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Copper-based materials play a vital role in the electrochemical transformation of
CO2 into C2/C2+ compounds. In this study, cross-sectional octahedral Cu2O
microcrystals were prepared in situ on carbon paper electrodes via
electrochemical deposition. The morphology and integrity of the exposed
crystal surface (111) were meticulously controlled by adjusting the deposition
potential, time, and temperature. These cross-sectional octahedral Cu2O
microcrystals exhibited high electrocatalytic activity for ethylene (C2H4)
production through CO2 reduction. In a 0.1 M KHCO3 electrolyte, the Faradaic
efficiency for C2H4 reached 42.0% at a potential of −1.376 V vs. RHE. During
continuous electrolysis over 10 h, the FE (C2H4) remained stable around 40%.
During electrolysis, the fully exposed (111) crystal faces of Cu2Omicrocrystals are
reduced to Cu0, which enhances C-C coupling and could serve as themain active
sites for catalyzing the conversion of CO2 to C2H4.
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1 Introduction

As fossil fuels continue to be exploited and used, the rising concentration of carbon
dioxide has led to severe environmental issues, capturing significant public attention
(Obama, 2017). Carbon capture, zero emission and reuse are considered promising
strategies for processing and reducing CO2 in the atmosphere (Lu et al., 2014). The rise
of renewable energy and its important role in the field of energy has attracted people’s
attention. Electrocatalytic CO2 reduction (CO2RR) is viewed as a dependable approach to
address this persistent issue. Renewable energy: Wind energy, solar energy and nuclear
energy provide sustainable energy which is the continuous driving force of this strategy to
realize the conversion of electrocatalytic carbon dioxide to achieve zero CO2 emissions
(Hardebeck, 2015; Liu et al., 2016).

The CO2RR has various electrochemical products including CO, HCOOH, CH4,
C2H4, etc. The conversion of C1 (CO, HCOOH) products has reached or even exceeded
90% high Faraday efficiency (Wu et al., 2020; Li et al., 2023; Li et al., 2021), while the
conversion of other C2+ products with higher utility value does not have a high Faraday
efficiency (FE) (De Luna et al., 2019). Among various electrocatalytic products, C2H4

has been widely used in industrial production, polymer manufacturing, and agricultural
production (Loiudice et al., 2016; Ren et al., 2019), The conversion of CO2RR to C2H4 is
of great significance to industrial production. Currently, copper-based materials are the
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sole metal substances capable of transforming carbon dioxide
into ethylene and C2+ products using electrical energy. Despite
Cu-based materials being capable of generating C2 and C3

products like C2H4, C2H5OH, and acetic acid, their low
selectivity, high overpotential, low current density, stability,
and easily affected catalytic environment prevent them from
becoming highly efficient catalysts (De Luna et al., 2019; Asadi
et al., 2016). This is mainly because the C2+ product requires the
coupling of intermediates and the complex electron proton
transfer process in the catalysis process, which requires a
catalyst with high activity and complex morphology and
structure to complete (Fan et al., 2020). The effective use of
catalysts and their design play crucial roles in improving the
electrocatalytic transformation of CO2RR to ethylene.
Nevertheless, the selectivity, stability, and energy efficiency of
this electrocatalytic procedure require further optimization for
broader industrial application.

For the design of copper-based catalysts, the current focus is
mainly on heating the copper film and performing oxidation
treatment, or further reduction in the process of reuse, etc.
These processes are all to increase the roughness and defect
degree of the copper surface (Li and Kanan, 2012; Kas et al.,
2014). At the same time, in terms of improving the Cu-based
catalyst, starting from the size, morphology and exposed crystal
faces of the copper-based material, focus on optimizing and
improving the performance of the electrocatalyst (Liu et al.,
2017; Liu et al., 2022; Hori et al., 2002; Zhang et al., 2018). In the
highly selective production of C2H4, Cu2O NPs have better
catalytic performance than metallic Cu NPs (Liu et al., 2022;
Zhang et al., 2018; Ren et al., 2015; Jung et al., 2019). The
recently reported Cu/Cu2O catalyst prepared by
electrodeposition has 36% FE (C2H4) (De Luna et al., 2018).
This could be due to the fact that low-coordination Cu + ions on
the surface enhance C-C coupling, which in turn supports the
production of C2H4 (Jung et al., 2019). Recently, Kas et al.
(2014) showed that Cu films derived from Cu2O can reduce CO2

and convert to ethylene, with FEs as high as 34–39%. The
increased production of C2H4 on these films may be linked
to the presence of the (100) Cu facet and defect sites (Kas et al.,
2014; Ren et al., 2015; Hori et al., 2003). Thermal desorption
studies conducted under ultra-high vacuum conditions revealed
significant chemical adsorption of CO on Cu derived from
Cu2O. It is also suggested that residual CuOx species
contribute to the catalytic conversion of CO2 to C2H4

(Verdaguer-Casadevall et al., 2015; Kim et al., 2015).
Understanding the impact of crystal faces is crucial for
managing the activity and selectivity of electrocatalysts. The
crystal surfaces of metallic Cu nanoparticles significantly
influence the selectivity and activity in catalytic reactions.
Theoretical studies indicate that an efficient catalyst should
effectively facilitate the conversion of adsorbed CO protons into
CHO or COH, while simultaneously displaying minimal
activity for the competing hydrogen evolution reaction (Calle
Vallejo and Koper, 2013). Adjusting crystal facets, particularly
designing high-index crystal facets which possess numerous
atomic steps, edges, and unsaturated coordination sites, offers
greater potential for developing catalysts with enhanced activity
and selectivity compared to merely controlling particle size

(Tian et al., 2007; Zhao et al., 2018). The truncated
octahedral Cu2O nanoparticles, which include both (111) and
(100) surfaces, exhibit increased selectivity towards ethylene
due to a synergistic interaction among the various low-index
surfaces (Gao et al., 2020). Nevertheless, there is limited
research exploring the connection between the high-index
surfaces of Cu-based catalysts and their CO2RR performance
(Fan et al., 2020; Gu et al., 2018). Research indicates that Cu2O
nanoparticles (NPs) with various crystal facets exhibit distinct
stability and catalytic behaviors (Jiang et al., 2018; Qin et al.,
2019). During the reduction phase involving Cu2O, metallic Cu
nanoparticles (NPs) develop on the Cu2O surface. It remains
uncertain if these metallic Cu NPs that form on the Cu2O
surface serve as active catalysts in the CO2RR process (Wang
et al., 2016; Lee et al., 2015). The Cu nanoparticles (NPs)
derived from various types of Cu2O NPs exhibit differences
in size and aggregation, impacting the selectivity and activity
involved in C2H4 production (Li and Kanan, 2012). These
findings led us to investigate how crystal planes affect the
activity of C2H4 formation from metallic Cu NPs derived
from Cu2O NPs, and to further examine whether the
selectivity and activity of CO2RR are influenced by Cu2O or
metallic Cu NPs.

In this work, we successfully synthesized cross-sectional
octahedral Cu2O by electrochemical deposition, and explored
the potential factors of copper nanosheets derived from Cu2O
nanoparticles in electrocatalytic CO2RR conversion to ethylene.
We observed that the existence of different octahedrons on the
cross-section of Cu2O nanoparticles has a great difference in the
catalytic carbon dioxide reduction of the derived copper
nanosheets. Simultaneously, we examined the ethylene
selectivity and activity associated with the exposed crystal
surfaces. Our findings indicate that the exposure of crystal
facets during the transformation of octahedral Cu2O NPs into
copper nanosheets plays a critical role in influencing the
catalytic conversion of CO2RR to ethylene. Furthermore, our
studies clearly demonstrate that metallic Cu NPs, compared to
Cu2O NPs, have a greater impact on the selectivity and activity
of C2H4. Copper nanosheets derived from Cu2O NPs are the
active species for electrocatalytic CO2RR. For truncated
octahedral Cu2O NPs, the display of crystal planes is crucial
for revealing the active material in derivatized copper
nanosheets. The selectivity of CO2 reduction, particularly
towards C2H4, is strongly linked to the exposed crystal facets
of Cu particles originating from Cu2O.

2 Experiment

2.1 Materials and reagents

Copper nitrate (Cu (NO3)2·3H2O, ≥99.5% pure) was sourced
from Beijing Chemical Plant of China Reagent, while sodium
acetate (C2H3NaO2, ≥99.0% pure) and sodium hydroxide
(NaOH, 99%) were obtained from Macklin Reagent Network.
Acetic acid (CH3COOH, ≥99.5% pure) and potassium
bicarbonate (KHCO3, ≥99.5% pure) were procured from
Sinopharm Chemical Reagent Co., Ltd. No additional
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purification of these chemicals is required. The deionized water
used (18.24 MΩ cm) was produced by our laboratory’s ultra-pure
water system.

2.2 Synthesis of catalyst

The electrolytic cell and electrodes used are as follows: a
standard three-electrode device, the constant potential method is
used for electrodeposition on the workstation of the electrochemical
system (CH 760E, CH Instruments, China). The working electrode
is carbon paper (0.5 cm2, Toray TGP-H-060), using AgCl or Ag/Ag+

electrode and platinum sheet as reference electrode and
counter electrode.

The electroplating solution is an aqueous solution
composed of 0.02 M (Cu (NO3)2·3H2O and 0.12 M acetic
acid buffer solution, and the pH is adjusted to about
5.0 with sodium hydroxide. Electrodeposition is electrolysis
in an H-type double-layer constant temperature water bath The
Cu2O electrocatalyst was synthesized by constant potential
method under 70°C water circulation and recorded as
0.02–1,500 (0.02-represents the potential. 1,500 represents
the settling time). Each time the deposited Cu2O carbon
paper sheet, use deionized water thoroughly Clean and blow
dry with nitrogen.

2.3 Equipment

The sample’s crystal structure was analyzed using an X-ray
diffractometer (Smart Lab, Japan) with intelligent target rotation
capability. Surface morphology of each electrocatalyst was
examined using a cold field emission scanning electron
microscope (F-SEM, Regulus 8100, Japan) and high-resolution
transmission electron microscopy (HRTEM, JEM-2100uHR,
Japan). Elemental analysis was performed with X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha,
US), employing a monochromatic AlKa radiation source at
1,486.6 eV. All the spectral data were acquired in standard
environmental conditions.

2.4 Electrochemical test

Electrocatalysis is conducted using a standard H-type
electrolysis cell that has three electrodes linked to an
electrochemical workstation (CH 760E, CH Instrument, China).
The device features a cathode and an anode compartment divided by
a proton exchange membrane (Nafion 130). Each section holds
30 mL of 0.1 M KHCO3 as the electrolyte solution. Reference
electrodes and counter electrodes were comprised of AgCl or Ag/
Ag+ electrodes and platinum sheets, respectively. A self-fabricated
electrode was employed as the working electrode. Following this, the
products of the electrocatalytic reduction process were analyzed over
30 min via a chronocurrent technique. All electrical potentials noted
in this experiment are calibrated against the Ag/AgCl reference
electrode as E (VS RHE) = E (VS Ag/AgCl) + 0.222 V + 0.0591 × pH.

2.5 Product detection

Prior to conducting the experiment, the cathode chamber was
set up with an online trace gas detection system for CO2 reduction
using gas chromatography (GC) (GC7900, Tianmei, China). This
system includes a thermal conductivity detector (TCD) and a flame
ionization detector (FID), with nitrogen serving as the carrier gas to
analyze and quantify the resultant products. The electrolyte within
the cathode chamber was saturated with N2 or CO2 at a flow rate of
30 mL min−1 for no less than 30 min. Concurrent magnetic stirring
at 600 rpm during the process ensured thorough mixing of the
electrolyte. Linear sweep voltammetry (LSV) recordings were taken
at a scan rate of 10 mV s−1. Electrochemical surface area (ECSA) was
derived from cyclic voltammograms at varying scan rates (5, 10, 20,
40, 60, 80, 100, and 120 mV s−1), within potential window
from −0.116 to −0.216 vs. RHE. Electrochemical impedance
spectroscopy was conducted in a frequency range of 1 MHz to
10–2 Hz under open circuit potential.

Then the quantitative gas products were analyzed for at least
30 min at each potential during the CO2 electroreduction process.
Based on the GC analysis, the current density and FE of the product
were determined. The liquid product underwent further analysis.
The FE for CO is calculated using the formula below:

FE � NnF
Q

× 100%

Here, (N) represents the number of electrons needed to
synthesize the product, which equals 2 for C2H4. The variable (n)
stands for the total moles of C2H4 as measured by GC, (F) is the
Faraday constant (96,485°C mol−1), and (Q) denotes the total
accumulated electric charge. These details are recorded using
ChemStation.

3 Results and discussion

3.1 Physical characteristics of
nanomicrocrystals

A straightforward constant potential electrochemical deposition
technique was utilized to effectively cultivate Cu2O particles directly
on carbon paper (CP), serving as electrodes with a carbon base. A
self-supported electrode like Cu2O/CP was prepared. The
electrodeposition was carried out in an H-type double-layer
constant-temperature water-bath electrolyzer, and the Cu2O
electrocatalyst was synthesized using the constant-potential
method under water circulation at 70°C notated as Cu2O
0.02–1,500 (70°C) (0.02- represents the electrodeposition
potential, 1,500 represents the deposition time, and 70°C
represents the electrodeposition temperature) as shown in
Figure 1A. The Cu2O microcrystals on the carbon paper (CP)
surface were uniformly distributed and have a polycrystalline
octahedral morphology (shown in the inset of Figure 1A) with
typical (111) and (100) crystal faces. Electrodeposition was
performed at temperatures of 60°C and 80°C to establish
comparative conditions, with SEM images of the resulting
materials presented in Figures 1B, C. The materials
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electrodeposited at 60°C are specifically depicted in Figures 1B, C.
The Cu2Omicrocrystalline particles deposited at 60°C are uniformly
distributed, but do not have a complete octahedral morphology, and
the Cu2O microcrystalline particles obtained by deposition at 80°C
are piled up together, and the crystalline faces of the cross-sectional
octahedra are incompletely exposed, with only some of the
crystalline faces being exposed and the other crystalline faces
interspersed with each other to hide them. Comparison of the
electrodeposition temperatures reveals that the Cu2O
microcrystals are uniformly distributed and the crystal faces are
well exposed at 70°C. To further explore the microstructural
characteristics, TEM images of the Cu2O catalyst are displayed in
Figure 1D, while the HRTEM and SAED (selected area electron
diffraction) images are illustrated in Figures 1E, F. The TEM images
illustrate clearly defined crystal faces of Cu2O particles. The marked
lattice stripe distance d of 0.212 nm aligns with the crystal face
spacing of Cu2O, and the SAED patterns observed highlight the
(111) and (100) crystal planes of the octahedral cross-section of
Cu2O. Figure 2 shows the SEM images of Cu2O (0.02–70) at
different electrodeposition times, demonstrating the effect of
electrodeposition time on the morphology, and determining that
1,500 scan electrodeposit Cu2O with a more complete
crystal surface.

Figure 3A presents the X-ray diffraction (XRD) pattern. The
figure indicates that the Cu2O microcrystals, electrodeposited
directly onto the CP substrate, did not fully coat the surface of
the carbon paper, and the XRD signal peaks of the carbon paper
were observable in the XRD spectrum (▲: denotes the CP diffraction
peaks). The main signal peaks of the Cu2O crystal structure (◎:
denotes the Cu2O signal peaks) were in agreement with the standard
spectrum (Cu2O: JCPDS #05-0667) against (Liu et al., 2021). The

diffraction peaks of Cu2O microcrystals at 29.554 eV, 36.418 eV,
42.297 eV, 61.344 eV, 73.526 eV, and 77.323 eV were attributed to
the (110), (111), (200), (220), (311), and (222) crystallographic facets
of Cu2O, respectively. It indicates that the Cu2O catalyst has good
crystallinity and structural characteristics of polycrystalline facets.

The surface valence states of the catalyst were examined using
X-ray photoelectron spectroscopy (XPS). As depicted in Figures 3B,
4A, the Cu2O microcrystals electrodeposited in situ with CP as the
substrate contain characteristic peaks of Cu 2p and O 1s, as well as
information on the elements contained in the substrate carbon
paper. The characteristic peaks with binding energies of
931.88 eV and 951.78 eV are attributed to Cu+ 2p3/2 and Cu+

2p1/2, which can be categorized as (Cu+) of Cu2O. The
predominant Cu2+ 2p3/2 and Cu2+ 2p1/2 features at 934.28 eV and
954.08 eV can be attributed to the presence of (Cu2+) or a small
amount of CuO in Cu2O. Satellite peaks appear in the binding
energy range of 945 eV–940 eV, indicating that Cu(I) is the primary
valence state of the copper species. The presence of Cu (II) results
from the oxidation of Cu(I), as Cu2O is thermodynamically unstable
under typical conditions. Figures 4C, D It can be determined that
Cu2O obtained at different deposition temperatures: 0.02–1,500
(60°C), 0.02–1,500 (70°C), 0.02–1,500 (80°C) are homogeneous
compounds, and by comparing the SEM as in Figures 1–5 a
great difference in morphology is found.

3.2 Electrochemical CO2 reduction
properties of Cu2O microcrystals

The electrocatalytic CO2 reduction performance of Cu2O
0.02–1,500 (70°C) was evaluated as illustrated in Figure 5A. This

FIGURE 1
SEM images of Cu2O (0.02–1,500) at different electrodeposition temperatures (A) 70°C, (B) 60°C and (C) 80°C; Cu2O (0.02–1,500) (70°C) (D) TEM
images, (E) HRTEM images, (F) SAED images.
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catalyst was tested in a 0.1 M KHCO3 solution saturated with both
CO2 and Ar, where it exhibited a significant reduction peak
from −0.25 V to −0.5 V (vs. RHE), likely due to the inherent
electrochemical reduction properties of Cu2O. Additionally, the

intensity of these reduction peaks was higher in the CO2-
saturated environment compared to the Ar-saturated one,
indicating more pronounced reduction activities in the presence
of CO2. This enhanced peak is believed to result from the elevated

FIGURE 2
SEM images of Cu2O (0.02–70) at different electrodeposition times, (A) 1,300 s, (B) 1,500 s, (C) 1,800 s and (D) 3,600 s.

FIGURE 3
(A) XRD pattern of Cu2O (0.02–1,500) and CP, (B) XPS spectra of Cu2O (0.02–1,500) and CP.
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FIGURE 5
Cu2O 0.02–1,500 (70°C) (A) LSV curves at CO2 and Ar saturated 0.1 M KHCO3 with a scan rate of 10 mV s−1, (B) FE of CO2 reduction of different
products at different potentials, (C) Total current density at different reduction potentials, (D) FE of CO2 reduction products C2+ at different potentials.

FIGURE 4
(A)Cu 2p spectrum of Cu2O (0.02–1,500) (70°C); (B)O1 s spectrum of Cu2O (0.02–1,500) (70°C); (C) XRD pattern of Cu2O; (D) XPS spectra of Cu2O.
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CO2 concentration within the CO2-saturatedmedium versus the Ar-
saturated solution. Across a broad potential range, the current
density of the catalyst Cu2O 0.02–1,500 (70°C) in the CO2-
enriched 0.1 M KHCO3 solution surpassed that in its Ar-
saturated counterpart, demonstrating the robust catalytic
reduction capabilities of Cu2O microcrystals in CO2-rich
environments.

The FE of various gaseous products (H2, CO, CH4, C2H4)
produced by CO2 reduction using Cu2O 0.02–1,500 (70°C) were
evaluated at different potentials in a 0.1 M KHCO3 electrolyte,
as shown in Figure 5B. The highest FE, reaching 42%, was
observed for C2H4 at a potential of −1.376 V (vs. RHE) with a
total current density of 17 mA cm−2, which suggests strong
selectivity of the catalyst towards C2H4 production. Figure 5C
illustrates the distribution of total current density across
various potentials, indicating an increase in total current
density with higher reduction potentials. Figure 5D presents
the overall FE of the CO2 reduction product C2+ at various
potentials for the 0.02–1,500 (70°C) catalysts under a 0.1 M

KHCO3 electrolyte setting, where the FE for C2+ products was
approximately 60% across all tested potentials. In conclusion,
C2H4 is identified as the primary product of CO2

electroreduction, indicating that the Cu2O microcrystalline
particles have good active sites for the generation of C2+

during the CO2 electroreduction process. The Cu2O
0.02–1,500 (70°C) catalysts achieved 42.0% FE (C2H4) and
more than 60% FE (C2+). Table 1 summarizes the FE of
copper-based catalysts for C2H4 production. The comparison
reveals that Cu2O microcrystalline particles prepared in situ by
electrodeposition are one of the more desirable catalysts for
ethylene production by electrocatalytic reduction of CO2.

Increased current density in a CO2-saturated electrolyte
suggested an electrochemical CO2 reduction reaction (CO2RR).
Analysis using gas chromatography (GC) revealed the production
of C2H4, CH4, CO, and H2. The catalyst 0.02–1,500 (70°C)
demonstrated significant selectivity towards C2H4, achieving a
faradaic efficiency (FE) of 42.0% at a current density of
7.3 mA cm−2 and a potential of −1.376 V (vs. RHE), as shown in

TABLE 1 Performance of different copper-based catalysts for C2H4 formation via electrochemical CO2 reduction.

Catalyst Electrolyte Potential Product FE (%) References

Cu2O nanocubes 0.1 M KHCO3 −1.15 V vs. RHE C2H4 31.1 Wang et al. (2019)

Graphene/ZnO/Cu2O 0.5 M NaHCO3 −0.9 V vs. Ag/
AgCl

n-propanol 30 Geioushy et al.
(2017a)

Cu2O/Cu@NC 0.1 M KHCO3 −0.68 V vs. RHE HCOOH 70.5 Li et al. (2020)

Cu@Cu2O 0.1 M KHCO3 −1.0 V vs. RHE C2 = C2 (ethylene and
ethanol)

50 Shang et al. (2019)

Cu GNC-VL 0.5 M KHCO3 −0.87 V vs. RHE Ethanol 70.52 Zhang et al. (2019)

In-doped Cu@Cu2O 0.1 M KHCO3 −0.8 V vs. RHE CO 87.6 ±
2.2

Wang et al. (2020)

cubic Cu2O (c-Cu2O) NPs with facets 0.5 M KHCO3 −1.2 V vs. RHE C2H4 38 Gao et al. (2020)

octahedral Cu2O (o-Cu2O) NPs 0.5 M KHCO3 −1.1 V vs. RHE C2H4 45 Robb (2021)

truncated-octahedral Cu2O (t-Cu2O) NPs with
both and (100) facets

0.5 M KHCO3 −1.1 V vs. RHE C2H4 59 Robb (2021)

Cu2O-BDD 0.1 M NaCl −1.5 V vs. RHE C2H4 68.2 Denala et al. (2019)

Cuv-Cu2O catalyst 0.1 M KHCO3 −0.76 V vs. RHE C2H4 51.0 Ren et al. (2020)

Cu2O (o-Cu2O) NCs 1.0 M KCl −1.1 V vs. RHE C2+ 48.3 Fu et al. (2020)

Hollow Cubic Cu2O@Au 0.1 M KHCO3 −1.0 V vs. RHE CO 30.1 Tan et al. (2019)

Cu2O-derived
Cu catalysts

0.1 M KHCO3 −0.98 V vs. RHE C2H4 42.6 Handoko et al.
(2016)

Cu2O/CuO 0.5 M KHCO3, 10 mM pyridine and
HCl (pH = 5)

−1.3 V vs. RHE CH3OH 6.46 Roy et al. (2020)

GN/Cu2O 0.5 M NaHCO3 −0.9 V vs. Ag/
AgCl

C2H5OH 9.93 Geioushy et al.
(2017b)

ZnO@4Cu2O 1 M KOH −1.0 V vs. RHE C2H4 35.5 Zhu et al. (2021)

Cu/Cu2O-Ag-x) 1 M KOH 200 mA cm−2 C2+ 60.9 Su et al. (2021)

Cu/Cu2O@NG 0.2 M KI −1.9 V vs. RHE C2-C3 56 Zhi et al. (2021)

AuxCu2O 0.1 M KHCO3 −1.3 V vs. RHE C2H4 24.4 Cao et al. (2021)
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Figure 6. Themeasurement of FE (C2H4) was repeated three times to
obtain a FE (C2H4) of 42% with good reproducibility. Figure 7
demonstrates that the catalyst Cu2O 0.02–1,500 (70°C) has the
optimal theoretical electroactive area, and Figure 8 shows the
optimal electron transfer rate for the catalyst Cu2O 0.02–1,500
(70°C), which are based on the comparison of synthesized
catalysts at other temperatures. During 10 h of continuous
catalytic use the FE remained essentially undecayed at about 40%
as shown in Figure 9.

3.3 Catalytic mechanism study

We tested the morphology of Cu2O catalysts after
electrochemical CO2 reduction reaction, as shown in
Figure 10. The Cu2O catalysts after electrolysis failed to

maintain the original cross-sectional octahedral morphology.
The Cu2O catalysts formed nanosheet morphology during the
electrolysis process, which may be due to the reduction of Cu2O
at a more negative potential. Figures 11A, 12C show that many of
the original crystalline surfaces of the Cu2O microcrystals
obviously disappeared after electrochemical CO2 reduction,
which further proved that Cu2O was reduced during the
electrochemical reaction. From the XPS spectra in Figures
11B, 12A, it can be seen that the characteristic peak areas of
Cu+ and Cu2+ of the Cu catalyst obtained after being reduced
compared with the characteristic peaks of Cu+ and Cu2+ in the
Cu2O catalyst (Figure 4A), and the proportion of the peak areas
of Cu+ 2p3/2 and Cu+ 2p1/2 of the Cu catalyst obtained from the
reduced Cu2O was reduced, proving that Cu+ and Cu2+ in the
catalyst were reduced to Cu0 and Cu+. Figure12B depicts the
high-resolution O1s spectra of the prepared Cu2O:0.02–1,500

FIGURE 6
Catalyst Cu2O 0.02–1,500 (60°C, 70°C, 80°C): (A) 1st LSV curve at CO2 and Ar saturated 0.1 M KHCO3with a scan rate of 10mV s−1, (B) 2nd LSV curve
at CO2 and Ar saturated 0.1 M KHCO3 with a scan rate of 10 mV s−1, (C) FE (C2H4) values as a function of potential, (D) J (C2H4) values as a function of
potential, (E) Total current density at different reduction potentials from 0.02 to 1,500 (60°C), (F) Total current density at different reduction potentials for
Cu2O 0.02–1,500 (80°C).

Frontiers in Chemistry frontiersin.org08

Dong et al. 10.3389/fchem.2024.1482168

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1482168


(70°C) catalysts after the electrochemical CO2 reduction reaction.
As shown in Figure 4B, the two characteristic peaks resolved at
529.95 eV and 531.33 eV binding energies are Cu2O lattice
oxygen (Olat) and oxygen vacancies (OVs), respectively. After
the electrochemical CO2 reduction reaction, there are oxygen
vacancies (OVs) at the binding energy of 531.33 eV, while the
Cu2O lattice oxygen (O lat) basically disappears, as shown in
Figure 12B. The Auger electron spectroscopy (AES) Cu LMM
signals of Cu2O 0.02–1,500 (70°C) (Figure 12D), at the binding
energy of 570.8 eV, show a characteristic peak, which confirms
that Cu(I) is the major chemical valence of Cu species. After the

electrochemical CO2 reduction reaction, a characteristic peak at
the binding energy of 570.8 eV is shown, which confirms that Cu
(0) is the main chemical valence of the Cu species after
derivatization. This proves that the catalyst Cu2O is
derivatized to Cu0 species after electrochemical CO2

reduction reaction.
By comparing the CO2 reduction performance of Cu2O

catalysts under different preparation conditions, Cu2O
0.02–1,500 (70°C) with regular morphology and the most
intact cross-sectional octahedra with exposed crystal faces
(111) has a higher selectivity for the conversion of CO2 to

FIGURE 7
The CVs of (A) Cu2O 0.02–1,500 (60°C), (B) Cu2O 0.02–1,500 (70°C), and (C) Cu2O 0.02–1,500 (80°C), (D) Bilayer charge current densities of Cu2O
0.02–1,500 (60°C), Cu2O 0.02–1,500 (70°C), and Cu2O 0.02–1,500 (80°C) versus scan rate.

FIGURE 8
EIS of Cu2O 0.02–1500 (60°C, 70°C 0, 80°C) at open circuit voltage for CO2 saturated 0.1 M KHCO3, relationship between FE of the product
ethylene and the potential of CO2 reduction for Cu2O.
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C2H4. The complete exposure of crystal faces is particularly
important for electrocatalytic conversion of CO2 to C2H4 and
is an important factor affecting the increase of FE (C2H4).C-C
coupling is a crucial step in electrocatalytic conversion of CO2 to
C2H4, and intermediate adsorption completes the coupling of
C-C to C2/C2+ products. The Cu2O 0.02–1,500 (70°C) catalysts
with a Cu2O 0.02–1,500 (70°C) catalysts with complete
morphology and exposed (111) crystal surface are the key
active sites for C-C coupling in the catalytic process. The
derivatives obtained by a reduction of the catalyst with well
exposed crystalline surfaces are the key active sites for the
catalytic conversion of CO2 into C2H4 (Gao et al., 2020).

During the CO2 electroreduction process, *CO is considered
to an important intermediate which is further reduced to
C2H4 over Cu2O-based catalysts. For C2/C2+ products, this
phenomenon may be attributed to the severe aggregation of
*CO on the surface of the catalysts’ Cu2O-reduced derivatives
promoting further C-C coupling. Cu(I) can be reduced to Cu (0)
during the catalytic process, so the center of catalytic activity is
viewed as a derivative catalyst with Cu (0). In summary, the active
substance in the reduced electrocatalytic conversion of CO2 by
Cu2O is the reduced derived Cu (0).

3.4 Conclusion

Cross-sectioned octahedral Cu2O microcrystals were
prepared in situ on carbon paper electrodes by

electrochemical deposition. The morphology and integrity of
the exposed crystal surface (111) were successfully regulated by
controlling the deposition potential, deposition time and
deposition temperature. The cross-sectional octahedral Cu2O
microcrystals have high activity and selectivity for the
preparation of C2H4 by electrocatalytic CO2 reduction. The
FE (C2H4) was stabilized at about 40% during 10 h of
continuous electrolysis. The cross-sectioned octahedral Cu2O
microcrystals with intact exposed crystal faces (111) are
reduced derived Cu0 during electrolysis, which can
effectively promote C-C coupling and may be the main
active site for catalyzing the conversion of CO2 to C2H4.

FIGURE 10
SEM images of (A) 0.02–1,500 (60°C), (B) Cu2O 0.02–1,500 (70°C) and (C) Cu2O 0.02–1,500 (80°C) catalysts after use. TEM images of (D) Cu2O
0.02–1,500 (60°C), (E) Cu2O 0.02–1,500 (70°C) and (F) Cu2O 0.02–1,500 (80°C) catalysts after use.

FIGURE 9
The stability of Cu2O 0.02–1,500 (70°C) Cu2O in 0.1 M KHCO3

electrolyte at −1.376 V (vs. RHE).
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FIGURE 12
(A) 0.02–1,500 (70°C) Cu 2p spectra, (B) 0.02–1,500 (70°C) O 1 s spectra, (C) CP, 0.02–1,500 (70°C), and 0.02–1,500 (70°C) were used after the
spectra XPS spectra (D) 0.02–1,500 (70°C) and 0.02–1,500 (70°C) were used Cu LM2 spectra after being used.

FIGURE 11
(A)Cu2O (0.02–1,500), Cu2O (0.02–1,500) after being used, and XRD spectra of CP, (B)Cu2O (0.02–1,500), Cu2O (0.02–1,500) after being used, and
XPS spectra of CP.
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