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Nanoparticles show superior potential for enhancing thermal properties
compared to conventional particle–liquid suspensions. This investigation
delves into magnetohydrodynamics (MHD) drift, heat, and mass transfer
effects within a Jeffery nanoparticle liquid. The study includes transference
equations that consider the influences of thermophoresis and Brownian
motion on particle deposition. The analysis examines the impact of a
nanofluid through a porous, exponentially elongating sheet, focusing on the
double-stratification effects on heat and mass transference. The primary
emphasis is on the formulated thermal energy equation, which incorporates
Joule heating, heat generation, and ohmic dissipation terms. The initial step
involves transforming the non-linear primary equations and their related
boundary conditions into non-dimensional forms using similarity variables.
The homotopy analysis method is then applied to obtain analytical results for
the equations. Graphical representations of the impacts of various parameters on
velocity and temperature values are presented, alongwith a detailed discussion of
these impacts. A comprehensive analysis of specific parameters on the drag force
factor-reduced Nusselt number and Sherwood number is provided and
illustrated. Additionally, this research is applicable in environmental
engineering, particularly in managing thermal pollution in water bodies, by
aiding in predicting temperature distribution and themixing behavior of effluents.
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Introduction

Nanofluids are examined for their potential applications in heat
transfer, cooling systems, lubrication, and various industrial
processes where enhanced thermal conductivity or other
improved properties are desired. The interdisciplinary nature of
the nanofluid field encompasses fluid dynamics, materials science,
and thermal engineering. Khan and Pop, (2010) discussed the
movement of nanofluids through a stretching sheet in the
boundary layer. Sujata et al. (2023) explored the thermophysical
properties of nanoliquids and their potential for enhancing heat
transference. Ali et al. (2019a) explored the heat and mass transfer
characteristics of 3D Maxwell nanofluid as it moves over an
exponentially stretching surface.

Jeffery fluid is a viscoelastic liquid known for its anisotropic
behavior, meaning it changes its rheological response and transmits
shear stresses depending on the deformation rate. Widely used in
studying complex fluids and rheology, the Jeffery fluid model is also
applied in various fields, including geophysics, to understand
behavior under diverse conditions. Samina et al. (2022)
investigated phase portraits, multistability phenomena, and
velocity profiles for nanofluids through the
magnetohydrodynamics (MHD) Jeffery flow. The analytical
method with the KKL nanoliquid model predicts multiple
solutions for MHD Jeffery drift, as explored by Rana et al. (2019)
on related heat transference problems.

The following sections discuss the impact of magnetic fields on
liquid mechanics and dynamic energy in MHD. These sections also
cover scenarios where such flows alter the ambient magnetic field.
Utilizing MHD to control the motion of electrically conducting
liquids offers potential benefits for pumps, propulsion systems, and
other fluid-handling devices. Elboughdiri et al. (2023) investigated
using the passive control method to simulate Jeffery nanofluid drifts
with thermal augmentation near an impermeable suctioned surface,
considering buoyancy and Lorentz force effects. Ali Abro et al.
(2019) explored the thermal characteristics of MHD Jeffery liquid
using contemporary non-integer-order derivatives in the analysis.
Hussain et al. (2022) examined the sensitivity analysis of MHD
nanofluid flow over an exponentially stretched surface with non-
uniform heat flux through a response surface methodology.

A substance is recognized as a porous medium when it displays
interconnected empty spaces, pores, or voids. Factors like pore size,
shape, and connectivity influence this property. Porous media are
commonly found in natural and engineered systems, such as soil,
rocks, biological tissues, water filters, catalytic converters, and thermal
insulation materials. Bilal et al. (2021) analyzed the dynamics of a
chemical reaction in a porous medium made of Jeffery liquid,
considering the influence of a magnetic field on a boundary layer
under various slip conditions. Abd-Alla et al. (2023) observed the heat
and mass transference characteristics of Jeffery fluid under peristaltic
waves within a rotating frame involving porous media with chemically
reactive species over a chemical process. Ali et al. (2024) performed a
theoretical investigation of the unsteady MHD flow of Casson hybrid
nanofluid in a porousmedium, emphasizing the applications of thermal
radiation and nanoparticles.

Exponential stretching is quantified by a parameter
characterizing the rate of increase in the sheet’s length.
Depending on various problems and boundary conditions,

solutions to these mathematical models can provide helpful
guidelines for understanding flow patterns and heat transfer
characteristics across surfaces with exponential stretching.
Thenmozhi et al. (2023) deliberated the inspiration of Jeffery
fluid on MHD drift in heat transfer systems with elongated
porous sheets. Reddappa and Sreenadh (2022) discovered the
inspiration of double stratification on Jeffery fluid drift with
electrical MHD, involving second-order chemical processes
through an exponentially elongating sheet. Ali et al. (2021)
explored the heat and mass transfer characteristics of 3D
Oldroyd nanofluid as it moves over an exponentially
stretching surface.

Joule heating is fundamental to many electrical devices and
systems, such as electric heaters, toasters, incandescent lamps, and
electronic components. Although it is often considered wasteful
energy dissipation in some contexts, it is intentionally used for
heating in others. Understanding Joule heating is crucial for
managing the design and operation of electrical systems to
prevent overheating and ensure efficiency. Al-Khaled et al. (2022)
presented a mathematical model for analyzing the radiative
peristaltic drift of Jeffery liquid in curved channels with ohmic
heating. Harish Babu and Satya Narayana (2016) explored MHD
Jeffery fluid flow through a power-law heat flux stretching sheet
under Joule heating. Awais et al. (2022) conducted a numerical
analysis of MHD axisymmetric rotating Bodewadt flow, considering
the effects of viscous dissipation and ohmic heating.

Viscous dissipation is significant in fluid systems with
substantial deformation or cutting, such as the pipe flow, liquid
motion around obstacles, and fluid response to specific stresses.
Understanding and measuring viscous dissipation is essential for
designing and evaluating fluid systems, including their energy
balance and heat distribution. Engineers may need to control this
effect to improve efficiency and effectiveness. Li et al. (2022) studied
Hall effects and ohmic dissipation under wave frame conditions for
peristaltic Jeffery nanofluid transport. Al-Khaled et al. (2019)
analyzed the influences of a heat source and chemical reactions
on Jeffery fluid stagnation point flow, considering ohmic dissipation.
Ashraf et al. (2022) investigated how viscous dissipation and
magnetohydrodynamics influence periodic heat transfer along a
cone in a porous medium.

Heat generation refers to creating thermal energy within a
system or material, usually resulting from physical or chemical
processes that convert other forms of energy into heat.
Understanding and controlling heat generation are crucial in
both natural and engineered systems. Dadhich et al. (2021)
studied the thermally radiated drift of Jeffery fluids containing
nanoparticles over a surface with varying thicknesses. Azhar et al.
(2019) observed the influence of internal heat sources and chemical
reactions on the stagnation point drift of Jeffery fluid, accounting for
viscous dissipation. Ali et al. (2018) analyzed the three-dimensional
MHD flow of Maxwell nanofluid containing gyrotactic
microorganisms, factoring in the effects of heat sources and sinks.

Double stratification affects outcomes depending on the context
in which it is applied. Stratification generally refers to the layering of
different strata or layers. Understanding double stratification is vital
for studying the dynamics of lake ecosystems, including nutrient
cycling, oxygen distribution, and habitat preferences of various
organisms. Muhammad et al. (2022) studied the bioconvective
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transfer of Jeffery nanofluid with gyrotactic motile microbes in a
doubly stratified environment. Siva Sankari et al. (2023) observed
the effects of dual stratification on Casson nanoliquid through an
exponentially elongating sheet. Ali et al. (2019b) examined the
effects of stratification in the inclined rheology of upper
convected Maxwell (UCM) nanomaterials.

The novelty of the current analysis is highlighted through several
aspects. First, it explores stratification effects in the MHD boundary
layer-stretched flow of nanofluid-containing nanoparticles,
incorporating Joule heating, viscous dissipation, heat generation,
and thermal radiation—an area not previously investigated.
Second, the study focuses on non-Newtonian fluids, specifically
Jeffery nanofluid, further narrowing the research scope. Third, it
examines the flow dynamics over an exponentially stretching sheet,
adding complexity to the analysis. Fourth, convergent solutions of
non-linear dimensionless expressions are developed using a
homotopic procedure, ensuring robust and accurate results. The
behaviors of various pertinent parameters on velocity, temperature,
and concentration are thoroughly examined. The Nusselt and
Sherwood numbers are computed and analyzed, offering valuable
insights into the system’s thermal and mass transfer characteristics.

In various industrial and engineering applications,
understanding the behavior of Jeffrey fluid over an exponentially
stretching sheet is crucial, mainly when accounting for complex
thermal and concentration effects. The study of such systems
includes the impacts of viscous dissipation and Joule heating,
which are essential in processes involving significant energy
transformations. Additionally, heat generation within the fluid
and the effects of thermal radiation are critical for accurate
thermal management and optimization. Double stratification,
incorporating both thermal and solutal stratification, further
complicates the fluid behavior, making it necessary to consider
these factors to achieve precise control and efficiency in
applications such as polymer processing, cooling of electronic
devices, and designing advanced material manufacturing processes.

Mathematical formulation

We consider the two-dimensional MHD drift of Jeffrey nanofluid
over an exponentially stretching sheet. Heat and mass transference
impacts are taken into account. Standard to the drift direction is
encountered an applied magnetic field of strength. B0. The
concentration of the magnetized Jeffrey liquid is taken in the
existence of the solutal stratification impact. The drift field is
demonstrated by heat generation, thermal stratification, and
thermal radiation impacts. The temperature drift regime is further
strengthened by taking mixed convection features. In addition,
viscous dissipation and Joule heating effects are also considered.

This investigation explores the boundary stratum drift of a liquid
through an exponentially overextended pane in a porous medium
within two extents. The y-axis is perpendicular to a varying magnetic
field applied to the peripheral, where it is persistent, and the x-axis is
assumed to be extended with velocity U. The implication is
T∞(x) � T0 + cex/2L. The variable quantities b, c, m, and n are
considered optimistic if the position temperature T0 and concentration
are C0. The inconstant chemical variation rate of the second-order
irrevocable procedure is kr � 1

2 (k0m)ex/2Lk0, where k0 is a persistent, and

porousness isK′ � k*e
x /

L, where k* is insistent. Figure 1 shows the drift
regime’s thermal, species, and momentum boundary stratum.

div V � 0, (1)
ρ
dv

dt
� divτ + ρb. (2)

The Cauchy stress tensor can be represented for a Jeffery fluid as
(Ramzan et al., 2017)

τ � −pI + S, (3)
where the extra stress tensor S is defined as

S � μ

1 + λ1
A1 + λ2

∂A1

∂t
+ ∇.V( )A1[ ]. (4)

The first Rivlin–Ericksen tensor is expressed as follows:

A1 � ∇V( ) + ∇V( )t, (5)
V � u x, y( ), v x, y( ), 0[ ]. (6)

The Cauchy stress tensor is denoted by τ, the dynamic viscosity
is represented by μ, λ1 is the ratio of relaxation to retardation times,
λ2 is the retardation time, and A1 is the Rivlin–Ericksen tensor. t
represents matrix transpose, V velocity field.

The presented equations governing the drift are modeled as
follows (Equations 9, 13, 25) (Reddappa and Sreenadh, 2022;
Ramzan et al., 2017):

∂u
∂x

+ ∂v
∂y

� 0, (7)

u
∂u
∂x

+ v
∂u
∂y

� υ

1 + λ1
( ) ∂2u

∂y2
+ λ2

∂u
∂y

∂2u
∂x∂y

+ u
∂3u

∂x∂y2
− ∂u
∂x

∂2u
∂y2

+ v
∂3u
∂y3

( )( )
−σB

2
0u

ρ
− υ

1 + λ1
( ) u

k′, (8)

u
∂T
∂x

+ v
∂T
∂y

� α
∂2T

∂y2 +
1
ρcp

∂qr
∂y

+ Q0

ρcp
T − T∞( )

+τ DB
∂C
∂y

∂T
∂y

+ DT

T∞

∂T
∂y

( )2[ ] + σB2
0u

2

ρcp
+ υ

1 + λ1
( ) u2

k′cp

+ υ

cp 1 + λ1( )
∂u
∂y

( )2

+ υλ2
cp 1 + λ1( )

∂u
∂y

∂
∂y

∂u
∂x

+ ∂v
∂y

( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(9)

u
∂C
∂x

+ v
∂C
∂y

� DB
∂2C
∂y2

+ DT

T∞

∂2T
∂y2

. (10)

The corresponding boundary restrictions are

u � U � U0e
x /

L, v � −V x( ) � −V0e
x /

L, T � Tw x( ) � T0 + bex/2L,

C � Cw x( ) � C0 +mex/2L, at y � 0, (11)
u → 0, T � T∞ x( ) � T0 + cex/2L,

C � C∞ x( ) � C0 + nex/2L, asy → ∞ . (12)

In this context, the reference velocity is represented by Uo, the
suction velocity is denoted by V(x) > 0, and the blowing velocity is
denoted by V(x) < 0. The primary suction quality is indicated by > 0,
while the initial blowing quality is indicated by < 0. Based on the
Roseland approximation (Makinde and Animasaun, 2016) for
radiative heat flux, ∂qr/∂y ≈ − (16σ pT3∞/3k p)∂2T/∂y2, where k*
is the mean absorption factor and nnotesotesσ* denotes the
Stefan–Boltzmann persistent.
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η �
����
U0

2υL

√
e
x/2Ly, u � U0e

x /

Lf′ η( ),
v � −

����
υU0

2L

√
e
x/2L f η( ) + ηf′ η( ){ },

θ η( ) � T − T∞
Tω − T0

, ϕ η( ) � C − C∞
Cω − C0

. (13)

The dimensionless forms of the equations for linear momentum,
energy, and concentration, along with their corresponding boundary
conditions, can be expressed as follows:

1
1 + λ1

( )f‴ + 1 + λ1( )ff″ − 2 1 + λ1( )f′2

+ β

1 + λ1( )
3
2
f″2 − 1

2
ff″″( ) −M 1 + λ1( )f′ −Kp 1 + λ1( )f′ � 0,

(14)
1+ 4

3
K( )θ″+Pr fθ′−f′θ−Tf′+Qθ+Nbθ′ϕ′+Nt θ′( )2( )

+PrEcM f′( )2 + 1
1+λ1( )PrEc f″2 + β

2
f″ 3f′f″−ff‴( )( )� 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

(15)
ϕ″ + Sc fϕ′ − f′ϕ − cf′( ) + Nt

Nb
( )θ″ � 0. (16)

The boundary conditions for the analyzed flow are

f′ � 1, f � S, θ � 1 − Stϕ � 1 − Sc, as η � 0, (17)
f′ → 0, θ → 0,ϕ → 0 as η → ∞ .

Denoting the main as the variation concerning η, the various
criticisms are represented as follows: the porous prarameter as
KP � 2Lυ

k*U0
, the magnetic prarameter as M � 2σB2

0L
ρU0

, the Prandtl
number as Pr � υ

α, the heat source prarameter as Q, the thermally
stratified structure as St � c

b, the Schmidt number as Sc � υ
D, the

chemically stratified prarameter as Sc � n
m, the Eckert number as

Ec � U2
0

cp(Tw−T∞), and the suction or blowing prarameter as S � V0��
υU0
2L

√ .

For the suction prarameter, S > 0, while for the blowing
prarameter, S < 0.

The critical physical extent of interest is the skin friction

coefficient Cf � τw
ρU2

w(x), local Nusselt number Nu � xqw
k(Tw − T∞) ,

and local Sherwood number Sh � xJw
D(Cw−C∞).

The symbols τwqwJw correspond to the shear stress, heat flux,
and mass flux at the surface, respectively.

τw � μ

1 + λ1
( ) ∂u

∂y
+ β

∂u
∂y

( )
y�0

, qw � −k ∂T
∂y

+ 16σ pT3
∞

3k p k
( )

y�0
,

Jw � −D ∂C
∂y

( )
y�0

. (18)

Utilizing Equation 7, the dimensionless drag force coefficient, as
well as the rates of wall heat and mass transference, can be stated
as follows:

����
2Rex

√
Cfx � 1

1 + λ1
( ) f″ 0( ) + βf″ 0( )( ) ���

x

2L

√
,

Nux���
Rex

√ � −
��
x
2L

√
1 + 4 /

3K( )θ′ 0( )
1 − T( ) ,

Shx���
Rex

√ � − ��
x
2L

√
ϕ′ 0( )

1 − c( ) . (19)

Solution procedure
To resolve Equations 5,–,7, below the boundary

constraint Equation 8, we use the homotopy analysis method
(HAM) with the resulting technique. The results take the
assisting prarameter - to change and resist the convergence
of the explanations.

The primary presumptions are designated as

f0 η( ) � 1 + S − e−η, θ0 η( ) � 1 − St( )e−η, ϕ0 η( ) � 1 − Sc( )e−η.
(20)

The linear operatives are engaged as Lf, Lθ , Lϕ,

Lf f( ) � d3f

dη3
− df

dη
, Lθ θ( ) � d2θ

dη2
− θ, Lϕ ϕ( ) � d2ϕ

dη2
− ϕ, (21)

which have the following properties:

FIGURE 1
Geometry of the problem.
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Lf c1 + c2e
−η + c3e

η( ) � 0, Lθ c4e
−η + c5e

η( ) � 0, Lϕ c6e
−η + c7e

η( ) � 0.

(22)
In the overarching approach, ci(i � 1 − 7) are the coefficients.
The consequent non-linear operators Nf,Nθ , Nϕ, are provided

as follows:

Nf f η;p( )[ ] � 1
1 + λ1

( ) ∂3f η;p( )
∂η3

+ 1 + λ1( )f η;p( ) ∂2f η;p( )
∂η2

−2 1 + λ1( ) ∂f η;p( )
∂η

( )2

+ β

1 + λ1( )
3
2

∂2f η;p( )
∂η2

( )2

− 1
2
f η;p( ) ∂4f η;p( )

∂η4
⎛⎝ ⎞⎠

−M 1 + λ1( ) ∂f η;p( )
∂η

−Kp 1 + λ1( ) ∂f η;p( )
∂η

, (23)

Nθ f η;p( ), θ η;p( ), ϕ η;p( )[ ] � 1 + 4
3
K( ) ∂2θ η;p( )

∂η2

+Pr
f η;p( ) ∂θ η;p( )

∂η
− ∂f η;p( )

∂η
θ η;p( ) − St

∂f η;p( )
∂η

+

Qθ η;p( ) +Nb
∂θ η;p( )

∂η
∂ϕ η;p( )

∂η
+Nt

∂θ η;p( )
∂η

( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+PrEcM ∂f η;p( )
∂η

( )2

+ PrEc
1

1 + λ
1( )

∂2f η;p( )
∂η2

( )2

+ β

2
∂2f η;p( )

∂η2

3
∂f η;p( )

∂η
∂2f η;p( )

∂η2
−

f η;p( ) ∂3f η;p( )
∂η3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Nϕ f η;p( ), θ η;p( ),ϕ η;p( )[ ]
� ∂2ϕ η;p( )

∂η2
+ Nt

Nb
( ) ∂2θ η;p( )

∂η2

+ Sc f η;p( ) ∂ϕ η;p( )
∂η

− ∂f η;p( )
∂η

ϕ η;p( ) − Sc
∂f η;p( )

∂η
( ),

(24)
The essential perception of the HAM is elucidated by Khan and

Pop (2010); Sujata et al. (2023); Ali et al. (2019a); and Samina et al.
(2022), and the following constitute the zeroth-order problems in
Equations 5–7:

1 − p( )Lf f η;p( ) − f0 η( )[ ] � pZfNf f η;p( )[ ], (25)
1 − p( )Lθ θ η;p( ) − θ0 η( )[ ] � pZθNθ f η;p( ), θ η;p( ), ϕ η;p( )[ ],

(26)
1 − p( )Lϕ ϕ η;p( ) − ϕ0 η( )[ ] � pZϕNϕ f η;p( ), θ η;p( ),ϕ η;p( )[ ].

(27)
The comparable restrictions for boundaries are as follows:

f η;p( )∣∣∣∣η�0 � S,
df η;p( )

dη

∣∣∣∣∣∣η�0 � 1, θ η;p( )∣∣∣∣η�0 � 1 − St,ϕ η;p( )∣∣∣∣η�0 � 1 − Sc,

df η;p( )
dη

∣∣∣∣∣∣η→∞
� 0, θ η;p( )∣∣∣∣η→∞ � 0, ϕ η;p( )∣∣∣∣η→∞ � 0,

(28)
where p ∈ [0, 1] is the embedding parameter and Zf, Zθ , Zϕ, are

used to control the convergence of the solution. When p = 0 and p =
1, we have

f η; 1( ) � f η( ), θ η; 1( ) � θ η( ), ϕ η; 1( ) � ϕ η( ). (29)

Upward f(η;p), θ(η;p), ϕ(η;p), in Taylor’s series about p � 0

f η;p( ) � f0 η( ) + ∑∞
m�1

fm η( )pm, θ η;p( ) � θ0 η( ) + ∑∞
m�1

θm η( )pm,

ϕ η;p( ) � ϕ0 η( ) + ∑∞
m�1

ϕm η( )pm,

(30)
where

fm η( ) � 1
m!

∂f η;p( )
∂η

∣∣∣∣∣∣∣∣
p�0

, θm η( ) � 1
m!

∂θ η;p( )
∂η

∣∣∣∣∣∣∣∣
p�0

,

ϕm η( ) � 1
m!

∂ϕ η;p( )
∂η

∣∣∣∣∣∣∣∣
p�0

.

(31)

By selecting the secondary constraints so that the series Equation
21 switches in Equation 20 and converges, we obtain

f η( ) � f0 η( ) + ∑∞
m�1

fm η( ), θ η( ) � θ0 η( ) + ∑∞
m�1

θm η( ),
ϕ η( ) � ϕ0 η( ) + ∑∞

m�1
ϕm η( ). (32)

The following is satisfied by the mth-order problem:

Lf fm η( ) − ωmfm−1 η( )[ ] � ZfRf
m η( ), Lθ θm η( ) − ωmθm−1 η( )[ ] � ZθRθ

m η( ),
Lϕ ϕm η( ) − ωmϕm−1 η( )[ ] � ZϕRϕ

m η( ),
(33)

The related conditions for boundaries are as follows:

fm 0( ) � f′
m 0( ) � θm 0( ) � ϕm 0( ) � 0

f′
m ∞( ) � θm ∞( ) � ϕm ∞( ) � 0 . (34)

Here,

Rf
m η( ) � 1

1 + λ1
( )fm− 1

‴ + 1 + λ1( ) ∑m−1

k�0
fm−1−kf″

k

−2 1 + λ1( ) ∑m−1

k�0
fm−1−k′ f′

k

−M 1 + λ1( )fm−1′ −Kp 1 + λ1( )fm−1′

+ β

1 + λ1( )
3
2

∑m−1

k�0
fm−1−k″ f″

k −
1
2

∑m−1

k�0
fm−1−kf

′′′′
k

⎛⎝ ⎞⎠,

(35)
Rθ
m η( ) � 1 + 4

3
K( )θm−1″ + PrEcM ∑m−1

k�0
fm−1−k′ f′

k+

Pr ∑m−1

k�0
fm−1−kθ

′
k − ∑m−1

k�0
fm−1−k′ θk − Stfm−1′ + Qθm−1 +Nb ∑m−1

k�0
θm−1−k′ ϕ′

k +Nt ∑m−1

k�0
θm−1−k′ θ′k⎛⎝ ⎞⎠

+ 1
1 + λ1

( )PrEc ∑m−1

k�0
fm−1−k″ f″

k +
β

2
3 ∑m−1

k�0
fm−1−k′ ∑k

l�0
fk−l″ f″

l − ∑m−1

k�0
fm−1−k∑k

l�0
fk−l″ f‴

l
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(36)
Rϕ
m η( ) � ϕm−1″ + Nt

Nb
( )θm−1″

+ Sc ∑m−1

k�0
fm−1−kϕ′

k − ∑m−1

k�0
fm−1−k′ ϕk − Scfm−1′⎛⎝ ⎞⎠, (37)

where

ωm � 0, if p≤ 1
1, if p> 1{ .
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The following are the general solutions:

Lf η( ) � f*
m η( ) + c1 + c2e

−η + c3e
η

θm η( ) � θ*m η( ) + c4e
−η + c5e

η

ϕm η( ) � ϕ*
m η( ) + c6e

−η + c7e
η

, (38)

where f*
m(η), θ*m(η), ϕ*m(η) are the particular solutions.

Mathematica is used to address linear homogeneous Equations
33, 34 in a consecutive manner of m = 1, 2, 3.

Convergence of the HAM solution

The equation series expansions provide the solutions. H-curves
at the 18th order of approximation are shown in Figure 2, which
helps pick up suitable values of hϕ. Figure 3 shows that the correct
values of -f are −0.8≤ hf ≤ − 0.1,−0.82≤ hθ ≤ − 0.12 and
−0.73≤ hϕ ≤ − 0.1.

Convergent table

Table 1 is given to ensure solution convergence. This table
clearly shows that convergence is obtained at the 48th order of
approximations.

Validation

We compared the numerical solutions for velocity,
temperature, and concentration graphs to validate our
calculations with the HAM solutions, as shown in Figures
4–6. The comparisons demonstrate good agreement.
Additionally, we compared our numerical results with the
HAM solutions in Tables 2, 3; Supplementary Table S1.
These comparisons confirm the accuracy of our
calculation method.

Result and discussion

Different constraints were used to obtain the numerical values of
local variables given in Supplementary Tables S2–S4. Supplementary
Table S2 also shows that, at higher M, β, λ1, and Kp, there is an
increase in the drag force factor. The results for −θ′(0), referred to as
the local Nusselt number, are given in Supplementary Table S3.
Conversely, as observed, while high Pr, Q, and Ec increase KTs,
leading to improved heat transfer rate, this is not so for
Supplementary Table S3. Sc, Nb, and Kp can be calculated
against the Sherwood number versus Nt and Nb in
Supplementary Table S4. Therefore, higher Sc, Nb, and Kp values
enhance themass transfer rate, while an increase in the mass transfer
rate with an increasing Nt value is unlikely to occur.

Velocity distribution

Supplementary Figure S1 in this paper helps us understand how
magnetic field fluctuations affect velocity distributions. When the

FIGURE 2
H-curve for function f″(0), θ′(0), ϕ′(0).

FIGURE 3
Flowchart of the HAM.
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TABLE 1 HAM solution convergence at various approximation orders.

M f″(0) θ′(0) ϕ′(0)
4 −1.22139 −0.78096 −0.707819

8 −1.3250 −0.693755 −0.584240

12 −1.37449 −0.628956 −0.50381 2

16 −1.39876 −0.579765 −0.450614

20 −1.4113 −0.549421 −0.419513

24 −1.42952 −0.526218 −0.396782

28 −1.43835 −0.507231 −0.370321

32 −1.44952 −0.496429 −0.358951

36 −1.45126 −0.489532 −0.349825

40 −1.45334 −0.487539 −0.337423

44 −1.45426 −0.486943 −0.336732

48 −1.45432 −0.486694 −0.336087

50 −1.45432 −0.486694 −0.336087

FIGURE 4
HAM and numerical comparison of the velocity profile f′(η).

FIGURE 5
HAM and numerical comparison for the temperature profile θ(η).

FIGURE 6
HAM and numerical comparison of the concentration profile
ϕ(η).

TABLE 2 HAM and numerical comparison for the velocity profile f9(η).

η HAM solution Numerical solution Absolute error

0.0 1.000000 1.000000 0.000000

0.5 0.599264 0.598658 0.001213

1.0 0.367317 0.366,674 0.001286

1.5 0.226250 0.225743 0.001013

2.0 0.139053 0.138699 0.000709

2.5 0.085149 0.084916 0.000466

3.0 0.051976 0.051827 0.000297

3.5 0.031654 0.031561 0.000185

4.0 0.019248 0.019191 0.000114

4.5 0.011693 0.011658 0.000070

5.0 0.007099 0.007078 0.000043

TABLE 3 HAM and numerical comparison for the velocity profile f9(η).

η HAM solution Numerical solution Absolute error

0.0 0.900,000 0.900,000 0.000000

0.5 0.631487 0.632116 0.001257

1.0 0.417822 0.418306 0.000968

1.5 0.267020 0.267320 0.000600

2.0 0.167141 0.167318 0.000353

2.5 0.103325 0.103428 0.000206

3.0 0.063396 0.063456 0.000122

3.5 0.038720 0.038757 0.000072

4.0 0.023585 0.023606 0.000043

4.5 0.014342 0.014354 0.000026

5.0 0.008712 0.008720 0.000016
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strength of the magnetic field increases, a drag force slows down the
fluid’s motion. Stabilization can be achieved by applying a controlled
transverse magnetic field, which helps delay from laminar to
turbulent flow in the boundary layer flow. With Jeffery fluid
having both elastic and viscous properties, this determines the
direction and magnitude of the applied magnetic field. Such an
interaction changes how fluid particles move, which leads to possible
complicated MHD consequences that are guided by fluid
conductivity and susceptibility to magnetism. The
magnetohydrodynamic effect may become severe at higher values
of these parameters concerning alignment with or against the fluid
flow direction. The accurate control and understanding of such
parameters are highly essential for optimizing process efficiency, as
well as operation cost in applications like electromagnetic stirring in
metallurgy, magnetic drug targeting in biomedicine, and aerospace
engineering, where precise manipulation of the distribution of
velocities is necessary for maximum operational effectiveness and
performance improvement.

Supplementary Figure S2 shows an increase in the retardation
time, λ2, which is linked to an increase in the Deborah number β. β
relies on λ2; thus, whenever we increase this value, it means that the
retardations will last longer. In physics, increasing the retardation
time makes objects more elastic. Elasticity and viscosity effects are
inversely proportional; hence, a decrease in viscosity leads to a
higher fluid velocity. The velocity also increases when the Deborah
number increases, as observed here. The complex and non-uniform
flow patterns of Jeffery fluid are caused by its high Deborah number,
which indicates more elastic behavior. Conversely, a lower Deborah
number implies smoother and more uniform velocity distributions
due to a more viscous behavior being exhibited. It is important to
note that understanding how these fluids behave in polymer
processing, biological flows, and other complex applications is
necessary to optimize their final results or efficiency.

The porosity parameter Kp is investigated in Supplementary
Figure S3 for velocity distribution. In Jeffery fluid, the porosity
parameter significantly affects the flow by determining the
proportion of void spaces present within the fluid structure. For
instance, an increase in fluid porosity results in a decrease in its
velocity, which is consistent with reality, as we know it. Moreover,
this variation occurs due to official scenarios where increasing voids
imply the reduced speed of a givenmaterial or liquid substance when
it flows through it. Finally, beyond certain distances from the
surface, boundary porosity has no impact on fluid motion at all.
To control the product efficiency and enhance performance levels,
filtration processes require knowledge about what happens to pore
medium fluids and composite manufacturing.

Supplementary Figure S4 shows the impact of velocity, denoted
by the ratio between relaxation and retardation time λ1. An increase
in λ1 indicates a longer relaxation time and a shorter retardation
time. Consequently, fluid particles take more time to return to
equilibrium after they are disturbed. The ratio of relaxation to
retardation time in a Jeffery fluid is essential for determining its
velocity distribution because it exhibits a viscoelasticity nature, as
discussed earlier. On one hand, the relaxation time reveals how fast
the fluid returns to its original shape when stress is removed,
indicating elasticity; on the other hand, the retardation time
indicates how rapidly the fluid deforms under stress meaning
viscosity. On this note, higher ratios depict more elastic behavior

with slow response times, while lower ratios indicate more viscous
characteristics with fast velocity adjustments.

Temperature distribution

The thermal radiation concept in the temperature field is shown
in Supplementary Figure S5. The fluid’s internal energy increases
with the increase in radiative parameters. In this way, increasing this
parameter reduces the internal energy and the rate at which heat is
transferred on the surface. These decreases in the rates of heat
transfer can result in an increase in the temperature field since it
occurs when the radiation’s variable increases. Consequently,
varying the radiation parameter leads to a more significant
temperature field. Understanding these outcomes of thermal
radiation is very important for situations where Jeffery fluid is
used mainly in high-temperature processes or space applications,
and correct forecasting and control over temperature distributions
are vital.

Supplementary Figure S6 shows how the temperature flows are
distributed after heating. It was observed that with an increasing heat
generation parameter, a corresponding increment also occurs in the
temperature distribution within the boundary layer. The location of
heat within Jeffery fluid mainly changes its temperature distribution
by increasing the thermal energy content. Furthermore, outside
sources of energy also cause additional heat input. Such activities as
industrial processes and thermal management systems should know
how heating affects heat gradients. This enables them to optimize
their efficiency, producing quality outcomes because it can control
them accurately.

Supplementary Figure S7 shows the impact of the Prandtl
number on temperature distribution. This ratio is called the
Prandtl number, which is defined as the ratio between
momentum and thermal diffusivity. A high Prandtl number
indicates that momentum diffusivity surpasses thermal diffusivity,
thereby leading to modifications in fluid transport properties, such
as increased heat capacity. Thus, an increase in the Prandtl number
results in a decrease in temperature distribution. Understanding
how fluctuations in Prandtl numbers affect industrial process
cooling systems or environmental evaluations is vital because the
accurate control of temperature gradients for optimization is
essential for improved productivity and reliability.

The temperature variation concerning the Eckert number (Ec) is
shown in Supplementary Figure S8. The thermal boundary-layer
thickness and temperature increase as the Eckert number increases.
The friction forces causing an increase in the Eckert numbers store
heat energy within the fluid, which enhances the temperature
profile. Conversely, smaller Eckert numbers indicate more even
temperature profiles since conduction prevails over other
mechanisms in these cases. In industrial processes that seek
maximum efficiency and quality production, exact temperature
regulation is desired; hence, understanding how the Eckert
number works is essential here.

Supplementary Figure S9 shows the influence of the thermal
stratification parameter on the temperature field. The difference in
temperature between the surface and surrounding environment is
referred to as thermal stratification. With the increase in thermal
stratification parameters, the temperature field decreases, which is
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due to the temperature difference acting as the driving force. An
increased temperature difference leads to a higher heat transfer rate.
Therefore, a change in thermal stratification parameters would cause
a reduction in temperature fields. Understanding the implication of
this parameter is essential in areas including environmental
monitoring, industrial processes, and material processing, where
the exact control of such gradients is essential for optimal efficiency
and quality assurance.

The dimensionless thermal profile is shown in Supplementary
Figure S10 in response to variations in the Brownian motion
parameter. At increased Nb, we observe an increase in θ(η) and
the thermal boundary-layer thickness of the fluid flow. The
phenomenon produces colliding particles that cause a heat
transfer between them as they interact with this viscous–elastic
Jeffrey fluid due to the Brownian motion. Those collisions lead to
localized temperature changes and heat diffusion throughout the
liquid, thus contributing to more homogeneous heat distribution.
For example, in cases where Jeffery fluids are used as coolants in
industrial processes or material manufacturing, elaborate
management should be put up for thermal/heat issues requiring
comprehension of how Brownian movement can individually
influence temperature distribution patterns.

Supplementary Figure S11 shows the impact of the thermal
motion parameter (Nt) on the temperature profile. The increase in
Nt enhances θ(η), thereby thickening the thermal boundary layer. Its
importance is such that Jeffery fluid exhibits critical influence, taking
hot particles to cold places and redistributing heat energy all over its
mass. This migration causes cooling in specific areas of high heat
and heating in low-heat regions for Jeffery fluids composed of
viscous and elastic materials, resulting in heterogeneous and non-
uniform temperature profiles. The redistribution also depends on
fluid properties such as viscosity, thermal conductivity, and elastic
modulus. Optimization requires understanding the thermophoresis
parameter’s effect on thermal management practices in various
applications involving these fluids, such as cooling systems,
industrial processes, and material processing, where accurate
control of temperature is essential.

Concentration distribution

Supplementary Figure S12 shows the variation in the
concentration field of Sc. The solutal parameter varies directly
with ambient mass and inversely with wall concentration. Thus,
increasing the solutal parameter causes the concentration field to
decrease. As a result, it can be deduced that the least value of the
solutal parameter corresponds to the maximum concentration field.
For instance, in chemical processing, environmental monitoring,
and industrial mixing where uniform solute distribution is required,
understanding phenomena like these is essential for optimizing fluid
dynamics to achieve the system efficiency and product quality
improvement.

Supplementary Figure S13 shows that the concentration
boundary layer thins out as Sc increases. The concentration
distribution in Jeffery fluid is governed by the Schmidt number,
which expresses the ratio of momentum to mass diffusivity and
applies to viscous–elastic fluids. A higher value of this coefficient
implies that molecular diffusion is less efficient than the diffusion of

momentum, which determines how a substance spreads within a
liquid phase. As applied to Jeffrey liquids, changing Schmidt
numbers affects the rate of diffusion and, hence, an existing
concentration profile. Lower values enhance molecular diffusion
for faster mixing and more uniform concentrations, while higher
values impede it, causing more pronounced gradients. High
accuracy becomes an essential criterion for operational output
product efficiency and quality in environments such as the
chemical manufacturing sector, environmental science, or
biomedical technology.

An increment in the Brownian motion parameter, Nb,
reduces the concentration gradient of the fluid ϕ(η) as
particles move from high- to low-concentration regions, as
shown in Supplementary Figure S14. The random movement
of particles influenced by thermal energy makes Brownian
motion influence the concentration distribution in the Jeffery
fluid. Due to its randomness, this diffusion process tends to
equalize concentrations over time in Jeffery fluid and has both
viscous and elastic properties. Additionally, mixing is improved
by Brownian motion; it also prevents particle agglutination,
hence maintaining the stability of homogeneity in terms of
concentration distribution. It is essential to consider the role
played by Brownian motion when dealing with systems where
the precise control of particle distribution, such as
pharmaceuticals, chemical reactors, or materials science,
is required.

The concentration field variations are treated in
Supplementary Figure S15 about changes in the thermophoresis
parameter (Nt). As Nt increases, the mass gradient decreases, and
the thickness of the boundary layer enclosing an area of high
concentration increases. A thermophoresis parameter in Jeffery
fluid causes a concentration distribution that drives particles from
hot to cold regions. Because this interaction is controlled by
thermal gradients and viscosity and the fluid’s elasticity, it is
impossible to have a uniform concentration. Through
abatement or amplification, the temperature gradient reduces or
increases to make a region with no equilibrium point for attaining
a constant rate of heat flow; this results in non-uniformity in
concentration. The thermophoretic force that arises from
particle–fluid interactions and thermal conductivity makes
particles gather at higher zones, thereby changing the direction
of their number density contours. This behavior is essential for
coatings, drug delivery systems, and pollutant dispersal
applications that require accurate distribution of particles.

Supplementary Figures S16–18 present bar charts depicting the
statistical analysis results. These findings support the numerical
outputs derived from the variation in different parameters
concerning the drag force factor, heat transference rate, and mass
transference rate.

Conclusion

This article presents a novelty analysis of the MHD Jeffrey fluid
over an exponentially permeable stretching sheet, considering
concentration and temperature stratification effects. Heat
generation, Joule heating, viscous dissipation, and radiation are
included in the study to increase the complexity of heat transfer.
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The problem is solved using an analytical approach, while the
homotopy analysis method is applied for a sequence solution
obtained. Concerning velocity, temperature, and concentration
profiles, different physical parameters are analyzed.

The key findings of this analysis are as follows:

1. Increasing Deborah number values enhances velocity profiles
and the thickness of the momentum boundary stratum.

2. The thermal and species fields decrease with lower thermal and
concentration stratification parameters.

3. Thermophoresis and Brownian motion strictures lead to an
upsurge in the temperature and width of the thermal
boundary stratum.

4. Higher values of the radiative prarameter and the Eckert
number result in increased temperature and thermal
boundary layer thickness.

5. The results indicate an increased radial velocity distribution
with higher mixed convection numbers.

6. Temperature profiles exhibit an upward trend with an increase
in the Eckert number.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

MS: writing–review and editing and writing–original draft. MR:
investigation and writing–original draft. FA: formal analysis and
writing–original draft. EI: data curation, validation, and

writing–original draft. OM: methodology and writing–original
draft. WK: software and writing–original draft.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the Researchers Supporting Project
(RSPD2025R576), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fchem.2024.1451053/
full#supplementary-material

References

Abd-Alla, A. M., Abo-Dahab, S. M., Thabet, N., Bayones, F. S., and Abdelhafez, M. A.
(2023). Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous
medium with chemical reaction and wall properties. Alexandria Eng. J. 66, 405–420.
doi:10.1016/j.aej.2022.11.016

Ali, A., Akhtar, J., Anjum, H. J., Awais, M., Shah, Z., and Kumam, P. (2021). 3D
nanofluid flow over exponentially expanding surface of Oldroyd-B fluid. Ain Shams
Eng. J. 12 (4), 3939–3946. doi:10.1016/j.asej.2021.01.026

Ali, A., Nazir, M., Awais, M., and Malik, M. Y. (2019b). Stratification phenomenon in
an inclined rheology of UCM nanomaterial. Phys. Lett. A 383 (18), 2201–2206. doi:10.
1016/j.physleta.2019.04.021

Ali, A., Rabia, S. H., and Ashraf, M. (2024). Theoretical investigation of unsteady
MHD flow of Casson hybrid nanofluid in a porous medium: applications of thermal
radiations and nanoparticle. J. Radiat. Res. Appl. Sci. 17 (3), 101029–101042.

Ali, A., Shehzadi, K., Sulaiman, M., and Asghar, S. (2019a). Heat and mass transfer
analysis of 3D Maxwell nanofluid over an exponentially stretching surface. Phys. Scr. 94
(6), 065206–065212. doi:10.1088/1402-4896/ab07cf

Ali, A., Sulaiman, 1 M., 1, Islam, 2 S., and Shah, Z. (2018). Three-dimensional
magnetohydrodynamic (MHD) flow ofMaxwell nanofluid containing gyrotactic micro-
organisms with heat source/sink. AIP Adv. 8, 085303–085323. doi:10.1063/1.5040540

Ali Abro, K., Ali Abro, I., Mustafa Almani, S., and Khan, I. (2019). On the thermal
analysis of magnetohydrodynamic Jeffery fluid via modern non-integer order
derivative. J. King Saud Univ. - Sci. 31 (4), 973–979. doi:10.1016/j.jksus.2018.07.012

Al-Khaled, K., Ashraf, U., Abbasi, A., Khan, S. U., Farooq, W., Ijaz Khan, M., et al.
(2022). A mathematical model for radiative peristaltic flow of Jeffrey fluid in curved
channel with Joule heating and different walls: shooting technique analysis. Ain Shams
Eng. J. 13 (5), 101685–101698. doi:10.1016/j.asej.2021.101685

Al-Khaled, K., Ashrif, U., Abbasi, A., Ullah Khan, S., Farooq, W., Ijaz Khan, M., et al.
(2019). Viscous dissipation performance on stagnation point flow of Jeffrey fluid
inspired by internal heat generation and chemical reaction. Therm. Sci. Eng. Prog.
13, 100377–100392. doi:10.1016/j.tsep.2019.100377

Ashraf, M., Ilyas, A., Ullah, Z., and Ali, A. (2022). Combined effects of viscous
dissipation and magnetohydrodynamic on periodic heat transfer along a cone
embedded in porous Medium. Proc. Institution Mech. Eng. Part E J. Process Mech.
Eng. 236 (6), 2325–2335. doi:10.1177/09544089221089135

Awais, M., Bibi, M., Ali, A., Malik, M. Y., Nisar, K. S., and Jamshed, W. (2022).
Numerical analysis of MHD axisymmetric rotating Bodewadt rheology under viscous
dissipation and ohmic heating effects. Sci. Rep. 12, 10097–10108. doi:10.1038/s41598-
022-13676-2

Azhar, E., Iqbal, Z., and Maraj, E. N. (2019). Viscous dissipation performance on
stagnation point flow of Jeffrey fluid inspired by internal heat generation and chemical
reaction. Therm. Sci. Eng. Prog. 13, 100377–100392. doi:10.1016/j.tsep.2019.100377

Bilal, S., Mamatha, S. U., Raju, C. S. K., Madhusudhana Rao, B., and Malik, M. Y.
(2021). Dynamics of chemically reactive Jeffery fluid embedded in permeable media
along with influence of magnetic field on associated boundary layers under multiple slip
conditions. Results Phys. 28, 104558–104573. doi:10.1016/j.rinp.2021.104558

Dadhich, Y., Jain, R., Kaladgi, A. R., Alwetaishi, M., Afzal, A., and Saleel, C. A. (2021).
Thermally radiated jeffery fluid flow with nanoparticles over a surface of varying
thickness in the influence of heat source. Case Stud. Therm. Eng. 28, 101549–101562.
doi:10.1016/j.csite.2021.101549

Elboughdiri, N., Srinivas Reddy, C., Ahmed,A., Eldin, S.M.,Muhammad, T., andWakif, A.
(2023). A passive control approach for simulating thermally enhanced Jeffery nanofluid flows
nearby a sucked impermeable surface subjected to buoyancy and Lorentz forces. Case Stud.
Therm. Eng. 47, 103106–103119. doi:10.1016/j.csite.2023.103106

Frontiers in Chemistry frontiersin.org10

Sankari et al. 10.3389/fchem.2024.1451053

https://www.frontiersin.org/articles/10.3389/fchem.2024.1451053/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2024.1451053/full#supplementary-material
https://doi.org/10.1016/j.aej.2022.11.016
https://doi.org/10.1016/j.asej.2021.01.026
https://doi.org/10.1016/j.physleta.2019.04.021
https://doi.org/10.1016/j.physleta.2019.04.021
https://doi.org/10.1088/1402-4896/ab07cf
https://doi.org/10.1063/1.5040540
https://doi.org/10.1016/j.jksus.2018.07.012
https://doi.org/10.1016/j.asej.2021.101685
https://doi.org/10.1016/j.tsep.2019.100377
https://doi.org/10.1177/09544089221089135
https://doi.org/10.1038/s41598-022-13676-2
https://doi.org/10.1038/s41598-022-13676-2
https://doi.org/10.1016/j.tsep.2019.100377
https://doi.org/10.1016/j.rinp.2021.104558
https://doi.org/10.1016/j.csite.2021.101549
https://doi.org/10.1016/j.csite.2023.103106
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1451053


Harish Babu, D., and Satya Narayana, P. V. (2016). Joule heating effects on MHD mixed
convection of a Jeffrey fluid over a stretching sheet with power law heat flux: a numerical
study. J. Magnetism Magnetic Mater. 412, 185–193. doi:10.1016/j.jmmm.2016.04.011

Hussain, S., Rasheed, K., Ali, A., Vrinceanu, N., Alshehri, A., and Shah, Z. (2022). A
sensitivity analysis of MHD nanofluid flow across an exponentially stretched surface
with non-uniform heat flux by response surface methodology. Sci. Rep. 12,
18523–18538. doi:10.1038/s41598-022-22970-y

Khan,W. A., and Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet.
Int. J. Heat Mass Transf. 53 (12), 2477–2483. doi:10.1016/j.ijheatmasstransfer.2010.01.032

Li, P., Abbasi, A., El-Zahar, E. R., Farooq, W., Hussain, Z., Khan, S. U., et al. (2022).
Hall effects and viscous dissipation applications in peristaltic transport of Jeffrey
nanofluid due to wave frame. Colloid Interface Sci. Commun. 47, 100593–100612.
doi:10.1016/j.colcom.2022.100593

Makinde, O. D., and Animasaun, I. L. (2016). Thermophoresis and Brownian motion
effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and
quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution.
J. Mol. Liq. 221, 733–743. doi:10.1016/j.molliq.2016.06.047

Muhammad, T., Waqas, H., Manzoor, U., Farooq, U., and Rizvi, Z. F. (2022). On
doubly stratified bioconvective transport of Jeffrey nanofluid with gyrotactic motile
microorganisms. Alexandria Eng. J. 61, 1571–1583. doi:10.1016/j.aej.2021.06.059

Ramzan, M., Bilal, M., and Chung, J. D. (2017). Effects of thermal and solutal
stratification on jeffrey magneto-nanofluid along an inclined stretching cylinder with

thermal radiation and heat generation/absorption. Int. J. Mech. Sci. 131-132, 317–324.
doi:10.1016/j.ijmecsci.2017.07.012

Rana, P., Shukla, N., Gupta, Y., and Pop, I. (2019). Analytical prediction of multiple
solutions for MHD Jeffery–Hamel flow and heat transfer utilizing KKL nanofluid
model. Phys. Lett. A 383 (2), 176–185. doi:10.1016/j.physleta.2018.10.026

Reddappa, B., and Sreenadh, S. (2022). Double stratification effects on electrical MHD
free convection Jeffrey flow of second-order chemical reactions over an exponentially
stretching sheet. ADALYA 11 (4), 21–34.

Samina, A. J., Chen, Z., and Chen, Z. (2022). A study of phase portraits, multistability
and velocity profile of magnetohydrodynamic Jeffery–Hamel flow nanofluid. Chin.
J. Phys. 80, 397–413. doi:10.1016/j.cjph.2022.06.020

Siva Sankari, M., Eswara Rao, M., Khan,W., Alshehri, M. H., Eldin, S. M., and Iqbal, S.
(2023). Analytical analysis of the double stratification on Casson nanofluid over an
exponential stretching sheet. Case Stud. Therm. Eng. 50, 103492–103508. doi:10.1016/j.
csite.2023.103492

Sujata, K., Kumar, S., Kumar, A., Alam, T., and Dobrota, D. (2023).
Thermophysical properties of nanofluids and their potential applications in
heat transfer enhancement: a review. Arabian J. Chem. 16 (11), 105272–105293.
doi:10.1016/j.arabjc.2023.105272

Thenmozhi, D., Eswara Rao, M., Devi, RLVR, and Naga Lakshmi, C. (2023). Analysis
of Jeffery fluid on MHD flow with stretching porous sheets of the heat transfer system.
Forces Mech. 11, 100180–100196. doi:10.1016/j.finmec.2023.100180

Frontiers in Chemistry frontiersin.org11

Sankari et al. 10.3389/fchem.2024.1451053

https://doi.org/10.1016/j.jmmm.2016.04.011
https://doi.org/10.1038/s41598-022-22970-y
https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
https://doi.org/10.1016/j.colcom.2022.100593
https://doi.org/10.1016/j.molliq.2016.06.047
https://doi.org/10.1016/j.aej.2021.06.059
https://doi.org/10.1016/j.ijmecsci.2017.07.012
https://doi.org/10.1016/j.physleta.2018.10.026
https://doi.org/10.1016/j.cjph.2022.06.020
https://doi.org/10.1016/j.csite.2023.103492
https://doi.org/10.1016/j.csite.2023.103492
https://doi.org/10.1016/j.arabjc.2023.105272
https://doi.org/10.1016/j.finmec.2023.100180
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1451053


Nomenclature
T fluid temperature

ν kinematic viscosity

g gravitational acceleration

V U, velocity components

C fluid concentration

C∞ ambient concentration

σ electrical conductivity

ρ fluid density

T∞ ambient temperature

Tw surface temperature

Cw surface concentration

C0 reference concentration

B0 magnetic field constant

D mass diffusivity

cp specific heat at constant pressure

β Deborah number

k thermal conductivity

ψ stream function

θ temperature (dimensionless)

φ concentration (dimensionless).
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