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Monkeypox virus (MPV) infection has developed into a re-emerging disease, and
despite the potential of tecovirimat and cidofovir drugs, there is currently no
conclusive treatment. The treatment’s effectiveness and cost challenges
motivate us to use In Silico approaches to seek natural compounds as
candidate antiviral inhibitors. Using Maestro 11.5 in Schrodinger suite 2018,
available natural molecules with validated chemical structures collected from
Eximed Laboratory were subjected to molecular docking and ADMET analysis
against the highly conserved A42R Profilin-like Protein of Monkeypox Virus Zaire-
96-I-16 (PDB: 4QWO) with resolution of 1.52 Å solved 3D structure. Compared to
the FDA-approved Tecovirimat, molecular docking revealed that Salsoline
derivatives, Genistein, Semisynthetic derivative of kojic acid, and Naringenin
had strengthened affinity (−8.9 to −10 kcal/mol) to 4QWO, and the molecular
dynamic’s simulation confirmed their high binding stability. In support of these
results, the hydrogen bond analysis indicated that the Salsoline derivative had the
most robust interaction with the binding pockets of 4QWO among the four
molecules. Moreover, the comparative free energy analyses using MM-PBSA
revealed an average binding free energy of the complexes of Salsoline derivative,
Genistein, Semisynthetic derivative of kojic acid, Naringenin,
of −106.418, −46.808, −50.770, and −63.319 kJ/mol, respectively which are
lower than −33.855 kJ/mol of the Tecovirimat complex. Interestingly, these
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results and the ADMET predictions suggest that the four compounds are promising
inhibitors of 4QWO, which agrees with previous results showing their antiviral
activities against other viruses.
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monkeypox virus, natural compounds, virtual screening, molecular dynamics simulation,
tecovirimat

Introduction

Monkeypox virus (MPV) infection has become persistent
(Marennikova et al., 1972). MPV was initially identified in
human populations in 1970 in the Democratic Republic of the
Congo, and subsequently, the disease’s occurrence remained limited
to this region (Marennikova et al., 1972). Later, MPV extended its
presence to several African countries (Bunge et al., 2022; Meyer
et al., 2002). In 1996 and 1997, the Democratic Republic of the
Congo experienced outbreaks with low case fatality rates and attack
rates higher than the norm. Since 2017, Nigeria has recorded over
500 suspected cases, with more than 200 confirmed cases and a case-
fatality ratio exceeding 3% (Heymann et al., 1998). The virus’s first
appearance outside Africa was recorded in 2003 in the USA
(Reynolds et al., 2006). From 2018 to 2022, more than
40 countries, including the United Kingdom, Spain, Portugal, and
Germany, identified a hundred infections (Do; Kumar et al., 2022).
Historically, the case fatality rate for monkeypox in the general
population varied from 0% to 11% and was more significant in
young children (Nuzzo et al., 2022).

MPV is a double-enveloped DNA virus classified within the
Poxviruses genus, part of the Poxvirus family (Kugelman et al.,
2014). Two distinct groups of MPV have been identified: the Congo
Basin group (Central African group) and the West African
group. The Congo Basin group is thought to be more
transmissible and has a history of causing more severe illnesses.
(Likos et al., 2005). Based on the recent genomic sequencing data,
the DNA sequences of the MPV strains found in Europe, specifically
in Portugal, align with the West African clade, which implies a
potentially less severe manifestation of the disease (Velavan and
Meyer, 2022). In 2022, potential viral mutations are suggested to be
responsible for the rapid transmission of monkeypox outbreak
(Kumar et al., 2022) through direct contact with the blood,
bodily fluids, skin lesions, or mucous secretions of sick animals,
and animal-to-human infection (Angelo et al., 2019). Although
several animals, such as rope squirrels and tree squirrels, have
displayed indications of MPV infection (Tesh et al., 2004), the
natural reservoir for MPV has not yet been found (Arita and
Henderson, 1976) (World health organization, 2022a). MPV
incubation (World health organization, 2022b; Kabuga and El
Zowalaty, 2019) covers two stages: i) the invasion period
(0–5 days long), which is characterized by fever, severe headache,
enlarged lymph nodes, painful back and muscle pain, and significant
weakness, and ii) the rash phase which frequently begins 1–3 days
following the fever symptoms (McCollum and Damon, 2014).
Several thousand lesions or sores merge in severe cases, leading
to skin shedding (World health organization, 2022a; Kabuga and El
Zowalaty, 2019; McCollum and Damon, 2014). A range of
complications are known to be associated with MPV, including

secondary infections, pneumonia, sepsis, encephalitis, and corneal
infections leading to vision loss.

Several studies have revealed that smallpox immunization
prevents 85% of the MPV infections. Therefore, a novel two-dose
vaccine based on the attenuated modified vaccinia virus (Ankara
strain) was authorized in 2019; however, this treatment option still
confronts limited supplies and cost challenges (World health
organization, 2022b; Gruber, 2022). The European Medicines
Agency 2022 authorized an antiviral agent known as Tecovirimat
(TPOXX®) to treat monkeypox, initially developed to treat smallpox
but is not yet widely available (Sherwat et al., 2022; Rizk et al., 2022).
Tecovirimat, an antiviral agent thwarting orthopoxvirus activity and
preventing the production of infective virions, gained FDA approval
on 13 July 2018. It has also secured European marketing
authorization for treating Smallpox, Monkeypox, and Cowpox
virus infections. Tecovirimat targets the viral protein p37, an
essential component of the orthopoxvirus replication complex
responsible for the maturation of the virus particles and their
release from infected cells. By inhibiting the activity of p37,
Tecovirimat effectively interferes with the viral replication cycle,
preventing the spread of the virus within the host (Shiryaev et al.,
2021; Sen Gupta et al., 2023).

Despite the genomics analysis of MPV, the proteome study is
still challenging, and there is only a minimal solved protein
structure, such as the highly conserved A42R protein, the first
protein structure (resolution: 1.52 Å) deposited in the Protein
Data Bank (PDB: 4QWO). Encoded by gp153 locus, the A42R
protein role is still discussed despite the biochemical data
suggesting its implication in replicating an assembly of
orthopoxviruses. The current study’s findings and knowledge of
its structure indicate that A42R could be a therapeutic target for
structure-based drug design (Minasov et al., 2022; Bajrai et al., 2022).

The current study collected available natural molecules with
validated chemical structures from the Eximed Laboratory. Using in
silico approaches, they were evaluated as candidate inhibitors of the
A42R Profilin-like Protein of Monkeypox Virus. The ADMET
predictions for the selected Salsoline Derivatives, Genistein, a
Semisynthetic Derivative of Kojic Acid, and Naringenin show
promising results, justifying their potential for experimental
validation, which represents the weakness of the present study.

Materials end methods

Ligand preparation

Available Naturel molecules with validated chemical structures
were collected from Eximed Laboratory (https://eximedlab.com/) on
30 August 2022 (Alesawy et al., 2021) and subsequently prepared for
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docking calculations using the LigPrep utility available in the
Maestro 11.5 edition of the Schrödinger Software program. This
process utilized the OPLS3 force field and involved selecting
ionization states for pH values 7.0 and 2.0. Furthermore, the
ligands were allowed to generate a maximum of 32 stereoisomers
(Mssillou et al., 2024).

Protein preparation

The three-dimensional crystal structure of the A42R Profilin-
like Protein from the Monkeypox Virus (PDB: 4QWO), with a
resolution of 1.52 Å, was retrieved from the Protein Data Bank in
PDB format (Preet et al., 2022). The structure was subjected to the
preparation procedure using the Protein Preparation Wizard in
Schrödinger-Maestro v11.5, which includes the removal of all water
molecules, the conversion of selenomethionine residues to
methionine, and the addition of hydrogen atoms to heavy atoms.
Minimization was carried out employing the OPLS3 force field, with
a maximum allowable heavy atom RMSD (root-mean-square-
deviation) set at 0.30.

The grid box coordinates were defined as x: 1.26, y: 6.4, and z:
25.9. The box had a volumetric spacing of 20 × 20 × 20. To establish
the connection between the ligand and the protein-based grid box,
the ‘Extra Precision’ (XP) mode was utilized, and the results were
evaluated using the XP Gscore (Mssillou et al., 2024).

Three distinct modes were used to evaluate the prospective
ligands, including high throughput virtual screening (HTVS),
standard precision (SP), and extra precision (XP). This screening
protocol was structured to iteratively improve ligand placements,
beginning with HTVS, followed by SP mode, and culminating in XP
mode (Veeramachaneni et al., 2015). Furthermore, ligand
refinement involved applying the properties of absorption,
metabolism, distribution, and excretion (ADMET) parameters
and adhering to Lipinski’s Rule of Five using the QikProp tool
within the Schrödinger Software, specifically version 11.5 of Maestro
(Chebaibi et al., 2024). This evaluation was conducted based on the
physicochemical and pharmacokinetic characteristics of various
molecules analyzed in our study. Key factors considered included
molecular weight, the number of hydrogen bond donors and
acceptors, total solvent-accessible surface area, the blood-brain
partition coefficient, the octanol/water partition coefficient, and
aqueous solubility (Kumar et al., 2023; Sharma et al., 2022).

A redocking method was implemented to assess the molecular
docking protocol’s reliability. This entailed docking the co-
crystallized ligand into its binding site. The precision and validity
of the docking protocol were determined by achieving a root mean
square deviation (RMSD) value below 2 Å between the initial and
docked ligand poses (Beniwal et al., 2022).

Molecular dynamics (MD) simulations

MD simulations were conducted utilizing GROMACS software
(version 2019.3) to investigate the conformational dynamics of the
most favorable docking complexes using the CHARMM 27 force
field (Al-Khafaji and Taskin Tok, 2021). The protein topology was
constructed using the GROMACS pdb2gmx modules with

Chemistry at Harvard Macromolecular Mechanics force-field
(CHARMm ff) (Chen et al., 2014), and the ligand topology was
generated via the SwissParam server (Zoete et al., 2011). The docked
structures were immersed in a simulation box with dimensions of
9.6 nm on each side and solvated using the three-point transferable
intermolecular potential (TIP3P) solvent (Mark and Nilsson, 2001).
To ensure system neutrality, ten chloride (Cl were introduced when
needed. The system was then subjected to energy minimization
using the steepest descent algorithm, with a maximum force
threshold of 1,000 kJ/mol/nm. The pressure and temperature
were then set to 1 bar and 300 K using the Nose-Hoover
thermostat and isotropic Parrinello-Rahman barostat (Mahmoudi
Gomari et al., 2022). Finally, a 100 ns simulation was carried out for
each docked complex. We employed custom scripts derived from
the results of molecular dynamics simulations to compute several
metrics, such as root mean square deviation (RMSD) (utilizing ‘gmx
rms’), root mean square fluctuation of residues (with ‘gmx rmsf’),
Solvent Accessible Surface Area (SASA), the radius of gyration (Rg),
and the count of hydrogen bonds (utilizing ‘gmx hbond’).

MM-PBSA calculation

The binding of free energies for the ligands (ΔEbind) was
calculated using the Molecular Mechanics Poisson-Boltzmann
Surface Area (MM-PBSA) method (Kumari et al., 2014). ΔEbind
is calculated using the following equations:

ΔEMMPBSA � Ecomplex - Eprotein + Eligand( ) (1)
ΔGMMPBSA � ΔGvdw + ΔGele + ΔGpolar (2)

Equation 1: Ecomplex is the total MMPBSA energy of the
protein-ligand complex. Eprotein and Eligand are the total
solution-free energies of the isolated protein and ligand,
respectively. Equation 2: MM-G/PBSA is the sum of electrostatic
(Eele), van der Waals (EvdW), polar (Gpolar), and nonpolar
(Gnonpolar) energies.

Results and discussion

Virtual screening results

Collected compounds were initially assessed for their inhibitory
effects against MPV. Based on a combination of pharmacokinetic
and pharmacological criteria, a subset of 6,360 molecules were
selected for further analysis through High Throughput Virtual
Screening (HTVS). Among these, a refined selection of
900 natural products underwent evaluation using Standard
Precision (SP) and Extra Precision (XP), identifying 61 promising
candidates (Supplemental Files). Based on the docking score, glide
emodel score, and glide energy score, the Salsoline derivative,
Genistein, Semisynthetic derivative of kojic acid, and Naringenin
have been selected as candidate ligands to the active site of the A42R
Profilin-like Protein from the MPV (PDB: 4QWO) (Figure 1).

Salsoline, a tetrahydroisoquinoline alkaloid extract from Salsola
plants, is known for its diverse biological activities, including
antibacterial effectiveness against Staphylococcus aureus,
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Streptococcus mutans, Bacillus subtilis, Streptococcus pneumoniae
(Ou and Kwok, 2004; Wang et al., 2004; Wang et al., 2020) and
antiviral activity against influenza A and B viruses (Wang et al.,
2004). In the present in silico investigation, the Salsoline derivative
exhibited the highest docking score, glide emodel score, and glide
energy score, registering at −5.679, −49.575, and −36.546 kcal/mol,
respectively (Table 1).

Genistein, identified as a potential A42R inhibitor, displayed a
docking score, glide emodel score, and glide energy score
of −5.617, −47.838, and −33.885 kcal/mol, respectively (Table 1).
This phytoestrogen isoflavone is abundantly found in sources like
soy and dairy products. It manifests various biological actions such
as antioxidant activity, vermifuge activity, DNA topoisomerase
inhibition, and tyrosine-protein kinase inhibition (Dixon and
Ferreira, 2002; Polkowski and Mazurek, 2000). Notably, it has
demonstrated antiviral efficacy against several viruses, including
HSV-1, cytomegalovirus, and human immunodeficiency virus
(LeCher et al., 2019).

Naringenin, the fourth selected molecule, displayed a docking
score, glide emodel score, and glide energy score of −5.278, −40.661,
and −38.038 kcal/mol, respectively. As a flavonoid in the flavanone
class, it is predominantly found in citrus fruits, grapefruit leaves, and
celery seeds. Naringenin’s diverse activities encompass anti-
atherogenic, anti-inflammatory, anti-mutagenic, anticancer, and
antiviral effects (Yin et al., 2018; Karim et al., 2018; Ke et al.,
2017; Pinho-Ribeiro et al., 2016; Salehi et al., 2019).

Genistein and naringenin, isomers of the well-known
antimicrobial and antiviral isocoumarins, demonstrated
significant inhibitory effects on the profilin-like protein A42R.
The structural similarity between these flavonoids and
isocoumarins may underlie their observed bioactivity, reinforcing
the potential of these compounds as antiviral agents. Previous
studies on isocoumarins have shown their broad-spectrum
bioactivity, which could inform further exploration of genistein
and naringenin against MPV proteins (Ramanan et al., 2016;
Sudarshan et al., 2015; Sudarshan et al., 2019).

FIGURE 1
Selected natural products as potential MPV inhibitors.

TABLE 1 Docking results with ligands in A42R Profilin-like Protein from MPV (PDB:4QWO).

Compound Glide gscore (Kcal/mol) Glide emodel (Kcal/mol) Glide energy (Kcal/mol

Salsoline derivative −5.679 −49.575 −36.546

Genistein −5.617 −47.838 −33.885

Semisynthetic derivative of kojic acid −5.585 −46.373 −33.428

Naringenin −5.278 −40.661 −38.038

Tecovirimat −3.477 −30.647 −25.482
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Various microorganisms form kojic acid from the aerobic
degradation of carbohydrates. Kojic acid and its derivatives are
known for their biological activities, including antimicrobial and
antiviral (Aytemir and Özçelik, 2010), antitumor (Nawarak et al.,
2008), antidiabetic (Xiong and Pirrung, 2008), and anticancer (Yoo
et al., 2010) activities. Through our virtual screening, a semisynthetic
derivative of kojic acid emerged as a potential MPV inhibitor,
garnering a docking score, glide emodel score, and glide energy
score of −5.585, −46.373, and −33.428 kcal/mol,
respectively (Table 1).

In the present study, as a reference, the Tecovirimat was docked
within the active site of the A42R and displayed a docking score,
glide model score, and glide energy score of −3.477, −30.647,
and −25.482 kcal/mol, respectively (Table 1). Compared to

Tecovirimat, this result underscores the heightened effectiveness
of the four selected natural molecules as a candidate
inhibitor of A42R.

Figures 2, 3 illustrate the molecular docking interactions,
revealing the nature and quantity of potential bonds formed
between the ligands and the active site of the A42R. The
Salsoline derivative exhibited notable interactions, establishing
three hydrogen bonds with ARG 115, ARG 122, and ASP
123 residues and a Pi cation bond with residue ARG 122.
Genistein established two hydrogen bonds with residues ARG
122 and ASP 123, intriguingly, 2 Pi-Pi stacking bonds with TYR
A 118 and TYR B 118. The semisynthetic kojic acid derivative
displayed two hydrogen bonds with ARG 122 and ASP 123 residues
and a Pi-Pi stacking bond with TYR A 118. Naringenin established a

FIGURE 2
2D diagrams of candidate ligand’s interactions with the active sites. (A) Salsoline derivative; (B) Genistein; (C) Semisynthetic derivative of kojic acid;
(D) Naringenin.
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single hydrogen bond with residue ASP 123 in its interactions. These
interactions highlight the diverse bonding patterns contributing to
the potential ligand binding and inhibitory effects against the A42R
Profilin-like Protein.

Bioavailability hinges on the interplay between the active
compound’s absorption, distribution, metabolism, and excretion
(ADME) rates, with its physicochemical attributes playing a

crucial role (El-Seedi et al., 2012). ADME predictions offer
insights into the natural product characteristics and
pharmacokinetic attributes of compounds identified as
potential inhibitors for A42R. Interestingly, the selected four
compounds exhibit a molecular mass below 500 Mol and possess
favorable values (≤5 and ≤10, respectively) for hydrogen bond
donors and acceptors (Table 2). Moreover, the oral bioavailability

FIGURE 3
3D diagrams of candidate ligands interactions with the active sites. (A) Salsoline derivative; (B) Genistein; (C) Semisynthetic derivative of kojic acid;
(D) Naringenin.

TABLE 2 ADME properties of natural products selected as potential MPV inhibitors.

Compound
MMa Donors

HBb
Acceptors

HBc
SASAd QPP

cacoe
QP

logPo/wf
QPlogBBg QP

logSh
% human

oral
Absorptioni

Salsoline derivative 380.443 2 7 673.712 186.558 2.309 −1.386 −4.443 81.11

Genistein 270.241 2 3.75 485.362 163.953 1.717 −1.335 −3.089 76.639

Semisynthetic derivative
of kojic acid

302.24 3 8.45 505.571 56.587 −0.235 −1.797 −2.411 56.937

Naringenin 272.257 2 4 499.696 130.037 1.656 −1.398 −3.432 74.482

aMM: mass of molecules (acceptable range: 500 mol).
bDonors HB: donor of hydrogen bonds (acceptable range: ≤5).
cAcceptors HB: acceptors of hydrogen bonds (acceptable range: ≤10).
dSASA: Total solvent accessible surface area using a probe with a 1.4 radius (acceptable range: 300–1,000 radius).
eQPP, Caco: Predicted apparent Caco-2, cell permeability in nm/s. Caco-2, cells is a model for the gut-blood barrier (˂25-poor, ˃500-great).
fQP, logPo/w: Predicted octanol/water partition coefficient (acceptable range: −2–6.5).
gQPlogBB: Predicted blood-brain partition coefficient (acceptable range: −3–1.2).
hQP, logS: predicted aqueous solubility, S in mol/dm−3 (acceptable range: −6.5–0.5).
iPredicted human oral absorption on 0%–100% scale (<25% is poor, and >80% is high).
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of drug compounds is significantly impacted by the magnitude of
the solvent-exposed surface area (Khan et al., 2019).
Interestingly, the Salsoline derivative, Genistein, the
Semisynthetic derivative of kojic acid, and Naringenin
demonstrate satisfactory values falling within the 300 to
1,000 range. Our study’s results agree with the predicted
apparent Caco-2 cell permeability (QPP Caco), representing
the gut-blood barrier (with values below 25 indicating poor
permeability and those above 500 signifying excellent
permeability). Each selected candidate inhibitor of A42R
Profilin-like Protein had an acceptable QPP Caco value,
ranging from 56.587 to 186.558 nm/s.

Furthermore, these compounds exhibit advantageous blood-
brain partition coefficient values, falling within
the −3 to −1.2 range (as reported in reference (Pinho-Ribeiro
et al., 2016)), suggesting their potential ability to cross the blood-
brain barrier. As shown in Table 2, the anticipated oral absorption
rates for these molecules range from 56% to 81%. Based on these
promising results, the subsequent exploration aimed to delve into
the molecular dynamics aspects of the four selected compounds.

Molecular dynamics (MD) simulation
The application of MD simulation revealed new insights into

the stability and dynamic nature of protein-ligand interactions,
configured space of sampling, inter-atomic forces calculation,
generation of the trajectory that is then followed by the dynamics
of a protein’s interaction with its ligand during the molecular
motions and effect at a specific time (Shukla and Tripathi, 2020).
In this study, MD simulations have been applied to assess the
structural stability of A42R (PDB: 4QWO), lasting 100 ns, both in
its unbound (apo) and ligand-bound states. In addition, Root-
Mean-Square-Deviation (RMSD) analysis (Belhassan et al., 2021;
Ouassaf et al., 2021) has been used to assess the stability of these
systems. The RMSD analysis revealed the following average
values for the 4QWO protein in various states: 0.23 nm for
the unbound form, 0.15 nm for the Salsoline derivative
complex, 0.21 nm for the Genistein complex, 0.17 nm for the
Semisynthetic derivative of kojic acid complex, 0.15 nm for the
Naringenin complex, and 0.15 nm for the Tecovirimat complex
(Table 3). The values of all three systems consistently established
that the simulations remained stable throughout the
100 nanoseconds, providing a reliable measure of
conformational changes over time. The backbone RMSD plot

analysis revealed the complexes’ stability during the entire MD
simulation despite a minor deviation from their initial
conformations (Figure 4). The MD simulation results indicate
that the RMSD of the protein backbone in the APO protein
(without any compound) was higher than that of the Salsoline
derivative, Genistein, Semisynthetic derivative of kojic acid,
Naringenin, and Tecovirimat-protein complex structures
which suggests less stability of the APO protein under
physiological conditions. For the 4QWO/Genistein and
4QWO/Semisynthetic derivative of kojic acid complexes, the
RMSD graphs exhibited an upward trend, with RMSD values
increasing from 0.10 to 0.40 nm between 0 and 70 ns, indicating
that the compounds were adjusting to a new conformation within
the binding pocket. Subsequently, the RMSD values plateaued
and stabilized at around 0.20 nm, not exceeding the 0.3 nm
threshold. In contrast, the 4QWO/Salsoline derivative, 4QWO/
Naringenin, and 4QWO/Tecovirimat complexes achieved
stability at approximately 20 ns, and there was no significant
deviation in the protein backbone atoms for the remainder of the
simulation, resulting in a final RMSD values ranging from
0.20 to 0.18 nm.

Root mean square fluctuation (RMSF)
RMSF analysis was employed to explore the impact of ligand

binding on the structural flexibility of the protein and the
behavior of critical amino acids (Shao and Hall, 2017); a lower
RMSF value suggests increased rigidity, while a higher value
indicates greater flexibility (Khan et al., 2021). Figure 5 presents
the RMSF profiles of Apo 4QWO, 4QWO - Salsoline derivative,
Genistein, Semisynthetic derivative of kojic acid, Naringenin,
and Tecovirimat complexes. A comparison to the Apo form of
4QWO reveals that the fluctuations in the residues of the ligand-
bound complexes are stable, mainly in the ligand-binding
regions. Additionally, the average RMSF values of 4QWO free,
4QWO - Salsoline derivative, Genistein, Semisynthetic derivative
of kojic acid, Naringenin, and Tecovirimat complexes were 0.10,
0.09, 0.11, 0.10, and 0.09, respectively (Table 3), indicating that
ligand binding has contributed to maintaining the structural
stability of 4QWO.

Radius of gyration (Rg)
To investigate the impact of various ligands on the overall

compactness of the protein’s structure (El-Seedi et al., 2012), we

TABLE 3 The calculated parameters for all the systems were obtained after 100 ns MD simulations.

Complex
Average

RMSD (nm)
Average

RMSF (nm)
Radius of

gyration (nm)
Average SASA

(backbone, nm2)

Apo 4QWO 0.23 ± 0.04 0.11 ± 0.04 2.04 ± 0.01 142.73 ± 1.36

4QWO - Salsoline derivative 0.15 ± 0.02 0.09 ± 0.04 2.01 ± 0.01 143.33 ± 1.28

4QWO - Genistein 0.22 ± 0.04 0.10 ± 0.03 2.00 ± 0.01 143.69 ± 1.25

4QWO - Semisynthetic derivative of
kojic acid

0.21 ± 0.04 0.10 ± 0.04 2.00 ± 0.01 143.26 ± 1.26

4QWO - Naringenin 0.17 ± 0.03 0.10 ± 0.03 2.02 ± 0.01 143.10 ± 1.24

4QWO - Tecovirimat 0.15 ± 0.02 0.09 ± 0.03 2.01 ± 0.01 142.64 ± 1.26

Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis.
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examined the Rg over time; a ligand exhibiting a higher Rg value is
more likely to display flexibility, indicating instability. Conversely, a
lower Rg value suggests a denser and tightly packed conformation
(Sharif et al., 2021). The average Rg values for Apo 4QWO, 4QWO-
Salsoline derivative, Genistein, Semisynthetic derivative of kojic
acid, Naringenin, and Tecovirimat complexes were determined to

be 2.04, 2.01, 2.00, 2.00, 2.02, and 2.01, respectively (Table 3) which
indicate that the binding to 4QWO did not induce a substantial
alteration in compactness. Additionally, the graphical
representation (Figure 6) illustrates that Rg values for the 4QWO
- Tecovirimat, 4QWO - Salsoline derivative, and 4QWO -
Semisynthetic derivative of kojic acid complexes achieved a stable

FIGURE 4
Root mean square deviation (RMSD) of protein backbone vs simulation time for solvated 4QWO protein free and complexed with (A) Salsoline
derivative, (B) Genistein, (C) Semisynthetic derivative of kojic acid, (D) Naringenin, and (E) Tecovirimat during 100 ns of molecular dynamics simulations.
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equilibrium during the 100 ns simulation, in contrast to the 4QWO -
Genistein and 4QWO - Naringenin complexes.

Solvent accessible surface area (SASA)
SASA is defined as the area of a protein exposed to the

surrounding solvent (Durham et al., 2009). The interpretation
relies on assessing the connection between the surface of the
macromolecule-ligand complex and the water molecules that are

surrounded by (Priya et al., 2014). The variation in SASA for Apo
4QWO, 4QWO with a Salsoline derivative, Genistein, a
Semisynthetic derivative of kojic acid, Naringenin, and
Tecovirimat over a 100 ns period (Figure 7) showed an average
value of 142.73 nm2, 143.33 nm2, 143.69 nm2, 143.26 nm2,
143.10 nm2, and 142.64 nm2, respectively (Table 3), which
indicates that the ligands binding has no significant difference in
the SASA values.

FIGURE 5
Root mean square deviation (RMSF) values of 4QWO alone and in complex with (A) Salsoline derivative, (B)Genistein, (C) Semisynthetic derivative of
kojic acid, (D) Naringenin, and (E) Tecovirimat vs. the number of residues.
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Hydrogen bonds analysis
Hydrogen bond analysis is used to comprehend how the

examined molecules are recognized at the molecular level,
their interactions, and selectivity within the receptors.
(Bissantz et al., 2010). This analysis helped monitor the
protein-ligand interactions that emerged during MD
simulation based on secondary structural elements. During the

MD trajectories of the complexes, we quantified the number of
hydrogen bonds formed. Figure 8 illustrates the counts of
hydrogen bonds and pairs formed within a 0.35 nm distance
for the 4QWO-Salsoline derivative, 4QWO-Genistein, 4QWO-
Semisynthetic derivative of kojic acid, 4QWO-Naringenin, and
4QWO-Tecovirimat complexes throughout the MD simulation.
The results revealed that the Salsoline derivative established an

FIGURE 6
The radius of gyration (Rg) for backbone atoms of 4QWO alone and in complex with (A) Salsoline derivative, (B) Genistein, (C) Semisynthetic
derivative of kojic acid, (D) Naringenin, and (E) Tecovirimat throughout the simulation.

Frontiers in Chemistry frontiersin.org10

Chebaibi et al. 10.3389/fchem.2024.1445606

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1445606


average of 2.67 hydrogen bonds with the active pocket of 4QWO.
Similarly, Genistein and the Semisynthetic derivative of kojic
acid acted as ligands, interacting with 4QWO within the binding
site with an average of 2.45 and 2.96 hydrogen bonds,
respectively. However, the average number of hydrogen bonds
for the 4QWO-Naringenin and 4QWO-Tecovirimat complexes
was 1.47 and 1.70, respectively. The hydrogen bond analysis plot
indicated that the Salsoline derivative maintained a more robust

interaction with the binding pockets of 4QWO throughout the
simulation compared to the Genistein, the Semisynthetic
derivative of kojic acid, and the Naringenin (Figure 5).

Molecular Mechanics Poisson-Boltzmann Surface
Area (MMPBSA) analysis

The MMPBSA analysis (Rostami et al., 2022) was used to
evaluate the complexes’ binding affinities. All the trajectory

FIGURE 7
The comparative SASA values for backbone atoms of 4QWO alone and in complex with (A) Salsoline derivative, (B) Genistein, (C) Semisynthetic
derivative of kojic acid, (D) Naringenin, and (E) Tecovirimat throughout the simulation.
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snapshots were employed to calculate the primary forces
governing the interactions between the protein and ligand.
The total binding free energies (ΔEbind) for these complexes
were computed in kJ/mol, and the results are presented in
Table 4. The average binding free energy of the complexes,
which include the Salsoline derivative, Genistein,
Semisynthetic derivative of kojic acid, Naringenin, and
Tecovirimat, were found to be −106.418, −46.808, −50.770,

and −63.319 kJ/mol, respectively which are lower
than −33.855 kJ/mol of the Tecovirimat complex. As
indicated in Table 4, the Salsoline derivative exhibited the
lowest binding energy, suggesting a weaker binding strength
in this complex. This observation is consistent with the
contributions of Van der Waals (VdW), electrostatic (Elec),
and polar solvation energies to the binding energy, which
align with the docking results.

FIGURE 8
Hydrogen bond numbers made between (A) Salsoline derivative, (B) Genistein, (C) Semisynthetic derivative of kojic acid, (D) Naringenin, and (E)
Tecovirimat in the4QWO protein active site residues during MD simulations.
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Conclusion

The recurrent spread of the Monkeypox virus has emerged as a
global threat, posing significant health risks. Based on our virtual
screening and molecular dynamics simulation, the Salsoline
derivative, Genistein, the semi-synthetic derivative of kojic acid,
and Naringenin have shown significant potential as inhibitors of the
profilin-like protein A42R from the Monkeypox Zaire-96-I-16 virus
(PDB: 4QWO).

Given that the absorption, distribution, metabolism, excretion,
and toxicity (ADMET) predictions yielded promising results, we
strongly recommend experimental validation to confirm the binding
affinities of these compounds against A42R. This represents a
limitation of the present study but also highlights an essential
avenue for future research.

Looking forward, clinical trials to evaluate the anti-MPV
activities of these natural compounds in patients infected with
MPV are not only appropriate but also highly justified to further
validate their therapeutic potential. Such studies could pave the way
for developing new antiviral treatments, contributing significantly to
public health efforts in managing and potentially curbing future
outbreaks of the Monkeypox virus.
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TABLE 4 MM-PBSA calculations of binding free energy for All the complexes.

Complex
Binding energy

(kJ/mol)
SASA energy

(kJ/mol)
Polar solvation
energy (kJ/mol)

Electrostatic energy
(kJ/mol)

Van der waals
energy (kJ/mol)

4QWO - Salsoline derivative −106.418 + /- 58.464 −15.086 + /- 4.008 108.736 + /- 26.747 −67.391 + /- 25.660 −132.676 + /- 43.347

4QWO - Genistein −46.808 + /- 35.016 −10.932 +/- 2.747 100.615 +/- 31.227 −51.243 +/- 38.730 −85.248 + /- 30.935

4QWO - Semisynthetic
derivative of kojic acid

−50.770 + /- 24.495 −10.521 +/- 2.052 114.180 + /- 32.332 −71.260 + /- 31.135 −83.169 + /- 19.987

4QWO - Naringenin −63.319 + /- 22.461 −12.709 + /- 1.899 95.126 + /- 28.289 −44.171 + /- 33.057 −101.565 + /- 19.561

4QWO - Tecovirimat −33.855 + /- 28.604 −6.387 + /- 3.545 32.325 + /- 34.411 −7.179 + /- 11.858 −52.614 + /-31.400
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