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Cyclin-dependent kinase 2 (CDK2) has been recognized as one of the crucial
factors in cell cycle regulation and has been proposed as a potential target for
cancer therapies, particularly for colorectal cancer (CRC). Due to the increased
incidence rate of CRC and challenges associated with existing treatment options,
there is a need for efficient and selective anti-cancer compounds. The current
work aims to explore the ability of novel kaempferol derivatives as CDK2 inhibitors
by performing conceptual pharmacophore modeling, molecular docking, and
molecular dynamic analysis. Kaempferol and its derivatives were obtained from
PubChem, and the optimized 3D structures of the compounds were generated
using Maestro Ligprep. Subsequently, a pharmacophore model was developed to
identify compounds with high fitness values, resulting in the selection of several
kaempferol derivatives for further study. We evaluated the ADMET properties of
these compounds to assess their therapeutic potential. Molecular docking was
conducted using Maestro and BIOVIA Discovery Studio version 4.0 to predict the
binding affinities of the compounds to CDK2. The top candidates were subjected
to MM-GBSA analysis to predict their binding free energies. Molecular dynamics
simulations using GROMACS were performed to assess the thermodynamic
stability of the ligand-protein complexes. The results revealed several
kaempferol derivatives with high predicted binding affinities to CDK2 and
favorable ADMET properties. Specifically, compounds 5281642, 5318980, and
14427423 demonstrated binding free energies of −30.26, −38.66, and −34.2 kcal/
mol, respectively. Molecular dynamics simulations indicated that these ligand-
protein complexes remained stable throughout the simulation period, with RMSD
values remaining below 2 Å. In conclusion, the identified kaempferol derivatives
show potential as CDK2 inhibitors based on computational predictions and
demonstrate stability in molecular dynamics simulations, suggesting their
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future application in CRC treatment by targeting CDK2. These computational
findings encourage further experimental validation and development of
kaempferol derivatives as anti-cancer agents.

KEYWORDS

CDK2, colorectal cancer, kaempferol derivatives, computational studies, 3D structures of
protein complexes

1 Introduction

Colorectal cancer (CRC) has the third highest prevalence rate of
all cancer types worldwide, with an expected 2.4 million incidences
by 2035 (Siegel et al., 2021; Sung et al., 2021). Surgery, chemotherapy
or radiotherapy, immunotherapy, hormonal therapy, and
pharmacotherapy are all used to treat CRC, focusing on the
tumor site and stage of the disease (Hagan and Donovan, 2013).
Apoptosis prevents damaged cells from developing out of balance
under normal physiological conditions. However, secondary
mutations in apoptosis-regulating genes may allow these cells to
evade the regulatory mechanisms of apoptosis. Cancer
chemoprevention is described as the use of chemical or organic
compounds substances to prevent, suppress, or counteract
tumorigenesis or the growth of metastatic carcinoma (Zhang
et al., 2021).

Almost all modern therapeutic medicines have origins in herbal
medicine, either as unaltered dietary supplements or as improved
synthetic analogues (Parmar et al., 2016). Researchers are interested
in screening herbal plants, isolating, identifying, and evaluating their
secondary metabolites as potential drug leads for the same reason.
Some flavonoids, triterpenoids, and polyphenols found in nature
have been reported to trigger endoplasmic reticulum stress-induced
tissue damage through apoptosis and necrosis (Sharma and
Janmeda, 2017; Liu et al., 2016). Bioactive compounds have been
modified to improve therapeutic effectiveness, bioavailability, and
specificity, as well as a variety of features, including the
implementation of some potential chemotherapeutic agents
(Patridge et al., 2016; Newman and Cragg, 2012; Mishra and
Tiwari, 2011).

The high cost of synthetic medicines, their adverse reactions,
drug interactions, and drug resistance issues, on the other hand,
prompted researchers to look for less expensive and more effective
alternatives like natural bioactive compounds (Lopez and Banerji,
2017). The rational design of effective anti-cancer agents now
requires the development of molecular targets associated with
cancer metabolism (Collins et al., 2017; Abonia et al., 2012;
Castillo et al., 2018). Protein kinases (PKs) have received much
attention due to their critical role in cell survival and proliferation
regulation. Oncogenic kinases have developed as possible cancer
treatment targets over the last two centuries (Tsai and Nussinov,
2013). Various kinase inhibitors have made it to the commercial,
with a high response rate in lung cancer treatment (Chabner, 2004).
Among such kinases are Cyclin-dependent kinases (CDKs), which
play a significant role in tumorigenesis and transcription control
(Gridelli et al., 2011).

Cyclin-dependent kinase 2 (CDK2) is a member of the cyclin-
dependent kinase family, which plays a critical role in regulating the
cell cycle. It forms complexes with D-type cyclins, which

subsequently phosphorylate the retinoblastoma protein (Rb). This
phosphorylation event releases E2F transcription factors, thereby
promoting the transcription of genes necessary for DNA synthesis
and cell cycle progression. CDK2 primarily binds to cyclins A, B, and
E and is essential to cell cycle regulation. It is responsible for G1 to S
phase transition in the cell cycle.

CDK2 is a serine/threonine kinase composed of several
critical structural domains: N-terminal Domain: This domain
contains the ATP-binding site, which is crucial for the kinase
activity of CDK2. The glycine-rich loop (G-loop) within this
domain binds and orients ATP. C-terminal Domain: This domain
includes the activation segment, which undergoes conformational
changes upon binding to cyclins and subsequent
phosphorylation. Catalytic Domain: The catalytic domain is
located between the N-terminal and C-terminal domains. It
contains the substrate-binding site where the phosphorylation
of target proteins occurs. Several critical structural features
characterize the binding site of CDK2. The ATP-binding
pocket is located within the N-terminal domain, where this
pocket binds ATP and positions it to transfer the phosphate
group to the substrate. Activation Segment: This segment
includes the T-loop, which must be phosphorylated for the
kinase’s full activation. The positioning of this loop influences
the accessibility of the substrate-binding site. Cyclin-binding
Interface: This interface is essential for interacting with D-type
cyclins, which is necessary for activating CDK2.

In normal healthy cells, CDK2 is dispensable as CDK1 plays
mimicking roles. In cancerous cells, however, CDK2 plays a pivotal
role in cell growth and progression (Shi et al., 2015; Wood et al.,
2018). Overexpression of CDK2 and cyclins A and E has been
observed in ovarian, colorectal, breast, prostate, and lung cancer
patients (Shi et al., 2015; Tadesse et al., 2019). Therefore, drugs such
as flavopiridol, roscovitine, olomoucine, adapalene, and
kenpaullone, which are reported to be CDK2 inhibitors, and
sorafinib, aspirin (salicylic acid), etc., which have been reported
to cause downregulation of the enzyme via variousmechanisms have
been employed as therapies for these cancers (Oh et al., 2012;
Cicenas et al., 2015; Dachineni et al., 2015).

Molecular docking is used to compute the binding affinity of
ligand molecules, which is essential in understanding their
pharmacological and biological activities (Lokhande et al., 2019;
Rajendran and Sethumadhavan, 2013). The discovery of the protein
target and its regulator is typically the first approach in searching for
novel pharmacological compounds (Adewole and Ishola, 2019;
Tripathi and Khan, 2018). Protein-protein interactions are
significant to many biological processes, and their disruption is a
leading cause of disease. The use of small molecules to modulate
them is gaining popularity, but protein interfaces usually lack
specific cavities for processing small molecules. In addition, since
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protein-ligand interactions are fundamental in drug design, the
current research was investigated using molecular docking.

2 Materials and methods

2.1 Ligands

The 3-D conformers/chemical files of kaempferol and its
derivative ligands were retrieved from PubChem in sdf format.
Maestro Ligprep module was used to optimize the geometry and
energy settings of traditional Chinese medicine compounds. The
ligPrep panel is a tool used to set up preparation calculations and
start the configuration preparation for that. We aimed to generate
3D structures corresponding to the input 2D framework and the
low-energy isomers that Glide and other programs needed. Using
Epic, we obtained possible ionized states with a pH of 7.0 ± 2.0 and
formed the required tautomers. We expect to get up to
32 stereoisomers per ligand, define chirality from available 3D
coordinates, and produce rings with lower energy. Finally, the
compounds’ structure and energy minimization was performed
with the help of the OPLS3e force field (Wahid et al., 2021).

2.2 Absorption, distribution, metabolism,
excretion, and toxicity analysis

The selective commercial compounds were subjected to absorption,
distribution, metabolism, excretion, and toxicity (ADMET) in the
Qikprop module of Maestro and SWISS ADME (http://www.
swissadme.ch) and ADMET Lab 2.0 (https://admetmesh.scbdd.com/)
to evaluate ADMET and drug-likeness parameters (Gajjar et al., 2021).
The following parameters were studied: drug physiochemical properties,
octanol/water partition coefficient, aqueous solubility, GI absorption;
blockage of HERG K+ channels; gut blood barrier permeability,
brain–blood barrier; skin permeability; human serum albumin
binding; the volume of distribution; CNS permeability; bioavailability
score; P glycoprotein transportation and contraindication with other
drugs, primary metabolites; CYP450 enzymes metabolism; total
clearance, and toxicity studied in AMES toxicity; oral rat acute
toxicity (LD50); hepatotoxicity and skin sensitization (Wahid et al., 2021).

2.3 Ligand-based pharmacophore modeling
and 3D QSAR study

The Phase module of Schrodinger was used to construct the
pharmacophore of a total of polyphenols having anti-cancer
characteristics. Based on their pIC50 values, a total of active
ligands was selected and subsequently divided into active and
inactive groups. Following that, a pharmacophore model was
built. The top five pharmacophore hypotheses with the highest
survival scores were picked for additional study. This
investigation applied a pharmacophore matching tolerance of 2,
3D quantitative structure-activity relationship (QSAR) tests, and a
thorough examination of scoring functions. A gradient-convergent
optimal technique was used to minimize the ligands, and they were
then aligned using flexible ligand alignment.

2.4 Pharmacophore modeling validations

The ligands were randomly partitioned into training and test
sets during the validation phase. To construct the Quantitative
Structure-Activity Relationship (QSAR) model, a training set
comprising 70% of the data was retained. The QSAR model was
evaluated using a Partial Least Squares (PLS) factor 4. In the analysis,
a grid space of size one was utilized. As a component of the
validation procedure, the predicted activity of the compounds
was assessed. The statistical measures used for evaluation were
the squared correlation coefficient (R2) and the variance ratio (F).
The pharmacophore model was validated using external test
chemicals. Contour plots were used to determine the specific
spatial locations within the structure that had pharmacophoric
requirements.

2.5 Protein homology modeling

The protein homology model can be employed to predict the
three-dimensional topology of CDK2 by utilizing an amino acid
sequence that exhibits more significant conservation than the
desired structural conformation. This method enables the
prediction of a more conserved amino acid sequence than the
desired structural conformation. The sequence of Cyclin-
dependent kinase 6 (Q00534) was obtained from UniProt.

The Expasy ProtParam tool (http://web.expasy.org/protparam/)
was used to analyze various physical and chemical characteristics.
Maestro v11.8 (Schrodinger suite 2018) homology modeling
approach requires some discrete procedures. The template
selection is conducted using the UniProt database, followed by
BLAST homology searches against the NCBI PDB database, and
then the sequences are aligned using ClustW. Subsequently, a model
is generated based on the aligned sequences, and then the model is
evaluated. If the selected protein model does not meet the
requirements specified in the Protein Reliability report of
Maestro 11.8, then the model was refined. The model had
undergone enhancements utilizing the VSGB solvation model,
OPLS3e force field in Prime Refine Loops, and Prime Minimize
modules of Maestro 11.8 (Schrodinger suite 2018-4). By optimizing
the loops and minimizing the energy, this modification resulted in a
notable improvement in the accuracy of the protein model. The
minimized model was evaluated using Ramachandran plots through
PROCHECK on SAVES version 6 (http://services.mbi.ucla.edu/
SAVES/), and the alignment of the template on the PDBSum
server (https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/
pdbsum) (Wahid et al., 2022).

2.6 Molecular docking

Molecular docking was performed using the various modules of
Maestro and BIOVIA Discovery Studio 2021 (Schrödinger, 2021;
Wahid et al., 2021; Wahid et al., 2022). The prime tool was used to
fill structural gaps, and the Epik tool was employed to protonate het-
groups at a pH of 7.0 ± 2.0. PROPKA optimized hydrogen bond
arrangements at pH 7.0, and OPLS3e minimized constraint energy.
A receptor grid box was generated using the Sitemap module, which
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determined the coordinates of protein binding pockets and cubic
grid boxes. Molecular docking was conducted using prepared
ligands, proteins, and receptor grid files. A molecular docking
optimization was accomplished, extra precision docking was
selected, and the Epik tool was used to apply penalties to the
docking score.

2.7 Molecular mechanics/generalized born
surface area (MM/GBSA) simulation

Molecular mechanics, general born surface area (MM/GBSA) was
used to calculate the binding energies of Glide ligand-protein
complexes. Prime MM-GBSA generates a lot of energy properties.
These properties report energies for the ligand, receptor, and complex
structures as well as energy differences relating to strain and binding,
and are broken down into contributions from various terms in the
energy expression. Molecular dynamics simulations: The stability of the
binding complex in the docked state was assessed using GROMACS
2022.3 (http://www.gromacs.org), a widely used molecular dynamics
simulation software program. Molecular dynamics simulations (MDS)
were employed for this purpose. The protein’s topology was generated
utilizing the GROMACS software package and the CHARMM36 force
field, whereas the topology for the ligand was generated employing the
Swiss-param server (https://www.swissparam.ch/). Subsequently, the
protein-ligand complexes were immersed in a TIP3P water solution for
solvation.We introduced sodium (Na+) and chloride (Cl−) ions to study
the ligand-protein complex dissociation to achieve a physiological ionic
strength environment. This setup aimed to mimic the ionic conditions

present in vivo, which can influence the binding interactions and
stability of the complex.

The ligand-protein complex dissociation was achieved by
introducing sodium (Na+) and chloride (Cl−) ions at a concentration
of 0.15 mM into a cubic box with dimensions of 1 nm on each side. A
notable decrease in the system’s energy consumption was achieved by
employing a steep-descent methodology and executing a total of
50,000 iterations. The NVT ensemble, also known as the canonical
ensemble, and the NPT ensemble, also known as the isothermal-
isobaric ensemble, were employed to conduct an ensemble
equilibration for 200 ps. The temperature was reduced to 310 K
using a modified Berendsen thermostat, while the pressure was
maintained at 1 atm using the Berendsen method. The electrostatic
and van der Waals interactions at a 1 nm threshold were determined
using the particle-mesh-Ewald and van der Waals approaches.
Following a simulation of the system for 40 ns, utilizing a time step
of 2 fs, the subsequent trajectory was recorded at intervals of 10 ps.
Through the examination of the simulated trajectory data, it became
feasible to quantify many parameters, namely, the root mean square
deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg), solvent-accessible surface area (SASA), and hydrogen
bond interactions (Wahid et al., 2021; Wahid et al., 2023).

2.8 Softwares

Molecular docking was carried out using Maestro v11.8
(Schrodinger suite 2018-4) and BIOVIA Discovery Studio 2021.
MDS was performed using GROMACS 2022.

FIGURE 1
Validation of CDK2models. (A) CDK2 Secondary structure. (B) The distribution of amino acid residue in Ramachandran plot. (C) Z–score and quality
plots for protein models.
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3 Results and discussion

3.1 Protein homology modelling

3.1.1 Physiochemical characteristics
The software tool ProtParam was employed to assess the

physiochemical properties of CDK2 sequences. Its amino acid

composition consisted of 326 amino acids. The highest percentage
of amino acid residues observed was 12.0% for Leu, 8.6% for Val, and
7.1% for Asp. The collective count of negatively charged residues,
specifically glutamic acid (Glu) and aspartic acid (Asp) was found to be
45. In contrast, the count of positively charged residues, namely,
arginine (Arg) and lysine (Lys), was determined to be 40. The
protein is somewhat acidic, evidenced by its PI value of 6.02.

FIGURE 2
Ligand-based pharmacophore model. (A) Hypothesis. (B) Matched compounds fitted in hypothesis. (C) Reference ligand fitted in hypothesis.

TABLE 1 Pharmacophore score of different hypothesis models.

Sr no Hypothesis Phase hypo score EF1% BEDROC160.9 Total actives Ranked actives Matches

1 AARRR_1 1.02 60.6 0.8 10 7 5 of 5

2 AAAR_1 0.99 60.6 0.77 10 9 4 of 4

3 AARR_4 0.99 60.6 0.77 10 10 4 of 4

4 AARRR_2 0.98 70.7 0.79 10 7 5 of 5

5 AARR_3 0.98 60.6 0.77 10 9 4 of 4

6 AARRR_3 0.98 70.7 0.82 10 7 5 of 5

7 AARR_1 0.98 60.6 0.78 10 7 4 of 4

8 ARRR_1 0.97 60.6 0.77 10 7 4 of 4

9 ARRR_2 0.94 60.6 0.77 10 7 4 of 4

10 AARR_5 0.94 60.6 0.73 10 9 4 of 4

11 AAAR_2 0.94 60.6 0.77 10 9 4 of 4

12 AARR_2 0.94 60.6 0.77 10 7 4 of 4

13 AAARR_2 0.93 70.7 0.68 10 7 5 of 5

14 AARRR_4 0.92 60.6 0.69 10 7 5 of 5

15 AAARR_1 0.92 60.6 0.62 10 7 5 of 5

16 AARR_6 0.92 60.6 0.77 10 9 4 of 4

17 AAADR_2 0.72 20.2 0.37 10 6 5 of 5

18 AAADR_1 0.57 20.2 0.32 10 6 5 of 5
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TABLE 2 Pharmacophore modeling of matched compounds.

Sr
no

Pubchem
ID

Vector
score

Volume
score

Matched
sites
matched

Matched
ligand
sites

Fitness Phase
screen
score

Align
score

Group
fitness

Hypothesis

1 5281649 0.998 0.919 5 A (1) A (5) R
(14) R (13)
R (15)

2.892 2.892 0.03 2.892 AARRR

2 22507438 0.717 0.547 5 A (3) A (5) R
(10) R (9) R (11)

1.146 1.146 1.342 1.146 AARRR

3 44258716 1 0.921 5 A (1) A (6) R
(14) R (13)
R (15)

2.876 2.876 0.054 2.876 AARRR

4 21596130 0.89 0.833 4 A (2) A (5) R
(12) R (-) R (11)

2.273 2.273 0.06 2.273 AARRR

5 1.4E+08 0.997 0.916 5 A (1) A (6) R
(14) R (12)
R (13)

2.882 2.882 0.038 2.882 AARRR

6 51041990 0.995 0.747 5 A (3) A (7) R
(18) R (16)
R (17)

2.708 2.708 0.041 2.708 AARRR

7 5487756 0.998 0.902 5 A (1) A (5) R
(12) R (11)
R (13)

2.873 2.873 0.032 2.873 AARRR

8 21932272 0.992 0.892 4 A (3) A (5) R
(12) R (-) R (11)

2.434 2.434 0.068 2.434 AARRR

9 21596130 0.998 0.904 4 A (2) A (5) R
(12) R (-) R (11)

2.452 2.452 0.06 2.452 AARRR

10 53262726 0.998 0.878 4 A (2) A (4) R
(10) R (-) R (11)

2.427 2.427 0.059 2.427 AARRR

11 5481970 0.998 0.935 5 A (1) A (5) R
(12) R (11)
R (13)

2.907 2.907 0.032 2.907 AARRR

12 52945930 0.746 0.509 4 A (2) A (4) R
(12) R (-) R (11)

1.585 1.585 0.669 1.585 AARRR

13 176907 0.708 0.571 4 A (2) A (3) R (8)
R (-) R (7)

1.572 1.572 0.735 1.572 AARRR

14 1.27E+08 0.722 0.531 5 A (4) A (5) R
(11) R (9) R (10)

1.125 1.125 1.353 1.125 AARRR

15 179999 0.893 0.817 4 A (2) A (5) R
(10) R (-) R (9)

2.261 2.261 0.06 2.261 AARRR

16 620596 0.931 0.821 4 A (2) A (3) R (8)
R (-) R (7)

2.303 2.303 0.055 2.303 AARRR

17 1.3E+08 0.757 0.795 4 A (2) A (4) R (9)
R (-) R (8)

2.103 2.103 0.067 2.103 AARRR

18 24795707 0.993 0.765 4 A (3) A (5) R
(13) R (-) R (12)

2.308 2.308 0.062 2.308 AARRR

19 620596 0.998 0.875 4 A (2) A (3) R (8)
R (-) R (7)

2.423 2.423 0.066 2.423 AARRR

20 12084411 0.932 0.8 4 A (2) A (5) R
(10) R (-) R (9)

2.283 2.283 0.055 2.283 AARRR

21 13058505 0.972 0.861 4 A (3) A (4) R (8)
R (-) R (7)

2.384 2.384 0.051 2.384 AARRR
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Furthermore, its instability index of 35.16 suggests that a lack
of stability characterizes the protein. This instability was
predicted due to the absence of certain dipeptides in stable
proteins. The aliphatic index of the protein, which measures
the relative abundance of aliphatic amino acids, is 91.08. This
value indicates a moderate level of thermostability for the
protein. Additionally, the protein’s GRAVY score, which
quantifies the hydrophobicity of the amino acid sequence,
is −0.247. This score reflects a tendency for beneficial
interactions with water. At a wavelength of 280 nm, the
extinction coefficient for Cysteine (Cys), Tryptophan (Trp),
and Tyrosine (Tyr) concentrations is around 28,795 M−1cm−1.
The coefficient above is valuable for quantitatively assessing
interactions between proteins and ligands in a solution.

3.1.2 Validation of homology modeling
The homology BLAST search was employed to identify

suitable templates for the homology modeling of CDK2. The
results of the sequence alignment are illustrated in Figure 1A. The
sequence alignment analysis of template AQ1 revealed a perfect
match with 100% identity without any observable gaps.

The model was subjected to PROCHECK validation, which
involved evaluating the Ramachandran plot. The plot depicted
the distribution of amino acids for psi and phi angles, Figure 1B.
These calculated values were found to be beneficial in
determining the structure. The homology model displayed a
region that was found to be favorable, with a residue count
exceeding 71.4%. The investigation results indicated the
absence of amino acid residues inside restricted areas. The
Z-Score of the model employed for evaluating the overall
quality was determined to be −7.32, Figure 1C. A suitable
model can be created through molecular docking research,
even in cases of limited sequence similarity, when the
alignment is completed accurately.

3.2 Ligand-based pharmacophore model

The concept of pharmacophore encompasses the essential
physical and chemical attributes, as well as the spatial
organization, that are required to identify ligands by
biomacromolecules. The acquisition of polyphenols that possess
specific targets or exhibit similar properties can be facilitated by
utilizing the screening chemical databases alongside a
pharmacophore model. Pharmacophore models could be
classified into two primary classifications: structure-based models
and ligand-based models. The present investigation entailed
developing a series of three-dimensional pharmacophore models
for CDK2 by utilizing established inhibitors. The examination of the
shared features of biological activity involved the alignment of these
inhibitory medicines. The pharmacophore model (AARRR) that
exhibits the highest optimization level consists of five unique
properties: an aromatic ring, two hydrogen bond acceptors, a
hydrogen bond donor, and a negatively charged ion core. This
configuration is visually represented in Figure 2. The
pharmacophore score of different hypothesis models is provided
in Table 1. While the pharmacophore modeling of matched
compounds is provided in Table 2.

3.3 Binding pocket prediction

The binding site was identified from the maestro sitemap
module. Figure 3 represents the binding site and list of residues
of the binding pocket. The Sitemap module provides a detailed
analysis of potential binding sites based on various criteria,
including size, shape, and the presence of hydrophobic and
hydrophilic regions, which are crucial for ligand binding. The
selection of the binding site was guided by the highest-scoring
site according to the Sitemap scoring function, which evaluates

FIGURE 3
Receiver operating characteristic (ROC) and Phase Screening of Pharmacophore Model. (A) ROC curve analysis of the predictive model,
demonstrating the true positive rate (sensitivity) against the false positive rate (1-specificity) at different threshold settings. The area under the ROC curve
(AUC) provides a measure of the model’s ability to distinguish between classes. (B) Screening results, displaying the percentage of active compounds
found against the percentage of the screened dataset.
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TABLE 3 Docked ligand-protein complex binding energies (kcal/mol) calculated with Prime MM–GBSA.

Sr
no

Pubchem
ID

Molecular
weight

Docking
score
(kcal/mol)

Glide
gscore
(kcal/
mol)

Glide
energy
(kcal/
mol)

XP
gscore

ΔG
bind
(kcal/
mol)

ΔG bind
coulomb
(kcal/mol)

ΔG bind
covalent
(kcal/mol)

ΔG bind
hbond
(kcal/
mol)

ΔG
bind
lipo
(kcal/
mol)

ΔG bind
packing
(kcal/mol)

ΔG
bind
solv GB
(kcal/
mol)

ΔG
bind
vdW

1 5281642 302.24 −11.449 −11.506 −44.683 −11.506 −46.78 −22.48 0.47 −2.93 −9.66 −0.7 24.85 −36.34

2 5318980 368.385 −10.918 −10.938 −47.878 −10.938 −52.69 −14.64 5.13 −2.01 −18.08 −1.56 23.22 −44.75

3 14427423 372.374 −10.729 −10.739 −49.353 −10.739 −54.59 −20.2 3.47 −2.69 −15.77 −1.22 26.76 −44.93

4 5281638 302.24 −10.713 −10.76 −44.708 −10.76 −49.48 −24.73 0.42 −3.51 −10.67 −0.77 25.69 −35.91

5 24857900 422.477 −10.588 −10.61 −54.886 −10.61 −62 −18.24 5.62 −2.4 −19.68 −1.42 31.11 −56.99

6 9979767 424.493 −10.568 −10.568 −51.171 −10.568 −50.08 −11.1 2.17 −1.77 −13.94 −1.44 26.41 −50.42

7 5377089 244.203 −10.541 −10.805 −35.549 −10.805 −39.42 −24.96 3.11 −2.22 −7 −0.31 19.74 −27.76

8 5281699 316.267 −10.527 −10.563 −43.808 −10.563 −40.04 −15 6.23 −2.12 −13.32 −1.52 22.08 −36.39

9 22239065 286.24 −10.518 −10.546 −42.956 −10.546 −53.83 −25.21 2.91 −1.77 −15.38 −1.18 22.09 −35.28

10 132517368 370.401 −10.321 −10.322 −46.27 −10.322 −54.64 −6.58 4.78 −1.5 −15.65 −0.96 14.54 −49.27

11 10636768 284.268 −9.97 −9.982 −41.429 −9.982 −38.93 −25.03 7.25 −2.25 −11.71 −0.76 24.77 −31.2

12 10518023 296.322 −9.922 −9.934 −38.178 −9.934 −48.13 −13.81 5.31 −1.32 −12.63 −1.08 14.9 −39.5
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the potential for favorable interactions between the ligand and
the protein.

3.4 Molecular docking

Molecular docking was performed using the Glide module of the
Schrödinger software suite (Schrödinger, 2021). The OPLS_
2005 force field (Friesner et al., 2006; Halgren, 2009; Shivakumar
et al., 2010) was utilized for energy optimization of the docking
poses, which is well-regarded for its accuracy in predicting binding
affinities and poses. The application of molecular docking plays a
crucial role in the drug design process, as it enables the identification
of the bioactive conformation of small and medium-sized molecules
at protein binding sites and the examination of interactions between
protein ligands. The Glide module utilizes an approach that
systematically investigates the orientation, conformation, and
spatial disposition of docking ligands to analyze molecules. The
first step in the process entails minimizing the search area by use of
approximate positioning and evaluation. The energy optimization of
the candidate posture is subsequently performed via the OPLS-AA
non-bonding potential grid. The selection and assessment of the
optimal docking position is ultimately determined by applying a
functional model that incorporates experiential knowledge and force
field analysis. The current study focused on creating receptor grids
using the Glide module, with coordinates X = −11.072, Y = 1.71, and
Z = −17.085. The Maestro software was utilized to conduct
molecular docking of the compounds with CDK2 to evaluate and
analyze their binding affinity. Firstly, we performed the HTVS
screening (Supplementary Table S1) and had a cut value
of −6.5 kcal/mol; then, 122 compounds were selected for
standard SP molecular docking (Supplementary Table S2). In SP
docking screening, we get 21 compounds for further analysis at
a −5.0 kcal/mol cut value. These 21 Compounds were screened with
XP docking and then MMGBSA. The comparative study of
compounds targeting CDK2 is depicted in Table 3, including
their relative docking and MMGBSA scores—the binding
affinities of 21 compounds mentioned in Table 3 (Figure 4; Table 3).

3.5 ADMET

The study utilized computational tools such as Qikprop, SWISS
ADME, and ADMET Lab 2.0 to generate predictions for various
physiochemical, medicinal chemistry, and ADMET parameters.
These predictions were developed for polyphenols identified
using an XP molecular docked compound (Table 4). Every
chemical exhibited a distinct and noteworthy attribute. As a
result, ADMET analysis has enabled the discovery of ligands that
exhibit pharmacokinetic characteristics that meet acceptable
thresholds. The pharmacokinetic characteristics of all drugs were
determined to be highly favorable since no notable side effects were
identified. This indicates that the compounds will likely possess
good bioavailability and safety profiles based on the in silicomodels.
These computational predictions suggest that the compounds have
promising prospects for therapeutic applications. However, it is
essential to note that these results are based on computational
models and should be experimentally validated in future studies.
This study analyzed twelve compounds with diverse chemical
structures to evaluate their pharmacokinetic, pharmacodynamic,
and toxicological properties. The molecular weights of the
compounds ranged from 244.04 to 424.19, with corresponding
volumes between 233.231 and 444.3. Solubility, distribution, and
permeability analyses revealed significant variation among the
compounds, with LogP values suggesting differences in
lipophilicity and membrane permeability. The compounds
exhibited high plasma protein binding, with PPB values ranging
from 87.61% to 100.35%, indicating strong binding affinity.
Absorption studies using Pgp inhibition and substrate values,
alongside human intestinal absorption (HIA) metrics, suggested
limited absorption for most compounds, corroborated by Caco-2
and MDCK permeability assays. Blood-brain barrier penetration
(BBB) values highlighted some compounds’ potential for central
nervous system activity. Metabolic profiling showed diverse
interactions with cytochrome P450 enzymes, crucial for
understanding drug-drug interactions and metabolic stability.
Clearance and half-life values indicated varying elimination rates,
influencing dosing regimens. Toxicological assessments, including
hERG inhibition and Ames mutagenicity tests, revealed potential
cardiotoxicity and mutagenicity for specific compounds.
Additional evaluations for drug-induced liver injury (DILI),
skin sensitization, and carcinogenicity provided insights into
the safety profiles.

Finally, compliance with drug-likeness rules (Lipinski, Pfizer,
GSK, GoldenTriangle) affirmed the potential suitability of these
compounds as drug candidates. This comprehensive analysis
underscores the importance of multi-faceted evaluation in the
early stages of drug development to identify promising
candidates with favorable pharmacokinetic and safety profiles.

Table 4 provides a comprehensive analysis of various
pharmacokinetic and pharmacodynamic properties of several
drugs, including solubility (LogS), distribution (LogD, LogP),
permeability (BBB, Caco-2, MDCK), enzyme inhibition and
substrate status (CYP enzymes), and toxicity indicators (hERG
inhibition, hepatotoxicity, carcinogenicity). These findings
highlight the importance of understanding a drug’s absorption,
distribution, metabolism, excretion (ADME), and potential
toxicological effects to predict its efficacy and safety. Among the

FIGURE 4
Binding site pocket with their residues of the predicted
CDK2 protein retrieved from the Sitemap module.
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analyzed drugs, the top five include those with PubChem IDs
5281642, 5318980, 14427423, 5281638, and 24857900.

The top five compounds (PubChem IDs 5281642, 5318980,
14427423, 5281638, and 24857900) demonstrate varied
pharmacokinetic and pharmacodynamic profiles, critical for drug
development. Compound 5281642: This compound is moderately
soluble (−3.521 LogS) and moderately lipophilic (2.33 LogP), with a
high bioavailability [0.996 F (20%)] and strong plasma protein
binding (95.15%). However, it has low intestinal absorption
(0.165 HIA) and moderate clearance (7.368 CL), suggesting it
might require enhancements in its absorption profile despite its
favorable bioavailability and binding characteristics. Compound

5318980: Exhibiting high lipophilicity (4.968 LogP) and
moderate plasma protein binding (93.59%), this compound has
low bioavailability [0.008 F (20%)] and deficient intestinal
absorption (0.021 HIA). Its clearance (6.135 CL) and short half-
life (0.521 T12) indicate it might need structural modifications to
improve absorption and bioavailability. It also has low cardiotoxicity
(0.009 hERG), which benefits its safety profile. Compound
14427423: With poor solubility (−3.672 LogS) and moderate
lipophilicity (3.239 LogP), this compound shows very high
plasma protein binding (97.52%) and moderate clearance
(6.315 CL). However, it suffers from deficient absorption
(0.036 HIA) and high mutagenicity (0.786 Ames), posing

FIGURE 5
2D ligand-protein interaction between CDK2 and ligands: 5281642, 5318980, 14427423, 5281638, and 24857900. Compound 5281642: This
compound forms multiple hydrogen bonds with amino acids like GLU 81, PHE 82, and ASP 145. Hydrophobic interactions are observed with LEU 83, VAL
64, and ALA 144. Compound 5318980: Similar to 5281642, this compound shows hydrogen bonds with GLU 81, PHE 80, and ASP 145. Additional
interactions include those with LEU 78, ALA 144, and PHE 146. Compound 14427423: This compound forms hydrogen bonds with GLU 81, HIS 84,
and ASP 145, while hydrophobic interactions are present with LEU 83, ALA 31, and VAL 64. Compound 5281638: This compound exhibits hydrogen
bonding with GLU 81, PHE 82, and ASP 145, alongside hydrophobic interactions with LEU 83, VAL 64, and ALA 144. Compound 24857900: This
compound forms hydrogen bonds with GLU 81, HIS 84, and ASP 86, and shows hydrophobic interactions with LEU 78, ALA 31, and VAL 64.
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TABLE 4 ADMET analysis of XP docked 12 compounds.
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5
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0
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3

LogS −3.521 −3.315 −3.672 −3.487 −2.669 −3.137 −3.395 −3.74 −3.783 −4.058 −3.045 −3.698

LogD 0.953 2.964 2.123 1.067 3.493 3.367 2.479 2.308 1.691 2.647 2.42 2.88

LogP 2.33 4.968 3.239 2.08 6.227 6.369 2.571 2.553 2.349 4.131 2.4 4.448

Pgp-inh 0.004 0.599 0.006 0.008 0.313 0.658 0.002 0.008 0.006 0.872 0.018 0.086

Pgp-sub 0.089 0.01 0.003 0.003 0.041 0.745 0.068 0.048 0.002 0.002 0.068 0.869

HIA 0.165 0.021 0.036 0.011 0.014 0.012 0.027 0.024 0.008 0.04 0.22 0.006

F (20%) 0.996 0.008 0.012 0.743 0.951 0.966 0.579 0.032 0.051 0.004 0.999 0.261

F (30%) 1 0.315 0.417 0.993 0.993 0.837 0.997 0.977 0.927 0.011 0.998 0.988

Caco-2 −5.203 −4.883 −4.963 −5.255 −4.865 −4.907 −4.961 −5.064 −5.095 −4.759 −4.77 −4.88

MDCK 7.86 × 10−6 1.16 × 10−5 1.32 × 10−5 7.47 × 10−6 1.32 × 10−5 1.26 × 10−5 7.60 × 10−5 9.45 × 10−5 1.07 × 10−5 1.84 × 10−5 1.22 × 10−5 1.44 × 10−5

BBB 0.002 0.004 0.006 0.005 0.006 0.004 0.013 0.005 0.009 0.03 0.014 0.032

PPB 95.15% 93.59% 97.52% 97.95% 95.28% 93.02% 95.75% 96.29% 98.52% 87.61% 96.86% 100.35%

VDss 0.575 0.702 0.545 0.516 0.683 0.985 0.678 0.646 0.456 1.003 0.397 0.443

Fu 9.94% 7.93% 4.19% 8.22% 5.29% 7.37% 8.51% 8.09% 5.07% 10.57% 2.25% 1.32%

CYP1A2-inh 0.935 0.914 0.869 0.872 0.901 0.327 0.985 0.963 0.943 0.762 0.917 0.961

CYP1A2-sub 0.13 0.493 0.148 0.091 0.147 0.267 0.52 0.774 0.091 0.955 0.441 0.8

CYP2C19-inh 0.032 0.854 0.15 0.045 0.915 0.929 0.184 0.123 0.086 0.57 0.618 0.765

CYP2C19-sub 0.045 0.057 0.049 0.044 0.05 0.064 0.056 0.049 0.049 0.374 0.058 0.072

CYP2C9-inh 0.552 0.856 0.713 0.601 0.848 0.894 0.657 0.675 0.558 0.853 0.716 0.838

CYP2C9-sub 0.368 0.882 0.803 0.41 0.897 0.962 0.93 0.829 0.564 0.874 0.934 0.871

CYP2D6-inh 0.14 0.601 0.488 0.42 0.81 0.811 0.8 0.601 0.506 0.256 0.668 0.662

CYP2D6-sub 0.202 0.384 0.194 0.174 0.205 0.302 0.508 0.289 0.207 0.844 0.867 0.343

CYP3A4-inh 0.118 0.263 0.231 0.161 0.266 0.329 0.414 0.542 0.295 0.437 0.59 0.294

CYP3A4-sub 0.048 0.108 0.071 0.043 0.071 0.139 0.098 0.088 0.081 0.375 0.357 0.157

CL 7.368 6.135 6.315 6.077 7.255 16.786 4.893 7.014 7.022 3.387 10.442 1.732

(Continued on following page)
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TABLE 4 (Continued) ADMET analysis of XP docked 12 compounds.
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T12 0.922 0.521 0.913 0.936 0.583 0.384 0.88 0.914 0.924 0.249 0.892 0.273

hERG 0.076 0.009 0.011 0.093 0.008 0.038 0.011 0.058 0.012 0.012 0.024 0.017

H-HT 0.118 0.839 0.166 0.087 0.889 0.887 0.078 0.063 0.205 0.216 0.184 0.069

DILI 0.966 0.982 0.98 0.985 0.978 0.856 0.941 0.978 0.987 0.916 0.937 0.938

Ames 0.562 0.701 0.786 0.718 0.727 0.017 0.659 0.611 0.813 0.36 0.662 0.398

ROA 0.038 0.236 0.117 0.069 0.188 0.799 0.066 0.07 0.336 0.394 0.125 0.341

FDAMDD 0.406 0.048 0.017 0.045 0.023 0.611 0.422 0.461 0.043 0.046 0.283 0.344

SkinSen 0.956 0.659 0.718 0.93 0.725 0.946 0.929 0.785 0.897 0.424 0.939 0.902

Carcinogenicity 0.103 0.09 0.059 0.097 0.267 0.145 0.118 0.036 0.304 0.137 0.549 0.16

EC 0.004 0.003 0.003 0.005 0.003 0.003 0.509 0.005 0.004 0.003 0.004 0.003

EI 0.934 0.543 0.843 0.923 0.785 0.781 0.982 0.916 0.907 0.037 0.949 0.889

Respiratory 0.129 0.26 0.054 0.058 0.135 0.915 0.226 0.136 0.072 0.097 0.075 0.63

BCF 1.054 1.253 1.014 1.021 1.237 1.278 1.039 1.061 0.993 1.794 1.123 1.57

IGC50 4.147 4.637 4.371 4.068 4.865 5.118 4.114 4.156 4.312 4.127 4.933 4.712

LC50 5.032 6.163 5.121 4.951 6.228 7.363 4.957 5.099 5.246 5.209 5.305 5.526

LC50DM 5.736 5.914 4.924 5.44 6.008 6.727 5.292 5.376 5.139 5.659 5.375 6.084

NR-AR 0.007 0.012 0.007 0.005 0.009 0.007 0.007 0.012 0.009 0.049 0.271 0.007

NR-AR-LBD 0.211 0.052 0.059 0.347 0.12 0.135 0.042 0.189 0.362 0.023 0.102 0.011

NR-AhR 0.975 0.94 0.931 0.961 0.933 0.876 0.968 0.965 0.932 0.948 0.866 0.959

NR-Aromatase 0.898 0.95 0.962 0.937 0.957 0.698 0.509 0.898 0.96 0.942 0.89 0.928

NR-ER 0.878 0.806 0.886 0.899 0.931 0.937 0.845 0.893 0.887 0.364 0.943 0.801

NR-ER-LBD 0.987 0.848 0.944 0.956 0.944 0.893 0.957 0.954 0.953 0.572 0.985 0.79

NR-PPAR-gamma 0.965 0.968 0.956 0.969 0.972 0.824 0.966 0.957 0.969 0.854 0.734 0.979

SR-ARE 0.86 0.834 0.79 0.835 0.849 0.92 0.878 0.829 0.85 0.861 0.905 0.921

SR-ATAD5 0.553 0.646 0.274 0.497 0.15 0.495 0.335 0.654 0.586 0.727 0.488 0.83
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TABLE 4 (Continued) ADMET analysis of XP docked 12 compounds.
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SR-HSE 0.895 0.233 0.12 0.584 0.741 0.921 0.567 0.507 0.664 0.066 0.93 0.84

SR-MMP 0.97 0.933 0.955 0.958 0.969 0.984 0.923 0.952 0.954 0.877 0.975 0.941

SR-p53 0.92 0.909 0.88 0.94 0.905 0.969 0.931 0.912 0.887 0.91 0.87 0.949

MW 302.04 368.13 372.12 302.04 422.17 424.19 244.04 316.06 286.05 370.14 284.07 296.1

Vol 282.767 375.116 369.247 282.767 441.663 444.3 233.231 300.063 273.977 377.752 282.482 308.284

Dense 1.068 0.981 1.008 1.068 0.956 0.955 1.046 1.053 1.044 0.98 1.006 0.96

nHA 7 6 7 7 6 6 5 7 6 6 5 4

nHD 5 3 5 5 4 4 3 4 4 2 3 2

TPSA 131.36 100.13 131.36 131.36 111.13 107.22 90.9 120.36 111.13 89.13 90.9 70.67

nRot 1 4 4 1 6 5 0 2 1 4 2 2

nRing 3 3 3 3 3 3 3 3 3 3 3 3

MaxRing 10 10 10 10 10 10 14 10 10 10 10 10

nHet 7 6 7 7 6 6 5 7 6 6 5 4

fChar 0 0 0 0 0 0 0 0 0 0 0 0

nRig 18 19 18 18 20 20 17 18 18 18 18 18

Flex 0.056 0.211 0.222 0.056 0.3 0.25 0 0.111 0.056 0.222 0.111 0.111

nStereo 0 0 0 0 0 1 0 0 0 0 0 0

NonGenotoxic_
carcinogenicity

0 0 0 0 0 0 1 0 0 0 0 0

LD50_oral 0 0 0 0 0 0 0 0 0 0 0 0

Genotoxic_
carcinogenicity_
mutagenicity

0 0 0 0 0 0 3 0 0 0 0 0

SureChEMBL 1 0 0 1 0 0 0 0 0 0 0 0

Nonbiodegradable 1 1 1 1 1 1 1 1 1 0 1 1

Skin_sensitization 7 4 4 8 4 6 3 8 5 1 5 3
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TABLE 4 (Continued) ADMET analysis of XP docked 12 compounds.
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Acute_aquatic_
toxicity

0 0 2 0 0 0 0 0 0 1 0 0

Toxicophores 2 1 1 2 1 1 2 1 2 1 2 1

QED 0.434 0.6 0.476 0.434 0.389 0.49 0.526 0.572 0.511 0.728 0.629 0.75

Synth 2.556 2.674 2.817 2.524 2.981 3.638 2.383 2.47 2.39 2.668 2.35 2.37

Fsp3 0 0.19 0.25 0 0.24 0.32 0 0.062 0 0.286 0.062 0.167

MCE-18 19 20 22 19 21 68.667 17 19 18 22 17 18

Natural product-
likeness

1.522 1.775 1.793 1.559 2.154 2.13 1.441 1.545 1.281 1.162 1.14 1.069

Alarm_NMR 3 2 2 3 2 2 1 3 3 2 3 1

BMS 1 0 0 1 0 1 0 0 0 0 0 0

Chelating 1 1 1 2 1 0 0 2 2 0 1 0

PAINS 1 0 0 1 0 0 0 0 1 0 1 0

Lipinski Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted

Pfizer Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Rejected

GSK Accepted Rejected Accepted Accepted Rejected Rejected Accepted Accepted Accepted Rejected Accepted Rejected

GoldenTriangle Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted
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FIGURE 7
The analysis of MD simulations trajectory of docked complexes, i.e., CDK2-5281642 for 50 ns.

FIGURE 6
The comparison of protein conformational changes at different molecular dynamic allosteric states. At 0 ns, the initial conformation is shown, while
subsequent images depict the conformational adjustments and stability of the complex over time; at 10 ns, 20 ns, 30 ns, 40 ns, and 50 ns.
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significant challenges to its development. The low cardiotoxicity
(0.011 hERG) is a positive aspect, but improvements in its
mutagenicity and absorption are necessary. Compound 5281638:
This compound has moderate solubility (−3.487 LogS) and
lipophilicity (2.08 LogP), with a high bioavailability [0.743 F

(20%)] and very high plasma protein binding (97.95%). Its
moderate intestinal absorption (0.011 HIA) and clearance
(6.077 CL) indicate potential as a drug candidate. However, the
risk of drug-induced liver injury (0.985 DILI) and interactions with
metabolic enzymes need careful management. Compound

FIGURE 8
Principal component analysis (PCA), Covariance, and free energy landscape (FEL) of CDK2-5281642 docked complexes for 50 ns. (A) 2D PCA plots.
(B) Covariance plots for residues of proteins. (C) 3D FEL of docked complexes.
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24857900: This compound stands out with better solubility
(−2.669 LogS) and higher bioavailability [0.951 F (20%)]
compared to the others. It has high lipophilicity (6.227 LogP)
and moderate plasma protein binding (95.28%), with significant
potential for drug interactions due to its potent inhibition of
cytochrome P450 enzymes. Its clearance (7.255 CL) and half-life
(0.583 T12) suggest a need for optimization to balance efficacy and
safety, particularly considering its moderate risk for liver injury
(0.978 DILI) and low intestinal absorption (0.014 HIA).

These compounds exhibit favorable properties such as high
bioavailability and strong protein binding, alongside challenges
like low absorption, potential liver toxicity, and mutagenicity.
Addressing these issues through structural modifications and
optimization can enhance their potential as viable drug
candidates. These top five drugs, selected based on their
solubility, distribution, permeability, and clearance properties,
indicate their potential for further development and
studyregarding efficacy and safety, as shown in Figure 5.

3.6 Molecular dynamic simulations

MD simulation is a broadly used method in examining protein-
ligand complexes, primarily focused on understanding their stability
for 50 ns (Figure 6). The molecular dynamics (MD) simulation
showed an observable temporal progression of binding modes
within protein-ligand complexes. Within the framework of
typical MD simulations, the interactions of atoms and molecules
are governed by a force field. During the simulation procedure, the
computation of many parameters, such as the potential energy, the
total energy, the temperature, and the pressure, of the protein-ligand
combination was conducted.

The evaluation of the stability of intricate chemical and
protein systems, along with the stability of proteins after the
introduction of small molecules and amino acid
hydrophobicities, can be accomplished by quantifying
molecular dynamics (MD) parameters such as RMSD, RMSF,
Rg, and SASA. Based on Glide energy and ΔG binding energy we
selected the 5281642 for MD simulations. The compound
5281642 showed the highest binding affinity with CDK2.
Therefore, the selection of protein-ligand complexes, including
5281642, in conjunction with CDK2, was made to conduct MD
simulations. The RMSD values indicated stable protein-ligand
complex formation with minimal structural deviations (0.1754 ±
0.02967 nm). RMSF analysis showed low residue fluctuations
(0.1512 ± 0.09623 nm), suggesting minimal conformational
changes. The Rg values (2.023 ± 0.01320 nm) confirmed the
compactness and structural integrity of the protein. SASA values
(160.0 ± 3.225 nm2) and consistent hydrogen bond formation
(3.403 ± 0.8496) further supported the stability of the complex.
These computational findings suggest that compound 5281642 is
a promising CDK2 inhibitor with potential therapeutic
applications in colorectal cancer treatment, warranting further
experimental validation. The results are illustrated in Figure 7.
The MD simulation results demonstrate that the CDK2-5281642
complex remains stable under physiological conditions, with
minimal structural deviations and maintained compactness.
The low RMSF values suggest that the binding of

5281642 does not induce significant flexibility changes in the
protein, and the constant Rg values indicate that the protein
retains its structural integrity. Additionally, the stable SASA
values imply that the ligand binding does not expose or bury
significant portions of the protein’s surface area, further
supporting the stability of the complex. The minimal
hydrogen bond formation suggests that other non-covalent
interactions play a crucial role in maintaining the strength of
the ligand-protein complex.

These findings suggest that compound 5281642 is a promising
CDK2 inhibitor with potential therapeutic applications in colorectal
cancer treatment. The stability of the CDK2-5281642 complex in
MD simulations highlights its potential for further experimental
validation and drug development.

3.6.1 RMSD
The quantitative assessment of the stability of the protein-

ligand system is performed through the root mean square
deviation (RMSD). RMSD of the protein backbone atoms in
each complex exhibited a consistently low value during MD
simulations (Figure 7). The mean RMSD of the docked
complexes CDK2-5281642 was determined to be 0.1754 ±
0.02967 nm2, respectively.

3.6.2 RMSF
The analytical technique called Root Mean Square

Fluctuation (RMSF) enables the detection of alterations in
amino acid residues within a protein during a designated
temporal interval. A higher RMSF value indicates substantial
fluctuations in the residues, whereas a lesser RMSF value
indicates reduced levels of volatility in the residues. The
impact of curcumin and EGCG on the variability of individual
protein residues was evaluated by determining the RMSF of
backbone atoms for each residue within the protein complex.
The mean RMSF values of the CDK2-5281642 docked complexes
were 0.1512 ± 0.09623 nm, respectively (Figure 7).

3.6.3 Radius of gyration (Rg)
The gyratory radius is a critical measure used to assess the

level of compactness shown by protein structures. Proteins with a
reduced gyratory radius exhibit a more compact conformation,
indicating a higher degree of stability in their structural
arrangement. The average Rg values for the docked complexes
of CDK2-5281642 were determined to be 2.023 ± 0.01320 nm,
respectively. The lack of substantial deviations in the trajectory of
the radius of gyration indicates the absence of abnormal
behavior (Figure 7).

3.6.4 Solvent-accessible surface area (SASA)
The SASA metric quantifies the degree of hydrophobicity a

protein shows, whereby larger SASA values correspond to
increased protein content and less temporal variability during
simulation. Proteins can undergo structural modifications by
adding small chemicals, which can induce substantial
alterations in the solvent-accessible surface area (SASA). The
complexes formed by the compound-protein interaction
exhibited a predominantly stable behavior throughout the 40-
ns simulation. The average solvent-accessible surface areas
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(SASA) of CDK2-5281642 complexes were determined to be
160.0 ± 3.225 nm2, respectively, (Figure 7).

3.6.5 Hydrogen bond
The formation of hydrogen bonds considerably enhances a

ligand’s capacity to interact with a protein and be recognized by
the active site. During a 40-ns MD simulation, the gmx_hbond
module in GROMACS was employed to analyze the number,
length, and angle of hydrogen bonds within the protein-ligand
complexes. The mean quantity of hydrogen bonds formed
throughout the simulation was determined to be 3.403 ±
0.8496 for the CDK2-5281642 complex (Figure 7). This
indicates that while the ligand forms prominent hydrogen
bonds with the protein, the interaction is predominantly
stabilized by other non-covalent interactions, such as
hydrophobic and van der Waals forces. CDK25281642.

3.6.6 Principal component analysis and free energy
landscape (FEL)

Principal component analysis (PCA) is a commonly employed
methodology for reducing the dimensionality of extensive datasets
to extract pertinent information. Principal component analysis
(PCA) was used to investigate the mobility modes of docked
complexes consisting of CDK2 and its ligands 5281642. The
docked complexes of CDK2-5281642 are depicted in Figure 8A
using principal component analysis (PCA) plots. The
implementation of routine binding procedures resulted in the
formation of robust complexes. A research investigation was
conducted to examine the dynamic covariance matrix of docked
protein complexes to identify residues associated with
demonstrating anti-correlated motion. Figure 8B displays the
covariance matrix of the complexes formed by CDK2-5281642.
The utilization of variations in color intensity serves as a visual
representation of the correlation coefficient, a statistical measure
that ranges from −1 to 1.

Free energy landscape analysis investigated the low energy
conformations in the test systems involving CDK2-5281642. The
generation of free energy graphs in three-dimensional (3D) and
two-dimensional (2D) formats was accomplished by utilizing the
first and second fundamental components. The free energy
landscapes of CDK2-5281642 are depicted in Figure 8C. The
free energy landscape shows energetically favorable
conformations as blue dots, whereas energetically unfavorable
conformations are represented by red dots. The free energy
landscape of the CDK2-5281642 complex exhibits a higher
concentration of blue dots, indicating that the interaction
between rutin and the active site of CDK2-5281642 resulted in
an energy reduction.

4 Key findings and conclusion

In this study, we explored the potential of novel kaempferol
derivatives as inhibitors of Cyclin-dependent kinase 6 (CDK2), a
crucial factor in cell cycle regulation and a promising target for
colorectal cancer (CRC) therapy. Through comprehensive
computational analyses, including pharmacophore modeling,
molecular docking, and molecular dynamics (MD) simulations,

we identified several kaempferolderivatives that exhibit high
binding affinity and stability with CDK2. Our findings indicate
that compound 5281642, notably, demonstrated the highest Glide
energy and ΔG binding energy, making it a prime candidate for
further investigation. The MD simulations revealed that the
CDK2-5281642 complex remained stable under physiological
conditions, with minimal structural deviations, low residue
fluctuations, maintained compactness, stable solvent-accessible
surface area, and consistent hydrogen bond formation. The in
silico studies identified several kaempferol derivatives as potential
CDK2 inhibitors, with compound 5281642 showing the highest
binding affinity. Molecular dynamics (MD) simulations
confirmed the stability of the CDK2-5281642 complex,
exhibiting minimal structural deviations. MM-PBSA
calculations detailedly assessed binding affinities, highlighting
dominant van der Waals and electrostatic interactions. Key
residues involved in stabilizing the complex included Lys33,
Asp145, Phe80, and Val64. The in silico studies enabled the
efficient identification of promising CDK2 inhibitors and
provided insights into molecular interactions and structural
optimization, guiding the rational design of more potent
inhibitors. These findings offer a robust foundation for
experimental validation, suggesting that compound
5281642 and its optimized derivatives could be effective in
colorectal cancer therapy, thus streamlining the drug
development process by reducing extensive trial-and-error
experimentation.

The significance of this work lies in its contribution to
identifying potential CDK2 inhibitors with favorable
pharmacokinetic properties, which could serve as promising
therapeutic agents for CRC. The computational predictions
provide a robust foundation for future experimental validation,
which is crucial for developing effective anti-cancer drugs. This
study advances our understanding of CDK2 inhibition and its
application in cancer therapy by identifying and validating novel
kaempferol derivatives. These findings encourage further
experimental studies to confirm the therapeutic potential of these
compounds, ultimately contributing to improved treatment options
for CRC patients.
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