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We report the fabrication of a novel spinel-type Pd₀.₁Cu₀.₉Co₂O₄ nano-flake
material designed for Mizoroki-Heck and Suzuki coupling-cum-
transesterification reactions. The Pd₀.₁Cu₀.₉Co₂O₄ material was synthesized
using a simple co-precipitation method, and its crystalline phase and
morphology were characterized through powder XRD, UV-Vis, FESEM, and
EDX studies. This material demonstrated excellent catalytic activity in
Mizoroki-Heck and Suzuki cross-coupling reactions, performed in the
presence of a mild base (K₂CO₃), ethanol as the solvent, and microwave
irradiation under ligand-free conditions. Notably, the Heck coupling of acrylic
esters proceeded concurrently with transesterification using various alcohols as
solvents. The catalyst exhibited remarkable stability under reaction conditions
and could be recycled and reused up to ten times while maintaining its catalytic
integrity.
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Introduction

Transition-metal-catalyzed cross-coupling reactions, namely, Mizoroki-Heck and
Suzuki reactions, have gained recognition for both their utility and versatility in the
construction of carbon-carbon bonds (Miyaura and Buchwald, 2002; Diederich and
Stang, 2008; Negishi, 2011; Johansson Seechurn et al., 2012; De Meijere et al., 2013),
which has widespread applications in the synthesis of biologically and pharmaceutically
important scaffolds (Heck, 1979; Miyaura and Suzuki, 1995; Beletskaya and Cheprakov,
2000; Yin and Liebscher, 2007; Buchwald, 2008). Palladium was the first transition metal to
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be used as a catalyst for key organic reactions on an industrial level
(Matos and Soderquist, 1998). Historically, homogeneous palladium
catalysts in the form of metal salts with phosphines, N-heterocyclic
carbenes (NHCs), and other organic ligands have been widely used
in catalyzing cross-coupling reactions (Suzuki, 1999; Maureen, 2004;
Jiang et al., 2007; Wu et al., 2010b; Wu et al., 2010a). However,
growing economic and environmental concerns of homogeneous
palladium catalysts have kickstarted research into the
heterogenization of these catalysts. Researchers aim to create
catalysts that maintain high catalytic activity while addressing
economic and environmental concerns by immobilizing
palladium on various inorganic and organic support materials.
However, catalysts containing transition metals other than
palladium, such as copper (Babu et al., 2013; Liwosz and
Chemler, 2013; Gurung et al., 2014; Basnet et al., 2016; Tang

et al., 2018; Budiman et al., 2019), cobalt (Asghar et al., 2017;
Ludwig et al., 2020), or nickel (Gøgsig et al., 2012; Ramgren
et al., 2013), have also been used to conduct various cross-
coupling reactions. In recent years, spinels have gained
recognition as active catalysts for organic transformations
(Jagadeesh et al., 2013; Payra et al., 2016b; Payra et al., 2016a;
Payra et al., 2018; Anke et al., 2019; Dong et al., 2019; Patel et al.,
2020b; Ghazzy et al., 2022; Patel et al., 2022). These materials, also
known as perovskites, are binary and ternary mixed metal oxides
composed of mixed-valence transition metals, with a general
formula of AB₂O₄, where A and B represent different metal
cations. The presence of two mixed-valence metal cations
facilitates electron transport between multiple transition metal
cations, requiring relatively low activation energy (Jadhav et al.,
2016; Kuang et al., 2016). Recently, spinel oxide-supported

SCHEME 1
Schematic representation of Pd0.1Cu0.9Co2O4 preparation via co-precipitation method.

SCHEME 2
Microwave-assisted Heck and Suzuki coupling with concomitant transesterification.
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palladium catalysts such as PdAl2O4(Kannan, 2017), Pd/
Fe3O4(Baran and Nasrollahzadeh, 2019), Pd/NiFe2O(Borhade and
Waghmode, 2011), Pd/ZnFe2O4 (Singh et al., 2013), PdCuFe2O4

(Tong et al., 2016), PdCoFe2O4 (Senapati et al., 2012) have been
reported to catalyze various cross-coupling reactions. Similarly to
other spinels, Co3O4 adopts a normal spinel structure, consisting of
Co2+ at tetrahedral sites and Co3+ at octahedral sites (Gao et al.,
2016). In addition to the high activity, spinels provide additional
benefits including low cost, ease of preparation, and high stability
(Hamdani et al., 2010), Furthermore, the electrocatalytic efficiency
of Co3O4 can be enhanced by the incorporation of additional metal
ions (M = Zn, Cu, Ni, Mg, Fe, and Pd) into the oxide (Wu and Scott,
2011; Grewe et al., 2013; Rosen et al., 2013; Grewe et al., 2014; Liu
et al., 2014; Kumar and Srivastava, 2020). The cobalt cation is
partially substituted by a transition metal cation, which occupies

the octahedral sites, while Co. occupies both the tetrahedral and
octahedral sites, which in turn forms an inverse spinel structure (Liu
et al., 2016). The use of cobalt catalysts, particularly CuCo2O4 have
been reported in oxidation of alcohols (Jiang et al., 2019) and in the
oxidative aza-coupling of amines. (Patel A. R. et al., 2020).

Transesterification is a classic organic reaction that involves the
conversion of one ester into another through the exchange of alkoxy
groups between an alcohol and the ester. Esters represent one of the
most important functional groups found in polymers,
agrochemicals, natural products, and biological systems, thereby
making them widely applicable as key intermediates and/or
protecting groups in organic transformations. (Larock, 1989;
Otera and Nishikido, 2009; Nguyen et al., 2012).
Transesterification reactions are widely used in organic synthesis
and chemical industries (Otera, 1993; Grasa et al., 2004; Otera, 2004)
as well as in polymer industries (Capelot et al., 2012) and biodiesel
synthesis (Hindryawati et al., 2014; Lam et al., 2019). Recently,
transesterification reactions that utilize diverse catalysts such as
Lewis acids (Bosco and Saikia, 2004; Sheng and Kady, 2009), organic
and inorganic bases (Jagtap et al., 2008; Watson et al., 2008;
Sridharan et al., 2010), and N-heterocyclic carbenes (Grasa et al.,
2002; Nyce et al., 2002; Singh et al., 2004; Zeng et al., 2009) have also
been reported. However, there is currently no known methodology
for performing one-pot cross-coupling reactions combined with
transesterification.

As part of our ongoing efforts to develop novel transition metal-
catalyzed reactions (Pati et al., 2018; Pati et al., 2020; Pati et al., 2024)
and green synthetic methodologies using heterogeneous
nanomaterials (Banerjee and Saha, 2013; Banerjee, 2015; Saha
et al., 2015; Saha et al., 2017a; Saha et al., 2017b; Saha et al.,
2018; Patel et al., 2019a; Patel et al., 2019b; Saha et al., 2019) we
report the synthesis of hybrid Pd₀.₁Cu₀.₉Co₂O₄ spinel nano-flakes
(Scheme 1), which effectively catalyze Mizoroki-Heck and Suzuki
coupling reactions along with concomitant transesterification in a
one-pot process. This occurs under ligand-free microwave
irradiation conditions using an alcohol solvent (see Scheme 2).

FIGURE 1
XRD of CuCo2O4(black) and Pd0.1Cu0.9Co2O4(Red).

FIGURE 2
FESEM image of (A) CuCo2O4 and (B) Pd0.1Cu0.9Co2O4.
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Result and discussion

Firstly, we synthesized CuCo₂O₄ and Pd-doped CuCo₂O₄ using
a simple co-precipitation method. The CuCo₂O₄ was prepared
following a previously reported procedure (Sudha et al., 2019),
while the Pd-doped CuCo₂O₄ was synthesized by doping an
appropriate amount of palladium into the CuCo₂O₄ structure
(details in ESI).

To investigate the crystalline form of the samples, X-ray powder
diffraction (XRD) measurements were performed. The XRD
patterns of the CuCo₂O₄ and Pd₀.₁Cu₀.₉Co₂O₄ samples are
presented in Figure 1. For the CuCo₂O₄ sample, diffraction peaks
were observed at 2θ values of 18.77°, 31.08°, 36.86°, 38.66°, 44.63°,
56.45°, 59.30°, and 65.55°, corresponding to the (111) (220) (311)
(222) (400) (422) (511), and (440) planes, respectively.

The diffraction peaks observed correspond to the polycrystalline
cubic spinel phase of CuCo₂O₄ (JCPDS Card No. 01–1155). The
Pd₀.₁Cu₀.₉Co₂O₄ sample exhibits diffraction peaks at the same 2θ

values as the CuCo₂O₄ sample, confirming that Pd is fully doped into
the Cu site without forming any impurity phases (Bikkarolla and
Papakonstantinou, 2015; Patel A. R. et al., 2020). The crystallite sizes
(D) for both the pure and Pd-doped samples were calculated using
the Debye–Scherrer formula (D � 0.9λ

β cos θ , where λ = 1.54 Å and β is
FWHM) and they are found to be 14 nm and 10 nm for CuCo2O4

and Pd0.1Cu0.9Co2O4, respectively.
The morphology of the Pd₀.₁Cu₀.₉Co₂O₄ sample was examined

using field emission scanning electron microscopy (FESEM).
Figure 2 presents the FESEM image, revealing the formation of a
flake-like structure in the material. The average nano-flake size
ranges from 760 nm for CuCo₂O₄ to 205 nm for Pd₀.₁Cu₀.₉Co₂O₄,
indicating that the Pd-doped samples have a higher surface area
compared to the pure CuCo₂O₄ samples.

The elemental composition and purity of the Pd₀.₁Cu₀.₉Co₂O₄
sample were determined using energy-dispersive X-ray spectroscopy
(EDX). The EDX spectrum, shown in Figure 3, confirms the
presence of dispersive peaks corresponding to the elements C, O,
Co., Cu, Pd, and Pt (the latter due to the Pt coating applied during
SEM measurements). The absence of dispersive peaks for other
elements, within the statistical limits of detection, indicates the high
purity of the Pd₀.₁Cu₀.₉Co₂O₄ material. (Patel A. R. et al., 2020).

Additionally, the optical properties of the Pd₀.₁Cu₀.₉Co₂O₄
sample were investigated using UV–Vis spectroscopy. Figure 4
shows the UV–Vis absorbance spectra of the as-prepared
Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes, which exhibit a broad absorption
range spanning both the UV and visible regions. Two distinct
absorption bands were observed at 500 nm and 750 nm. The
band gap was determined using Tauc’s relation: αhν = C
(hν−E.g.,) n\alpha h\nu = C(h\nu - E_g)∧nαhν = C(hν−E.g.,) n,
where hνh\nuhν represents the photon energy, EgE_gEg is the
optical band gap, and CCC is the band tailing parameter. For
direct allowed transitions, nnn was set to 2. Figure 4B presents
the Tauc’s plot used to estimate the direct optical band gap of the
Pd₀.₁Cu₀.₉Co₂O₄ sample, which was found to be 1.82 eV.

The catalytic activity of well-characterized Pd₀.₁Cu₀.₉Co₂O₄
nano-flakes was next evaluated in cross-coupling reactions. We
began with the Heck coupling reaction of one-iodo-4-
nitrobenzene (1) and acrylonitrile as a model system. When a
mixture of one-iodo-4-nitrobenzene (1.0 mmol), acrylonitrile

FIGURE 3
EDX spectra of Pd0.1Cu0.9Co2O4 material.

FIGURE 4
(A)UV-Vis spectrum of Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes and (B) Tauc’s plot for the estimation of direct optical band gap for Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes.
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TABLE 1 Optimization of reaction condition for Heck cross-coupling reactiona.

Entry Solvent Base Catalyst (mole %) Temp. (oC) Time Yield (%)

1 DMF K2CO3 4 100 10 h 30

2 DMF-H2O(2:1) K2CO3 4 100 10 h 45

3 H2O K2CO3 4 100 12 h 20

4 EtOH-H2O K2CO3 4 Reflux 6 h 45

5 EtOH K2CO3 4 Reflux 6 h 60

6 EtOH K2CO3 8 Reflux 6 h 75

7 EtOH K2CO3 12 Reflux 6 h 76

8 EtOH NaOH 8 Reflux 6 h 27

9 EtOH Na2CO3 8 Reflux 6 h 60

10 EtOH KOH 8 Reflux 6 h 75

11 EtOH K2CO3 8 MWb 10 min >99

12 EtOH K2CO3 4 MWb 10 min 98

13 EtOH K2CO3 2 MWb 10 min 87

14 EtOH K2CO3 4 MWb 5 min 76

aConditions:1-iodo-4- nitrobenzene (1.0 mmol), acrylonitrile (1.2 mmol), Base (2.0 equivalents), solvent (2.0 mL), and catalyst. Unless otherwise stated.
bMW, Microwave irradiation conditions at 50 W, 100°C.

TABLE 2 Pd0.1Cu0.9Co2O4 NFs-catalyzed Heck coupling and concomitant transesterification reactions.

Entry R1 X R2 Solvent (R3OH) Chemoselectivity 3’ : 3’’ Yield (%)

1 H I Me EtOH 100 : 0 96

2 OMe I Me EtOH 100 : 0 97

3 H I Me nPrOH 100 : 0 92

4 H Br Me nPrOH 100 : 0 88

5 NO2 I Me nPrOH 90 : 10 92

6 OMe I Me nPrOH 100 : 0 89

7 H I Me nBuOH 70 : 30 97

8 H Br Me nBuOH 70 : 30 90

9 NO2 I Me nBuOH 100 : 0 90

10 NO2 I nPr EtOH 0 : 100 84

11 NO2 I nBu EtOH 0 : 100 86

Conditions: aryl iodide (1.0 mmol), acrylate (1.2 mmol), K2CO3 (2.0 equiv.), alcohol solvent (2.0 mL), and catalyst 4 mole %, MW, 150 Watt, 80oC, 5 min.

Frontiers in Chemistry frontiersin.org05

Patel et al. 10.3389/fchem.2024.1496234

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1496234


TABLE 3 Scope of Pd0.1Cu0.9Co2O4NFs-catalyzed Heck coupling with concomitant transesterification reactions.

(Continued on following page)
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TABLE 3 (Continued) Scope of Pd0.1Cu0.9Co2O4NFs-catalyzed Heck coupling with concomitant transesterification reactions.

(Continued on following page)

Frontiers in Chemistry frontiersin.org07

Patel et al. 10.3389/fchem.2024.1496234

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1496234


(1.5 mmol), K₂CO₃ (2.0 mmol), and Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes
(4 mol %) was stirred in DMF at 100°C, a 30% yield of (E)-3-(4-
nitrophenyl) acrylonitrile (2) was obtained after 10 h (entry
1, Table 1).

In microwave-assisted reactions, the solvent absorbs microwave
energy through dielectric heating, rapidly increasing the

temperature and speeding up the reaction. Polar solvents, which
have a higher dipole moment, absorb microwaves more efficiently
compared to nonpolar solvents with zero or low dipole moments.
This enhances reaction rates and selectivity, enabling superheating
that improves yields and reaction outcomes under conditions not
achievable with conventional heating. We then proceeded to

TABLE 3 (Continued) Scope of Pd0.1Cu0.9Co2O4NFs-catalyzed Heck coupling with concomitant transesterification reactions.

Conditions: aryl iodide (1.0 mmol), alkene (1.2 mmol), K2CO3 (2.0 equivalents), Pd0.1 Cu0.9Co2O4(4 mole %), alcohol solvent (2.0 mL), MW, 150 W, 80°C, 5 min.

SCHEME 3
Synthesis of bi-aryl derivatives using Pd0.1Cu0.9Co2O4NFs catalyst via Suzuki coupling reactions.

Frontiers in Chemistry frontiersin.org08

Patel et al. 10.3389/fchem.2024.1496234

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1496234


TABLE 4 Substrate scope of Pd0.1Cu0.9Co2O4NFs catalyzed Suzuki coupling of aryl halides and aryl boronic acids.

(Continued on following page)
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TABLE 4 (Continued) Substrate scope of Pd0.1Cu0.9Co2O4NFs catalyzed Suzuki coupling of aryl halides and aryl boronic acids.

(Continued on following page)
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optimize the reaction conditions, starting with the screening of
various solvents (entries 1–5, Table 1). Ethanol (EtOH) emerged as
the optimal solvent, yielding a 60% product yield in 6 h (entry 5,
Table 1). Further optimization involved varying the base, catalyst
amount, and reaction time. Increasing the catalyst amount to 8 mol
% improved the yield (entry 6, Table 1), but further increases in
catalyst quantity did not enhance the yield (entry 7, Table 1). Among
the bases tested, K₂CO₃ proved to be the most effective (entries
8–10, Table 1).

Finally, we conducted the model reaction under microwave
(MW) irradiation, which offers several advantages over
conventional heating methods. These include significantly
reduced reaction times, selective and direct heating of reactants
and reagents without heating the reaction vessel, improved yields,
and reduced by-product formation (Payra et al., 2016b; Roberts and
Strauss, 2005; Kappe and Dallinger, 2006; Patel et al., 2021).

Initially, when the reaction was conducted under microwave
irradiation at 50W and 100°C for 10 min using 8 mol % of catalyst, a
significant improvement in yield (100% conversion, 99% yield) was
achieved using 2.0 equivalents of K₂CO₃ in 1 mL of ethanol (entry

11, Table 1). A similar conversion was observed when the catalyst
amount was reduced to 4 mole% (entry 12, Table 1). However,
further reducing the catalyst to 2 mol% led to a slight decrease in
yield (entry 13, Table 1). Additionally, shortening the reaction time
to 5 min resulted in a reduced yield of 76% (entry 14, Table 1).
Therefore, for 1 mmol of one-iodo-4-nitrobenzene, the optimized
conditions for the model Heck coupling reaction were determined to
be 4 mol% of Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes in ethanol under
microwave irradiation (50 W, 100°C, 10 min) (entry 12, Table 1).

Next, the scope of this methodology was explored under
optimized reaction conditions by reacting various conjugated
alkenes with aryl halides, following a general experimental
procedure (see ESI for details). Notably, when methyl acrylate
was used instead of acrylonitrile, the cross-coupling reaction led
to transesterification when ethanol (EtOH) was used as the solvent.
Encouraged by this finding, we investigated the cross-coupling of
aryl halides with methyl acrylate in the presence of different alcohols
as solvents. The results, summarized in Table 2, show that the Heck
coupling reaction with methyl acrylate resulted in 100%
transesterification when ethanol, n-propanol, or n-butanol was

TABLE 4 (Continued) Substrate scope of Pd0.1Cu0.9Co2O4NFs catalyzed Suzuki coupling of aryl halides and aryl boronic acids.

Conditions: aryl iodide (1.0 mmol), aryl boronic acid (1.2 mmol), K2CO3 (2.0 equi), Pd0.1Cu0.9Co2O4(10 mg), Ethanol (2.0 mL), MW, 150 W, 80°C, 5 min.

FIGURE 5
Recyclability of the Pd0.1Cu0.9Co2O4NFs for the Heck
coupling reaction.

FIGURE 6
Results of the leaching study by hot-filtration test performedwith
(A) complete run (blue line), (B) filtrate removed after 2 min (red line)
for the Heck-coupling cum transesterification reaction.
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used (entries 1–4, 6, 9, Table 2). However, when propyl acrylate or
butyl acrylate was used as the alkene, only the straight cross-
coupling product was observed, with no transesterification
occurring (entries 10–11, Table 2).

Both aryl iodides and bromides reacted efficiently with various
alkenes, such as acrylonitrile, methyl acrylate, and butyl acrylate,
under the optimized conditions. Aryl iodides reacted faster than their
bromide counterparts, likely due to the weaker C–I bond compared to
the C–Br bond, which results in better leaving group ability for
iodides, leading to higher yields with iodo-analogues. Additionally,
we investigated the electronic effects of aryl halides on yield and
reaction time with this catalytic system. Groups such as–NO₂
and–OMe on the aryl halides were well tolerated and enhanced
the reaction rate. The reaction scope is detailed in Table 3. When
acrylic acid was used, the Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes catalyst
facilitated the cross-coupling reaction followed by esterification of
cinnamic acid with alcohol, yielding cinnamic acid esters.

We further assessed the catalytic performance of
Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes in another significant C–C bond-
forming reaction: the Suzuki coupling of aryl halides with
arylboronic acids to synthesize biaryl compounds. When a
mixture of 1-nitro-4-iodobenzene (1 mmol), phenylboronic acid
(1.2 mmol), and Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes (10 mg) was heated at
100°C under microwave irradiation (150 W) in 2 mL of ethanol
within a sealed microwave tube for 5 min, a quantitative yield of 4-
nitrobiphenyl was obtained (Scheme 3).

The scope of the Suzuki coupling reaction for synthesizing biaryl
derivatives was explored using a straightforward and general
experimental procedure, with the results summarized in Table 4.
The Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes efficiently catalyzed the coupling
of aryl halides with aryl boronic acids under microwave irradiation,
yielding various substituted biaryl derivatives. Arylboronic acids
with a wide range of substituents produced robust yields of cross-
coupled products. Notably, substrates bearing a–CO₂Me group (5o
and 5q) also underwent transesterification. Additionally, sterically
hindered boronic acids, such as 2,4,6-trisubstituted boronic acids,
delivered high yields of biaryl products under the optimized reaction
conditions (5k). The stability and reusability of the Pd0.1Cu0.9Co2O4

nano-flakes were evaluated using the Heck coupling of 1-iodo-4-
nitrobenzene with acrylonitrile to form (E)-3-(4-nitrophenyl)
acrylonitrile as a model reaction on a 2 mmol scale. After the
reaction, the organic component was dissolved in ethyl acetate,
and the catalyst was recovered by centrifugation. The recovered
catalyst was washed, dried at 80°C for 4 h, and reused for ten
consecutive runs. The recycling results, shown in Figure 5, indicate
that the catalyst remained stable and active throughout the ten
cycles, with no significant loss in efficiency or product yield. The
slight decrease in yield could be attributed to catalyst loss during
recycling or agglomeration of the nano- flakes during the process.

A hot filtration test was performed to assess the heterogeneity of
the Pd0.1Cu0.9Co2O4 NFs catalyst through a leaching study. After
2 min of reaction (with 35% conversion achieved), the catalyst was
removed from the reaction mixture using hot ultracentrifugation.

FIGURE 7
FESEM image of recycled catalyst after 10th run.

TABLE 5 Comparison of Present vs. Reported Methods for Cross-Coupling Reactions.

Sl. No. Catalyst Catalyst (mole%)< Temp. (oC) Time Yield (%) References

1 PdAl2O4 45 100 24 h 28–89 Kannan (2017)

2 Fe3O4-Pd-NHC 7.3 50 12 h 84–96 Stevens et al. (2005)

3 Pd/NiFe2O4 0.1 90 5–150 min 6–98 Borhade and Waghmode (2011)

4 PdCoFe2O4 3.2 Reflux 6–16 h 70–92 Senapati et al. (2012)

5 Fe3O4-DOPA-Pd 4.8 Ultra-sonication 1–5 min 45–90 Vaddula et al. (2012)

6 Pd-AcAc-Am-Fe3O4@Silica 0.28 80 1–3 h 80–98 Vibhute et al. (2020a)

7 Fe3O4@SiO2@mSiO2-Pd(II) 1.0 80 3–10 25–99.5 Le et al. (2014)

8 Fe3O4@SiO2@mSiO2–Pd (0) 0.075 80 6–8 56–97 Li et al. (2013)

9 Fe3O4@SiO2-Pd 0.03 85 20–100 min 85–96 Khazaei et al. (2017)

10 Pd-AcAc-Am-Fe3O4@SiO2 0.3 80 4 h 62–96 Vibhute et al. (2020b)

11 Pd-ZnFe2O4 9.24 reflux 2–12 h 85–94 Singh et al. (2013)

12 Pd0.1Cu0.9Co2O4 4 MW/150 W 10 min 86–99 This work
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The filtrate was then subjected to microwave (MW) irradiation for
an additional 8 min, with reaction progress monitored at 2-min
intervals. No further increase in product yield was observed after the
catalyst was removed. As depicted in Figure 6, these results confirm
that the Pd0.1Cu0.9Co2O4 NFs remained stable under the reaction
conditions, with no detectable metal leaching from the catalyst.

In the experiments, turnover number (TON) and turnover
frequency (TOF) were determined using 10 mg of the
Pd₀.₁Cu₀.₉Co₂O₄ catalyst, corresponding to a Pd content of
0.004 mol% in a 1 mmol scale reaction. For the Suzuki coupling
reaction yielding biphenyl (5a), the calculated TON and TOF were
2500 and 15,000 h⁻1, respectively. Additionally, we conducted
FESEM analysis to investigate the morphology of the reused
catalyst. The FESEM image (Figure 7) of the catalyst after the
10th cycle confirmed that its flower-like structure remained
intact, indicating stability and reusability of the catalyst.

The advantages of the Pd₀.₁Cu₀.₉Co₂O₄ nano-flakes catalyst for
the Heck and Suzuki coupling reactions were highlighted by
comparing it with previously reported Pd-based catalytic
methods, as shown in Table 5. The comparison demonstrated
that the Pd₀.₁Cu₀.₉Co₂O₄ catalyst outperforms other Pd-based
spinel-structured catalysts, establishing it as a high-performance
option in these reactions.

Conclusion

In conclusion, we synthesized spinel-type Pd₀.₁Cu₀.₉Co₂O₄
nano-flakes via a simple co-precipitation method and
characterized them using powder XRD, UV-Vis, FESEM, and
EDX. The material showed excellent catalytic activity in
Mizoroki-Heck and Suzuki cross-coupling reactions under
microwave irradiation. Key advantages include the use of a mild
base (K₂CO₃), ethanol as a green solvent, ligand-free conditions,
short reaction times (10 min), and high yields (86%–99%). Notably,
methyl acrylate underwent complete transesterification, while butyl
acrylate yielded only cross-coupling products. The catalyst was
stable and reusable for up to ten cycles with minimal loss in activity.
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