
β4 immunoreactivity is evident at the periphery of the HOECs
on the H and DGC10 surfaces, especially on the H-DGC10 surface.

3.5.3 RT-PCR
As illustrated in Figure 9,HOECsonA-DGC10 andH-DGC10 exhibit

significantly higher expression levels of ITGB4 and LAMA3 when
compared to the initial uncoated platforms (p < 0.05). Additionally,
H-DGC10 exhibites the highest ITGB4 expression among all other groups
(p < 0.05), corroborating the immunofluorescence results.

4 Discussion

This study investigated the multilayer dopamine/graphene
oxide/type Ⅳ collagen (DA/GO/COL-Ⅳ, DGC) nanofilms coated

on different titanium surfaces and demonstrated that ten layers of
DGC nanofilms on hydrogenated TiO2 nanotubes significantly
optimized the bioactivity and loading/delivery capability of
biofunctional substances (such as proteins and gene vectors),
indicating that the proposed system could be a promising
template for multifunctional applications in the clinical
implant field.

To choose the optimal initial platform, this study evaluated
three different titanium surfaces for the DGCn coating. Our
results demonstrate that the DGC nanofilms on the
hydrogenated titanium dioxide nanotubes (TNTs, H-DGCn)
displayed the most uniform and stable coating surface with the
best loading capacity, followed by those on the A-DGCn and
T-DGCn. A larger specific surface area was evident on the
nanotubular surface of the H and A groups, providing more
binding sites (Mendonca et al., 2008; Park et al., 2021) for
DGC nanofilms. However, hydrogenated TNTs may generate
more functional hydroxyl groups to react with DA, GO, and
COL-IV. Previous studies have reported that the lattice defects
(oxygen vacancies) present in hydrogenated TiO2 lead to a stable
form of numerous hydroxyl groups on the surface (Chen et al.,
2011; Lu et al., 2018), suggesting a much greater affinity for
subsequent component binding. We assumed that the

FIGURE 6
Transfection efficiency. (A) Representative fluorescent images of mCherry expression of cells on the H, H-DGC10, and H-DGC-Ab at a titer of 1.0 ×
108 PFU/mL. Original magnification: ×4. (B) Transfection efficiency in the HOECs cultured on samples at different titers. a, p < 0.05 vs the transfection
efficiency of the H group; b, p < 0.05 vs the transfection efficiency of the H-DGC10.
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physicochemical characteristics of the DGC nanofilms were
dependent on the specific surface area and density of the
hydroxyl groups in the initial titanium platform.

We speculated that three types of components (DA, GO, and
COL-Ⅳ) interlace on the substrate surface through covalent bonds,

H-bonding, and electrostatic interaction to form DGC nanofilms
during the layer-by-layer (LBL) process. First, the hydroxyl groups
on different titanium surfaces interact with active catechol groups
from the PDA (self-polymerization of DA under alkaline
conditions) to form strong covalent attachments (Huang et al.,

FIGURE 7
Cell viability and proliferation. (A) Representative live/dead staining images of the HOECs cultured on the surface of the T, A, H, T-DGC10, A-DGC10,
and H-DGC10 for 24 h. (B) Living cell ratio of different samples determined from live/dead staining. a, p < 0.05 vs the living cell ratio of the T group. (C)Cell
proliferation on different surfaces after culturing for 1, 3, and 5 days a, p < 0.05 vs the cell proliferation of the T group; b, p < 0.05 vs the cell proliferation of
the A group; c, p < 0.05 vs the cell proliferation of the H group.

FIGURE 8
Immunofluorescence staining of integrin β4 in the HOECs cultured on different surfaces for 2 days. Original magnification: ×40. Green, integrin β4;
blue, nuclei.
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2016; Liu et al., 2016). More hydroxyl groups on the H surfaces may
contribute to more covalent attachment, leading to an increased
bonding strength of the H-DGC nanofilms (Figure 3C).
Additionally, some of the hydroxyl groups may form hydrogen
bonds with the amino, epoxy, and carboxyl groups from the PDA,
GO, and COL-Ⅳ. Moreover, deprotonated hydroxyl groups could
electrostatically interact with the protonated amino groups (-NH3

+)
of the PDA and COL-Ⅳ.

In addition to the interaction between the components
and initial platforms, the interaction between each
component in the LBL assembly process is crucial for
DGCn formation and loading capacity. The oxidated
catechol groups of the PDA could form covalent bonds
(quinone/semiquinone) with the amine groups of COL-Ⅳ
via similar Michael addition and Schiff reactions (Lee et al.,
2007; Cai et al., 2019). Subsequently, intermolecular
crosslinking reactions between the PDA polymers are
triggered. Our high-resolution C1s spectra showed that the
percentages of C-N in the DGC5 groups were less than those
in the DGC10 and DGC20 groups. Importantly, the H-DGCn

groups displayed higher percentages of C-N compared to the
A-DGCn groups. This difference could potentially be
attributed to the initial interactive coating on H surfaces,
which forms active multilayers for more component
interactions. Moreover, the functional hydroxyl and
carboxyl groups of GO can form ester or hydrogen bonds
(Tiwari et al., 2020) with PDA and COL-IV. The inherent
negative surface charge of GO (Li et al., 2008) can interact
with the COL-Ⅳ, which has a positive charge in acid solution.
All these interactions among the platform, PDA, GO, and
COL-Ⅳ determine the composition and structure of the DGC
nanofilms. Additionally, the high specific surface area of the
TNTs and GO may provide more binding sites for the DGC
coating and bioactive agent loading.

Our SEM results indicated instability in the nanofilms of
A-DGC20 and H-DGC20, which displayed uneven and porous
defects. Additionally, the Ra values and contact angles of DGC20

were comparable to those of DGC10. Our high-resolution C1s
spectra demonstrated that the percentages of C-N are similar in
the DGC10 and DGC20 groups. Moreover, there was no significant
difference in COL-Ⅳ contents between the DGC10 and DGC20

groups (p > 0.05). Based on these findings, we hypothesized that
the interactions among the platforms, PDA, GO, and COL-Ⅳmight
be approaching saturation once the DGC nanofilms was up to
10 layers. Therefore, we have chosen to focus our further
investigations, including nanofilm thickness, protein release
profiles, gene delivery, and biological evaluations, exclusively
on DGC10.

To introduce bioactive agents, peptides, proteins, drugs, or
therapeutic genes should be flexibly mobilized onto the titanium
surface to achieve sustainable release. In this study, the BSA and
adenoviral vectors were chosen as the two model bioactive agents
to evaluate the delivery and sustained-release capability of the
H-DGC10. BSA is a standard model protein for evaluating protein
adhesion and drug delivery owing to its high availability and well-
understood properties. Our results demonstrate that the sustained-
release ability of the H-DGC10 was better than that of A-DGC10,
suggesting excellent reactivity of the H-DGC10 for delivery
applications. We hypothesized that the H-DGC10 possessed
more residual hydroxyl, catechol, amino, or carboxyl groups to
produce a large number of reactive sites and electrostatic
interactions for substance loading and sustained release. The H
group, characterized by its superhydrophilic surface and
abundance of hydroxyl groups, might lead to a more interactive
initial DA/GO/COL-Ⅳ layers on surfaces. These layers
subsequently created additional binding sites for loading and
controlled release of other components. As a result, H-DGC10

nanofilms achieved a superior sustained-release profile compared

FIGURE 9
RT-PCR analysis of gene expression of HOECs cultured on the specimens for 48 h. a, p < 0.05 vs the relative gene expression of the T group; b, p <
0.05 vs the relative gene expression of the A group; c, p < 0.05 vs the relative gene expression of H group; d, p < 0.05 vs the relative gene expression of
T-DGC10 group; e, p < 0.05 vs the relative gene expression of A-DGC10 group.
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to A-DGC10. While DA and GO were incorporated into our
multilayer nanofilms owing to their universal adhesive property
suitable for numerous organic/inorganic surfaces, further
investigations are required to understand the specific
interactions between the nanofilms and different substances at
different concentrations.

The timely establishment of peri-implant soft-tissue integration
requires 7 days for initial epithelial attachment, and another
2–8 weeks for epithelial and connective tissue maturation
(Hämmerle et al., 2014; Guo et al., 2021). Consequently, the
release of bioactive agents during soft-tissue integration is crucial.
Our results indicate that the drug release of the H-DGC10 group was
sustained for 2 weeks, still retaining 40% unreleased; this supported
the initial attachment of peri-implant soft tissue. In other words, the
release profile of the H-DGC10 conforms to the soft-tissue
healing process.

Viral vectors are widely used in gene therapy owing to their
high transfection efficiency (Lee et al., 2017). However, unlike
negatively charged nucleic acids, viral vectors can be difficult to
immobilize on titanium surfaces for in situ gene delivery.
Substrate-mediated gene delivery—a method to immobilize
therapeutic genes directly on the substrate—has been reported
to improve transfection efficiency by increasing the local gene
concentration, leading to reduced gene doses and favorable
biosecurity (Mantz et al., 2019; Laird et al., 2020; Puhl et al.,
2023). However, therapeutic genes were more or less exposed to
the process of loading or modification in most studies. Zhang et al.
(Zhang et al., 2018) functionalized a titanium-coated surface with
anti-adenovirus antibodies to immobilize adenovirus vectors.
However, this functionalization method proved to be too
limited for widespread application in other vectors. This study
designed a more flexible coating for in situ gene delivery, and the
H-DGC10 displayed excellent transduction efficiency of up to 90%
with a low dose of vectors, thereby improving the biosafety. We
inferred that the PDA and GO layers on H-DGC10 provided plenty
of reactive sites for immobilizing gene vectors.

The junctional epithelium, which seals the peri-implant soft
tissue, attaches to the transmucosal implant surfaces through cell-
matrix structures comprising hemidesmosomes (HDs) and the
basement membrane (BM) (Gould et al., 1984; Atsuta et al.,
2019). Our results show that the thickness of the DGC nanofilms
on the A-DGC10 and H-DGC10 was around 200 nm, which is similar
to the bond width of the BM (60 nm–150 nm) (Stern, 1981; Atsuta
et al., 2016). We hypothesized that DGC nanofilms play biomimetic
and early adhesive roles in the initial epithelial sealing stage. When
the DGC nanofilms disintegrates (Figure 5C), the cell-material
interface is gradually constructed with a natural matrix secreted
by the epithelial cells.

Our in vitro investigations show that the DGC nanofilms
grown on different substrates exhibited good biocompatibility
with the HOECs. Laminin 332, a pivotal BM protein, has been
reported to interact with integrin α6β4 to modulate cell adhesion
and HD formation (Larjava et al., 2011; Taniguchi et al., 2020; Te
Molder et al., 2021). Mirjam et al. (Nievers et al., 2000) verified that
integrin β4 could bind to HD1/plectin to form HD-like structures.
In this study, the H-DGC10 significantly promoted the clustering of
integrin β4 and the gene expression levels of integrin β4 and

laminin 332, which could participate in HD formation.
Additionally, the plentiful binding sites on the H-DGC10

surfaces could improve the adhesion of the HOECs, and the
COL-Ⅳ molecules could interact with membrane receptors to
facilitate the secretion of functional matrixes for the BM
assembly and cell anchorage (Khoshnoodi et al., 2008; Takeuchi
et al., 2010). We speculated that the superior performance of
H-DGC10 could be attributed to the larger amount of active
binding sites facilitating initial ECM protein adsorption, as well
as a greater encapsulation of COL-Ⅳ with bioinspired properties
when compared to other groups.

In this study, we investigated the characteristics of DGC
nanofilms on different titanium surfaces, their potential
application as in situ carrying, sustained releasing, and
delivering agents, and their effects on epithelial cells. However,
this study had a few limitations with respect to the detailed analysis
of the interactions in the LBL process, comprehensive evaluation of
the H-DGCn as a versatile carrier, and its unique biological
properties. Therefore, follow-up studies should be conducted to
thoroughly evaluate the effects of the H-DGCn on the controlled
release profile in vitro and in vivo, as well as its biological
effectiveness, including its immunomodulatory and antibacterial
properties. Despite the limitations of this study, it remains
particularly valuable for the long-term success of titanium
implants, where versatile therapeutic strategies could be
required in emergencies.

5 Conclusion

In this study, multilayer DGC nanofilms were fabricated on
different Ti surfaces using the LBL technique. The hydrogenated
TNTs proved to be the best platform for coating the DGC
nanofilms, which achieved stability after the number of
nanofilm layers increased to 10. The H-DGC10 displayed
excellent loading capacity, sustained-release capability, and in
situ gene delivery abilities. In vitro investigations demonstrated
the biocompatibility of the H-DGC10 in epithelial cells.
Consequently, a versatile and bioactive DGC multilayer coating
could be developed on hydrogenated TNTs for expanded clinical
applications.
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