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Two-dimensional materials have excellent electronic and optical properties,
suggesting absolute advantages in nanodevices. In this work, a new two-
dimensional material with a puckered structure, a C2B6 monolayer, is
proposed. The material presents dynamic and thermal stability calculated by
first-principle simulations. Interestingly, the C2B6 monolayer possesses
semiconductor behavior with an ultra-narrow bandgap of approximately
0.671 eV by HSE06 functional. Meanwhile, the hole in the C2B6 monolayer
shows ultrahigh mobility at approximately 6,342 cm2·V−1·s−1 in decent
transport directions, which is larger than traditional transition metal
dichalcogenides materials. More importantly, the pronounced anisotropy of
mobility of the electrons and holes can separate the photogenerated charges,
suggesting the applications for photocatalytic, photovoltaic and optical and cold
chain electronic devices. Then, the novel properties of the light absorption
characteristic are obtained, and the anisotropic photocurrent implies the C2B6

monolayer can be used as a potential photoelectric device. Our results provide
theoretical guidance for the design and application of two-dimensionalmaterials.
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Introduction

Since the discovery of graphene (Geim and Novoselov, 2007), there has been an
increasing amount of research on two-dimensional (2D) materials (Miro et al., 2014; Ren
et al., 2024). The wide application of the unique properties and advantages of 2D materials
has made them highly regarded research in the field of materials science (Tang et al., 2022;
Wang et al., 2023; Su et al., 2022; Su et al., 2023; Sun et al., 2022). For example, due to the
extremely thin thickness of transition metal dichalcogenides (TMDs), their light absorption
performance is outstanding, suggesting potential applications in fields such as solar cells and
optoelectronic devices (Zhao et al., 2024; Ren et al., 2019). The AlN monolayer also has
outstanding strength and stiffness in the plane direction compared with the bulk one (Ren
et al., 2021a; Ren et al., 2021b). In addition, the larger specific surface area exposes more
catalytic active sites; therefore, 2D materials present excellent photocatalytic and
electrocatalytic properties.
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Wu et al. (2020) prepared IrPdPtRhRu high-entropy alloy
(HEA) nanoparticles with a mean diameter of 5.5 ± 1.2 nm by a
facile one-pot polyol method, which possesses a lattice constant of
3.856 Å. The HAADF-STEM configurations of the IrPdPtRhRu
HEAs and the corresponding energy-dispersive X-ray (EDX) images
of each element suggest the solid-solution alloys obtained by
homogeneous distribution. The duration of the IrPdPtRhRu was
evaluated in both acidic (0.05 M H2SO4) and alkaline (1.0 M KOH)
electrolytes, which proves the hydrogen evolution reaction (HER)
ability of the IrPdPtRhRu HEA NPs.

High throughput computing method investigations are
conducted to develop new 2D materials, expand their application,
and develop more novel mechanical, optical, and electronic
properties (Ren et al., 2022a; Sun and Schwingenschlögl, 2021;
Haastrup et al., 2018). For example, Luo used particle swarm
optimization to structure boron carbon compounds, and the
results show that boron carbon compounds have strong B–C
bonds and thermal stability and can maintain structural stability
even above 2,000 K (Luo et al., 2011). Lu proposed a CaP3monolayer
with a direct bandgap of approximately 1.15 eV, and the electron
mobility obtained is as high as 19,930 cm2·V−1·s−1 (Lu et al., 2018).
Yuan predicted the monolayered penta-RuS4 through first-principle
calculations, and interestingly, this monolayered penta-RuS4
structure exhibits unique anisotropic secondary energy dispersion
(Yuan et al., 2017). Jing presented a monolayered GeP3 crystal that
has an indirect bandgap of 0.55 eV. The double-layer GeP3 possesses
a decreased bandgap of 0.43 eV. It is noteworthy that the GeP3
monolayer can transform the indirect bandgap into the direct
bandgap under the condition of biaxial strain. Meanwhile, GeP3
also has remarkable light absorption ability and can be widely used
in optoelectronics (Jing et al., 2017).

Jin proposed a novel Janus MoTe monolayer using density
functional theory (DFT). The results indicate that the monolayered
Janus MoTe presents relatively wide spatial extension and low binding
energy. Furthermore, the time for electron–hole recombination is
approximately 1.31 ns, making it a potential photocatalyst for water
splitting (Jin et al., 2018). More recently, researchers used the B2P6
present Janus structure and proved that B2P6 is an indirect bandgap
semiconductor with an excellent hydrogen production efficiency of
28.2% and an outstanding photocatalyst (Sun and Schwingenschlögl,
2020a) that also can be tuned by external strain (Ren et al., 2021c). For a
B2P6 monolayer, the HER and oxygen evolution reactions (OERs) can
be induced respectively at different surfaces because the energy levels of
the two surfaces exhibit staggered band energy, thereby separating the
photogenerated electrons and holes. Such a Janus structure of the B2P6
monolayer exhibits intrinsic differences by atomic adsorption on
different surfaces (Ren et al., 2022b).

A CS monolayer was proposed with strong absorption of solar
radiation and conversion efficiencies as high as 20.1% (Sun and
Schwingenschlögl, 2020b), which also presents decent band edge
positions for the redox reaction in water splitting used as a
photocatalyst. A CN monolayer shows a wide bandgap of
approximately 6 eV as a potential power device (Ren et al.,
2023a). The wide bandgap and extremely strong elastic modulus
of the CN monolayer enable it to maintain the potential for
photocatalytic water splitting even under large strains. Thus, B-
or C-atom-based new materials are proposed to possess novel
electronic and optical performances for use in nanodevices.

In this investigation, a novel monolayered C2B6 system is
proposed by the elemental mutation method considering the
prototype of the LixBy structure. Using the first-principle
calculations, the C2B6 monolayer possesses excellent stability by
phonon spectrum and ab initio molecular dynamics (AIMD)
calculations. Then, the electronic feature is investigated by band
structure and carrier mobility. The optical performance of the C2B6
monolayer is addressed by light absorption spectrum and
photocurrent testing.

Computing method

All first-principle simulations were performed using the Vienna
ab initio simulation package (VASP) (Oganov and Glass, 2006)
using the DFT (Grimme et al., 2010; Van deWalle andMartin, 1989;
Grest et al., 1981). The projector augmented wave potentials (PAW)
were used in the calculations to demonstrate the core electrons
(Kresse and Furthmüller, 1996a; Kresse and Furthmüller, 1996b;
Blöchl, 1994). The Perdew–Burke–Ernzerhof (PBE) functional was
conducted by the generalized gradient approximation (GGA)
method (Kresse and Joubert, 1999; Perdew et al., 1996). The
Heyd–Scuseria–Ernzerhof hybrid functional was explored to
calculate a more accurate band structure and light absorption
spectrum (Heyd et al., 2005; Heyd et al., 2003). The spin effect is
not explored in the calculations because it has almost no effect on the
electronic properties of the studied system, which is proved by the
band structure demonstrated in Supplementary Figure S1 in
Supporting Information. The energy cut-off was 550 eV. The
Monkhorst–Pack k-point grid was set as 17 × 17 × 1 in the first
Brillouin zone. The density functional perturbation theory (DFPT)
was considered to obtain the phonon spectra by the PHONOPY
code (Togo and Tanaka, 2015; Togo et al., 2008). Furthermore, the
convergence for force was set as 0.01 eV Å−1, while the energy of the
calculated system is set as 0.01 meV. The photocurrent of the C2B6
monolayer is calculated by Nanodcal software based on non-
equilibrium Green’s function (NEGF) theory.

Results and discussion

First, the crystal structure of the C2B6 monolayer is predicted as
a puckered unit-cell with the space group of Pca21, using the
elemental mutation method from the prototype of the LixBy
structure (Ren et al., 2022c), shown in Figure 1A. The optimized
lattice parameters of the x and y in unit-cell of the C2B6 monolayer
are 5.218 Å and 3.310 Å, respectively, which is comparable with the
CS monolayer (Lv et al., 2020). The C–B bond and the C–C bonds
are obtained as 1.59 Å and 1.32 Å, respectively.

The simulated STM configuration of the C2B6 monolayer is
demonstrated in Figure 1B, which can provide a reference for
experimental observations. The cohesive energy of the C2B6
monolayer is calculated as 6.516 eV/atom, which is obtained by
(2EC + 6EB – ECB)/8, where EC, EB, and ECB are the total energies
of a C atom, a B atom, and the C2B6 monolayer, respectively. The
calculated cohesive energy of the C2B6 monolayer is comparable with
the predicted LixBy system (approximately 4.11–5.53 eV/atom) (Ren
et al., 2022c) and the CBmonolayer (approximately 6.13 eV/atom) (Ren
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et al., 2023a). It is also larger than that of the V–VI system
(approximately 3.37–3.81 eV/atom) (Ren et al., 2022a), suggesting
the stability of the C2B6 monolayer. The thermal stability of the
C2B6 monolayer is estimated by the AIMD calculations using the
Nosé−Hoover heat bath scheme (Nosé, 1984). The supercell of the
C2B6 monolayer is constructed on a 7 × 4 × 1 grid to ensure the lattice
translational constraints contain 192 atoms (Ren et al., 2020a). The
C2B6 monolayer is relaxed at 300 K within 10 ps. After the completed
simulations, the atomic structure of the C2B6 monolayer is still
unscathed, as shown in the insets of Figure 1C. The temperature
and energy of the AIMD for the C2B6 monolayer are also
convergent, as shown in Figure 1C, which further provides evidence
of stability. The C2B6 monolayer is also stable under 600 K, while the
structure can be melted down at the temperature of 1,000 K, as
demonstrated in the Supplementary Figures S2A, B, respectively.

The dynamic stability of the C2B6 monolayer is investigated by
phonon spectra, calculated in Figure 2A. One can see that there is no
imaginary frequency in the phonon spectra of the C2B6 monolayer,

implying the dynamic stability of the C2B6 system. The highest
frequency of the optical branch can reach 45 THz, as shown in
Figure 2A. Such maximal optical branch frequency is also
comparable with the prototype (LixBy system), suggesting
applications as efficient thermoelectric functional devices that can
be tuned by the phononic crystal structure (Ren et al., 2020b). There
are 24 degeneracy points at the Γ point. The lattice vibration mode of
the C2B6 system at the Γ point for these 24 degeneracy
configurations is studied, as shown in Figure 2B. All these optical
phonons at the Γ point can be demonstrated as Equation 1:

Γoptic � 4Ag R( ) + Au R( ) + 3B1g IR( ) + 3B1u R( ) + 2B2g R( )
+ 3B2u IR( ) + B3g IR( ) + 2B3u R( ), (1)

where R, IR, and IN represent the optical phonon mode with Raman
active, infrared active, and inactive, respectively. Interestingly, A2g,
Au, B3g, A2u, and B1g are out-of-plane vibration modes, and the
others are a combined form.

FIGURE 1
(A) Atomic structure and the (B) simulated STM configuration of the C2B6monolayer at a voltage of −2 V. (C) Energy and the temperature of the C2B6

monolayer in the AIMD calculations. The inset is the relaxed structure of the C2B6monolayer at 300 K for 10 ps. The green and the brown balls are B and C
atoms, respectively.

FIGURE 2
Calculated (A) phonon spectrum and the (B) atomic vibration mode of the C2B6 monolayer.
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Then, the band structure of the C2B6 monolayer is investigated,
as shown in Figure 3, by PBE and HSE06 methods. The C2B6

monolayer is a semiconductor with an indirect bandgap with the
conduction band minimum (CBM) located between the M and Y
points, while the valence band maximum (VBM) is set between the
X and M points, demonstrated in Figure 3A. More interestingly,
even though the wider bandgap is obtained by the
HSE06 functional, it still presents as small as 0.671 eV, smaller
than the As2X3 system (Zhao et al., 2023). It is worth noting that
the ultra-narrow bandgap is also reported in the PbN/CdO
heterostructure (approximately 0.128 eV). Such an ultra-narrow
bandgap in the C2B6 monolayer facilitates rapid charge transitions
and can serve as a potential efficient nanoelectronic device, optical
device, and catalyst (Wang et al., 2017; Huang et al., 2024). The
projected band structure of the C2B6 monolayer is calculated by the
HSE06 in Figure 3B. The B atoms make an obvious and significant
contribution to the energy band compared with the C atoms. The
density of states (DOS) of the C2B6 monolayer is calculated in
Figure 3C, which further proves that most of the energy level of the
C2B6 system contributions come from B atoms.

The carrier mobility is further explored, considering the
ultra-narrow bandgap of the C2B6 monolayer for promising
applications in nanodevices. The carrier mobilities of the
electrons and holes in transport directions (x and y
demonstrated in Figure 1A) are calculated by the
Bardeen–Shockley theory demonstrated as Equation 2 (Van de
Walle and Martin, 1989):

μ � eZ3C/ kBTm*
�����
m*

xm
*
y

√
D2( ), (2)

where e is the elementary charge, Z represents Planck’s constant, and
kB is the Boltzmann constant. The effective mass of the carriers,
electrons, and holes is explained by m*, and the effective mass is
obtained using Equation 3:

m* � Z2
d2Ek

dk2
( )−1

, (3)

where the wave vector is represented by the k. Electronic energy is
demonstrated by the Ek. C is the elastic modulus of the C2B6
monolayer calculated by C = [∂2E/∂((l–l0)/l0)2]/S0, where the free
energy is E, and the original lattice constant and the difference by the
strain are l and l0, respectively. S0 is the area of the C2B6 monolayer.
The energy of the C2B6 monolayer under applied uniaxial is
demonstrated in Figure 4A. One can see that the sensitivity of
energy of the C2B6 monolayer to external strain in the y direction is
significantly higher than that in the x direction, suggesting the
higher elastic modulus of the y direction. Furthermore, D is used
to show the potential constant of the C2B6 monolayer, which is
calculated byD = ΔEedge/((l–l0)/l0), where the ΔEedge is the difference
of the band edge by uniaxial strain along the transport directions. As
shown in Figure 4B, when the strain is applied in the y direction, the
CBM and the VBM can be increased linearly. Meanwhile, the CBM
and the VBM of the C2B6 monolayer can be decreased linearly by the
strain along the x direction, suggesting the external strain is an
effective measure to tune the electronic properties of the
C2B6 monolayer.

The calculated effective mass and deformation potential
constant elastic modulus are demonstrated in Table. 1. It is
worth noting that the effective mass of the C2B6 monolayer
along the y direction is as low as 0.406 m*, suggesting higher
carrier mobility. The sensitivity of edge energy to strain along x
and y directions is similar for electrons and holes. The apparent
mechanical anisotropy obtained from the elastic modulus of the
C2B6 monolayer is calculated as 183 N·m−1 and 377 N·m−1,
respectively, in the x and y directions. Thus, the pronounced
anisotropic carrier mobility of the C2B6 monolayer is also
obtained such that electrons 360 cm2·V−1·s−1 and
205 cm2·V−1·s−1 mobility in the x and y directions,
respectively. More importantly, the C2B6 monolayer possesses
ultrahigh hole mobility in the y direction of approximately
6,342 cm2·V−1·s−1. The difference of the carrier between the
electron and hole in the y direction is also approximately
30 times, suggesting excellent promotion to separate the
excited carriers. In addition, the electrons and holes show a

FIGURE 3
Obtained (A) band structure, (B) HSE06 calculated projected band structure, and (C) density of states of the C2B6 monolayer.
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favorable transport along the x and y directions, respectively. The
obtained carrier mobility of the C2B6 monolayer is even higher
than other popular 2D materials, such as the GaPS2Se2
monolayer (530 cm2·V−1·s−1) (Zhang Y. et al., 2022), the B2P6
monolayer (5,888 cm2·V−1·s−1) (Ren et al., 2021c), and MoSi2N4

(2,169 cm2·V−1·s−1) (Ren et al., 2023b) and is comparable with a
Li2B6 monolayer (6,800 cm2·V−1·s−1) (Kai et al., 2018).

The light absorption performance of the C2B6 monolayer is
further investigated by the absorption coefficient (α), which is
calculated by Equation 4 (Zhang L. et al., 2022).

α ω( ) �
�
2

√
ω

c
ε21 ω( ) + ε22 ω( )[ ]1/2 − ε1 ω( ){ }1/2, (4)

where the ε1(ω) is the real part of the dielectric constant, and the
ε2(ω) is the imaginary part. ω represents the angular frequency, and c
is the speed of light in a vacuum. It is worth noting that ε2(ω) can be
calculated by Equation 5 (Zhang et al., 2008):

ε2 q → Oû, Zω( ) � 2e2π
Ωε0

∑
k,v,c

| 〈Ψc
k

∣∣∣∣û · r Ψv
k

∣∣∣∣ 〉
∣∣∣∣2 × δ Ec

k − Ev
k − E( ),

(5)
where Ψk, Ek, and û are used to explain the wave function, energy,
and unit vector of the electric field of the incident light, respectively.
Then, the superscripts (v and c) in the Ψk and Ek demonstrate the
conduction and valence bands, respectively. Furthermore, ε(ω) =
ε1(ω) + iε2(ω) can be used to calculate the complex dielectric

function, and the Kramers–Kronig relation can define the real
parts ε1 and ε2.

The obtained light absorption spectrum of the C2B6 monolayer
is explained in Figure 5. The C2B6 monolayer shows excellent optical

FIGURE 4
Difference of the (A) energy and the (B) band edge positions of the C2B6 monolayer in the x and y directions.

TABLE 1 Calculated effective mass (m*), deformation potential constant (D, eV), elastic modulus (C, N·m−1), and carrier (electron and hole) mobility (μ,
cm2·V−1·s−1) of the C2B6 monolayer along the x and y directions.

Material (B) Direction Carrier m* D C μ

C2B6 x Electron 1.221 −1.919 183 360

Hole 1.743 −2.714 241

y Electron 2.121 2.771 377 205

Hole 0.406 1.574 6,342

FIGURE 5
Obtained optical absorption spectrum of the C2B6 monolayer by
the HSE06 method.
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properties in the visible and near-ultraviolet regions with an
absorption peak of approximately 3.566 × 105 cm−1 and a
wavelength of approximately 106 nm. The novel absorption
coefficient at the visible light range is also obtained at
approximately 9.578 × 104 cm−1 with a wavelength of
approximately 450 nm. Such an optical absorption peak of the
C2B6 monolayer is also higher than other reported 2D materials,
such as a CdO/arsenene heterostructure (8.47 × 104 cm−1) (Ren et al.,
2021d), GaN (4.00 × 104 cm−1) (Ren et al., 2020c), and Mg(OH)2
(3.49 × 104 cm−1) (Ren et al., 2019).

The excellent carrier mobility and the optical performance of
the C2B6 monolayer suggest potential applications as a
photocurrent device. The model of the C2B6 monolayer used
as a photocurrent nanodevice is illustrated in Figure 6A with two
electrodes. The C and B atoms at the central region are excited by
the linearly polarized light in the z direction and can induce the
photon-generated carriers with the photocurrent flowing to the
electrodes as Iph, which can be obtained as Equation 6 (Qin et al.,
2024; Li et al., 2024):

Jph � ie

h
∫Tr Γ G< ph( ) + f E( )(G> ph( ) − G< ph( )[ ]}dE,{ (6)

where Γ � i(ΣR − ΣL) is the coupling of the center area and
electrodes in the C2B6 monolayer. ΣL is the interactive self-
energy of the left electrode, and the ΣR is interactive self-energy
of the right one. f(E) is the Fermi−Dirac distribution. Green’s
functions for photon−electron interactions are presented by
G> (ph). Jph is normalized by Iph = Jph/eIω, and the Iω
demonstrates the photon flux. The calculated unit for the
photocurrent is a0 2/photon, where the a02 is used to explain
the Boreal radius. The photocurrent is also dependent on the
photon energy and polarization angle of the C2B6 monolayer; thus,
the photocurrent C2B6 monolayer is calculated with a different
angle and intensity of light incidence in Figure 6B. One can see that
the maximal Iph of the C2B6 monolayer is approximately 0.24 a02/
photon with the energy and the polarization angle of
approximately 1.2 eV and 90°, respectively. Note that the
anisotropy of carrier mobility also implies different
photocurrents in the x and y directions. The obtained maximal
Iph of the C2B6 monolayer along the y direction is demonstrated in

Figure 6C as approximately 0.012 a02 /photon at the polarization
angle of 90° with the energy of approximately 2.4 eV. The obtained
photocurrent of the C2B6 is comparable with the other reported 2D
materials, for example, MoSSe (0.88 a02/photon) (Cui et al., 2024),
WSe2/MoSe2 (0.65 a02/photon) (Sun et al., 2023) and MoS2/WSSe
(0.71 a02 /photon) (Sun et al., 2023) linearly polarized lights.

Furthermore, the dependence of the photocurrent of the C2B6

on angle and energy is also different along the x and y directions
compared with Figures 6B, C. The photocurrent of the C2B6 can
be decreased with increasing energy, and the vertical illumination
method can obtain the maximal photocurrent along the x
direction. Differently, the optimum photocurrent of the C2B6

can be induced by the horizontal irradiation method. With
increasing energy, there is no unified trend of change for the
photocurrent of the C2B6 along the y direction. Thus, the
photocurrent direction can be effectively controlled by
adjusting the incident angle, another promising attribute for a
photoelectric device. When the C2B6 monolayer is illuminated,
the photogenerated electrons can move quickly to the conduction
band due to the narrow bandgap, inducing the valence band with
photogenerated holes. Under the drive of a photocurrent,
photogenerated electrons and holes can be rapidly separated
due to the strong anisotropy of the mobility, implying that
C2B6 is a potential high-efficiency photocatalyst.

Conclusion

In summary, a C2B6 monolayer is proposed with inherent
stability. The puckered crystal structure of the C2B6 monolayer
presents semiconductor properties with an ultranarrow indirect
bandgap of approximately 0.671 eV, while the ultrahigh hole
mobility is calculated as 6,342 cm2·V−1·s−1 in the suitable
direction. The calculated anisotropic carrier mobility of the
electrons and holes in the C2B6 monolayer demonstrates the
advantages of carrier separation for use as a photocatalyst.
Finally, the excellent light absorption and the photocurrent are
also addressed, demonstrating the potential applications for
photocatalytic, photovoltaic and optical and cold chain
electronic devices.

FIGURE 6
(A) Photodetector models and the calculated photocurrent along the (B) x and (C) y directions of the C2B6 monolayer.
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