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Introduction: Treatment of type 2 diabetes (T2D) remains a significant challenge
because of its multifactorial nature and complex metabolic pathways. There is
growing interest in finding new therapeutic targets that could lead to safer and
more effective treatment options. Takeda G protein-coupled receptor 5 (TGR5) is
a promising antidiabetic target that plays a key role in metabolic regulation,
especially in glucose homeostasis and energy expenditure. TGR5 agonists are
attractive candidates for T2D therapy because of their ability to improve glycemic
control. This study usedmachine learning-basedmodels (ML), molecular docking
(MD), and molecular dynamics simulations (MDS) to explore novel small
molecules as potential TGR5 agonists.

Methods: Bioactivity data for known TGR5 agonists were obtained from the
ChEMBL database. The dataset was cleaned and molecular descriptors based on
Lipinski’s rule of five were selected as input features for the ML model, which was
built using the Random Forest algorithm. The optimized ML model was used to
screen the COCONUT database and predict potential TGR5 agonists based on
their molecular features. 6,656 compounds predicted from the COCONUT
database were docked within the active site of TGR5 to calculate their binding
energies. The four top-scoring compounds with the lowest binding energies
were selected and their activities were compared to those of the co-crystallized
ligand. A 100 ns MDS was used to assess the binding stability of the compounds
to TGR5.

Results: Molecular docking results showed that the lead compounds had a
stronger affinity for TGR5 than the cocrystallized ligand. MDS revealed that
the lead compounds were stable within the TGR5 binding pocket.
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Discussion: The combination of ML, MD, and MDS provides a powerful approach
for predicting new TGR5 agonists that can be optimised for T2D treatment.
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simulation, COCONUT database

1 Introduction

Type 2 diabetes (T2D) is an escalating metabolic disorder of
global health concern (Ong et al., 2023). This disease is characterised
by persistent hyperglycaemia due to insulin resistance and an
eventual decline in pancreatic β-cell function (Bhatti et al., 2022;
Deol and Bashir, 2024). In 2017, approximately 462 million people
worldwide were affected by T2DM (Abdul Basith Khan et al., 2020).
Individuals with T2DM are susceptible to long-term complications,
including cardiovascular disease, neuropathy, retinopathy, and
kidney failure, which lead to significant morbidity and mortality
(DeFronzo et al., 2015; Chatterjee et al., 2017; Sharma et al., 2024).
Although genetic factors have been correlated with the pathogenesis
of the disease, environmental factors (consumption of unhealthy
diet, reduced physical activity, and obesity) enhance
pathophysiological anomalies associated with defective glucose
homeostasis (Abolo et al., 2024; Mansour et al., 2023; Ikwuka
et al., 2023).

Takeda G protein-coupled receptor 5 (TGR5) is a member of the
G protein-coupled receptor (GPCR), class A (Thomas et al., 2008;
Guo et al., 2016). TGR5 has emerged as a promising target in the
context of T2DM owing to its involvement in glucose homeostasis,
energy expenditure, and anti-inflammatory pathways (Sato et al.,
2007; Bhimanwar and Mittal, 2021). TGR5 is activated by bile acids
and plays a crucial role in regulating metabolic processes in various
tissues, including the liver, pancreas, and adipose tissue (Lun
et al., 2023)

Despite its potential, development of a TGR5 agonist as a
therapeutic agent has faced several challenges. Identifying
selective and potent TGR5 agonists is complicated by the
structural flexibility of the receptor and the need for compounds
that can cross biological membranes and exhibit favourable
pharmacokinetic properties. Moreover, many identified
TGR5 agonists have off-target effects or are associated with safety
concerns, particularly regarding their impact on the
gastrointestinal system.

Recent studies have shown the use of multi-omics and
transcriptomic data integration approaches to predict potential
biomarkers for diseases (Alaya et al., 2024; Ben Aribi et al., 2024;
Chikwambi et al., 2023; El Abed et al., 2023; Nzungize et al., 2022;
Wesonga and Awe, 2022), as well as to understand disease
susceptibility (Nyamari et al., 2023). Other studies have also
provided intriguing insights into viral evolution, diversity, and
variation using computational approaches (Awe et al., 2023;
Mwanga et al., 2023; Obura et al., 2022; Oluwagbemi and
Awe, 2018).

In the field of drug discovery, machine learning (ML), molecular
docking (MD), and molecular dynamics simulations (MDS) have
revolutionized the identification and optimization of novel drug
candidates (Di Stefano et al., 2022; Sadybekov and Katritch, 2023).

ML models can rapidly analyze vast chemical libraries and predict
the bioactivity of compounds with high accuracy, thereby
significantly reducing the time and cost associated with
traditional drug discovery methods (Di Stefano et al., 2022;
Bhimanwar et al., 2023). Molecular docking studies provide
insight into the interactions between small molecules and their
target receptors, enabling the identification of key binding
interactions that contribute to receptor activation or inhibition
(Mursal et al., 2024). MDS further refines these predictions by
accounting for the dynamic nature of protein-ligand interactions,
providing a more realistic assessment of a compound’s stability and
efficacy (Ogbodo et al., 2023; Brueckner et al., 2024).

Recent advancements in machine learning have led to the
development of sophisticated algorithms capable of learning
complex patterns in chemical data, enabling the prediction
of bioactive compounds from diverse chemical spaces (van
Heerden et al., 2023). In the context of TGR5 agonist
discovery, several studies have applied ML techniques to
screen compound libraries and predict potential agonists (Qin
et al., 2023). Furthermore, molecular docking has been used to
explore the binding interactions of the predicted agonists with
TGR5 (Sindhu and Srinivasan, 2015). This study aims to
contribute to the growing field of TGR5-targeted therapies by
providing a systematic and validated approach for the discovery
of potential TGR5 agonists.

2 Methods

2.1 Machine learning

The workflow pipeline used in this study is summarised
in Figure 1.

2.1.1 Data collection and preprocessing
Bioactivity data of compounds with biological activity for TGR5

(CHEMBL5409), which are expressed as EC50 values in nM
(nanomolar), was downloaded from the ChEMBL database
(https://www.ebi.ac.uk/chembl/) (Bento et al., 2014; Gaulton et al.,
2017). ChEMBL is a comprehensive, curated bioactivity database
containing information on molecule-target interactions extracted
from published literature. The data were cleaned, which involved
removing any compounds with missing EC50 values, those without
smile notation and redundant bioactivity values. For the data
preprocessing step, compounds were classified as active if their
values were less than 1,000 nM, and inactive if they were more
than 10,000 nM. Values between 1,000 and 10,000 nM were
considered intermediate. The intermediate category was removed,
leading to an exploratory data analysis that focused only on active
and inactive compounds.
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2.1.2 Exploratory data analysis
The dataset includes chemical names and corresponding

SMILES notations, which provide information about the
molecular structure used to calculate the molecular descriptors.
The drug-likeness of the compounds was assessed based on
the pharmacokinetic parameters of absorption, distribution,
metabolism, and excretion (ADME). Lipinski’s Rule of Five
(Ro5), which states that a compound should have a molecular
weight of less than 500 Da, an octanol-water partition coefficient
(LogP) of less than 5, fewer than 5 hydrogen bond donors,
and fewer than 10 hydrogen bond acceptors, was used to
compute the molecular descriptors (Lipinski et al., 2012).
Ro5 provides insight into a compound’s potential for
absorption in the body, distribution to the appropriate target
tissue or organ, metabolism, and eventual excretion from the
body. To ensure a more uniform distribution of EC50 data,
EC50 values were converted to a negative logarithmic scale
(i.e., -log10), resulting in the pEC50 metric.

2.1.3 Model building, training, and deployment
Selected molecular descriptors were used as input features to

build the model. The model was built using the Random Forest
algorithm to distinguish between agonists and nonagonists.
Fingerprint descriptors were generated using PaDEL (Yap, 2011),
and data matrices were prepared accordingly. Features with low
variance were removed from the dataset and divided in an 80:
20 ratio for training purposes. To prevent potential bias arising
from a single data split in constructing predictive models, the models
were developed using 100 independent data splits (Puzyn et al.,
2011). The optimised ML model was deployed in the form of an
offline application using Streamlit to screen the COCONUT
(COlleCtion of Open Natural prodUcTs) database (https://
coconut.naturalproducts.net), predicting potential TGR5 agonists
based on their molecular features (Sorokina et al., 2021). More than
four hundred thousand natural compounds that have been sourced
from open and free sources are stored in the COCONUT database
(Capecchi and Reymond, 2021).

FIGURE 1
The workflow pipeline used in this study. It is divided into three parts: Machine learning, molecular docking, and molecular dynamics simulation.
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2.2 Molecular docking

2.2.1 Ligand and receptor preparation
2.2.1.1 Ligand Preparation

The SMILES of these compounds were obtained and converted
to the 2D format using Datawarrior and prepared using the LigPrep
module in Schrödinger. This tool was employed to generate the most
probable protonation states at physiological pH (7.0 ± 2.0), ensure
the correct stereochemistry, and minimise the energy of the ligand
structures using the OPLS4 force field.

2.2.1.2 Protein preparation
The crystal structure of the TGR5 receptor (PDBID:7CFN)

(Yang et al., 2020) was downloaded from the Protein Data
Bank (PDB) and imported into Maestro (Schrodinger, 2021).
The Protein Preparation Wizard was used to prepare the
downloaded protein, which involved removing water molecules
beyond 5 Å from the binding site, adding missing hydrogen atoms,
assigning proper bond orders, adjusting protonation states of

ionisable residues, and minimising the receptor using the
OPLS4 force field to relieve steric clashes and optimise
geometry. A grid box was generated around the active site
where the ligands were docked.

2.2.2 Molecular docking
The prepared ligands were docked into the active site of

TGR5 using the Glide tool in Schrödinger (Schrodinger, 2021).
SP (standard precision) and XP (extra-precision) protocols were
applied. The results were analysed by examining their binding
energies to TGR5. 295 compounds had lower binding energies
compared to the co-crystallised ligand. The top 4 ligands with
the lowest docking scores were selected for succeeding molecular
dynamics simulations.

2.2.3 Validation of docking protocol
The docking protocol was validated by re-docking the co-

crystallised ligand into the active site of the TGR5 protein and
calculating the RMSD of the two poses (Shivanika et al., 2020).

FIGURE 2
(A) Frequency plot of the two bioactivity classes (B) scatter plot of MW versus LogP and (C) box plot showing the distribution of pEC50 values of the
two bioactivity classes.
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2.3 Molecular dynamics simulation

2.3.1 System setup
The simulation system was prepared using the Desmond System

Setup tool. The TGR5-ligand complexes obtained from docking
studies were embedded in a POPC (300k) membrane bilayer.

Appropriate ions were added to neutralise the system. Energy
minimisation was performed to remove any steric clashes,
followed by equilibration to stabilise the temperature and
pressure of the system.

The protein-ligand complex was solvated in an orthorhombic
simulation box filled with explicit TIP3P water molecules. The buffer

FIGURE 3
Box plots of TGR5 agonists using Lipinski’s descriptors: LogP, molecular weight (MW), number of hydrogen acceptors (NumHAcceptors), and
number of hydrogen donors (NumHDonors).

TABLE 1 Statistical analysis | Mann-Whitney U test.

Descriptor Statistics P value Alpha Interpretation

1 pEC50 100,170.0 7.281833e-93 0.05 Different distribution (reject H0)

2 Molecular weight 44,041.0 0.013695 0.05 Different distribution (reject H0)

3 LogP 40,977.0 0.000203 0.05 Different distribution (reject H0)

4 NumHDonors 40,126.5 0.000017 0.05 Different distribution (reject H0)

5 NumHAcceptors 56,090.5 0.012607 0.05 Different distribution (reject H0)
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distance between the complex and edge of the simulation box was set
to 10 Å to avoid boundary effects, and 0.15 M NaCl was added to
neutralise the system and mimic physiological conditions. The

OPLS4 force field was applied to describe the interactions
between atoms in the system, including the protein, ligand, and
solvent molecules. Before carrying out MD simulation, energy
minimisation was performed to remove any steric clashes or bad
contacts introduced during the system setup.

2.3.2 Simulation run
The simulations were conducted under a constant number of

particles, pressure (1 atm), and temperature (300 K) using the
Desmond module of the Schrodinger software. The model system
was relaxed before simulation and equilibrated, after which a 100 ns
production run was carried out, with coordinates recorded every
100 ps for subsequent analysis. The simulation trajectory was

FIGURE 4
Scatter plots of (A) regression model using random forest algorithm (B): experimental vs. predicted pEC50 for training data.

FIGURE 5
Comparison of the performance of machine learning algorithms against R-squared (A), RMSE (B), and time taken (C), respectively.

TABLE 2 Predicted EC50 values of the four top-scoring compounds from the
screening of the COCONUT database.

COCONUT ID Predicted pEC50

CNP0209363 4.99

CNP0424850 4.97

CNP0417335 4.91

CNP0224616 4.90
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monitored to ensure system stability throughout the run. MDS was
carried out on a GPU-enabled Linux operating system.

2.3.3 Post-simulation trajectory analysis
The trajectory was analysed to assess the binding stability,

interaction energy, and conformational dynamics of the TGR5-
ligand complexes. This analysis helps to identify the most promising
TGR5 agonist for further experimental validation. The simulation
trajectories were analysed using the simulation interaction diagram
tool in Schrödinger. Key metrics included:

- RootMean Square Deviation (RMSD): To evaluate the stability
of the protein-ligand complex.

- Root Mean Square Fluctuation (RMSF): To analyse the
flexibility of individual residues in the receptor.

- Radius of gyration (RoG): To measure the extendedness of a
ligand, it is equivalent to its principal moment of inertia.

- Intramolecular hydrogen bonds (intraHB): the number of
internal hydrogen bonds within a ligand molecule.

- Ligand-Protein interactions: To monitor the types of
interactions (e.g., hydrogen bonds, hydrophobic contacts)
between the ligand and receptor throughout the simulation.

3 Results

3.1 Chemical space analysis of
TGR5 activators

A total of 518 active, 187 inactive, and 190 intermediate
compounds were identified after the data preparation step
(Figure 2A). The two bioactivity classes span similar chemical
spaces, as shown by the scatter plot of MW vs. LogP (Figure 2B).
Considering the pEC50 values (Figure 2C), the actives and inactives
displayed statistically significant differences, which was to be
expected since threshold values (EC50 < 1000 nM = Actives and
EC50 > 10,000 nM = Inactives, corresponding to pEC50 > 6 = Actives
and pEC50 < 5 = Inactives) were used to define actives and inactives.

3.2 Lipinski’s descriptors

Figure 3 displays the box plots of Lipinski’s descriptors. Of the
four Lipinski descriptors (MW, LogP, NumHDonors, and
NumHAcceptors), only LogP exhibited no difference between the
actives and inactives, while the other three descriptors (MW,
NumHDonors, and NumHAcceptors) showed statistically
significant differences between the active and inactive
groups (Table 1).

3.3 Machine learning model to predict
TGR5 agonists

Figure 4A shows the resulting scatterplot of the regressionmodel
built using the random forest algorithm. The regression model score

FIGURE 6
3D structure of TGR5 protein (7CFN) in complex with its co-
crystallized ligand (INT-777).

FIGURE 7
(A) Validation of docking protocol. The co-crystalized ligand (in grey) was redocked (in orange) into the active site of the TGR5 protein and
superimposed. The calculated RMSD value between the native and re-docked pose was calulated as 1.42 Å. (B) Bar chart showing the docked scores of
the lead compounds and the co-crystallized ligand.
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(r2) is given as 0.40. Figure 4B shows the predicted pEC50 values of
the training data. The mean squared error (MSE) and coefficient of
determination (R2) for model performance are 0.34 and 0.80,
respectively. Figure 5 shows a visual representation of the model
performance. This shows that the model had a high r2 and low root-
mean-square error value.

ML-based prediction identified 340,364 compounds with
potential activity towards TGR5 having EC50 values ranging from
4.0–6.9. Only compounds with EC50 values between 4.0 and 4.9 were
selected for docking, yielding 6,656 compounds in total. The
bioactivity predictions of just the four top-scoring compounds
selected in this study are displayed in Table 2.

3.4 Molecular docking reveals the binding
energy of lead compounds

Figure 6 shows the 3D structure of TGR5 protein downloaded from
the protein data bank (PDBID: 7CFN) in complex with its co-
crystallized ligand. After re-docking the co-crystalized ligand into the
TGR5 active site, the calculated RMSD value between the docked and
re-docked pose was given as 1.42 Å (Figure 7A). Figure 7B shows the
docked scores of the top four-scoring compounds (also referred to as
lead compounds), represented by their COCONUT IDs, CNP0209363,
CNP0424850, CNP0417335, CNP0224616, and co-crystalized ligand,

given as −15.39, −14.87, −14.17, −14.01, and −9.01 kcal/mol,
respectively. Figure 8 shows the 2D structure of the lead
compounds. All the lead compounds contain an acetal/aminal-like
group (X-CH(R)-Y, where X, Y are N, S, or O) that may be acid/base
labile, releasing an aldehyde. CNP0417335 and CNP0224616 have an
ester group and may undergo hydrolysis at high or low pH.

Figure 9 shows the molecular interactions of the compounds
with the amino acid residues found within the TGR5 binding pocket.
An overview of the interactions is provided in Table 3. We observed
that all the lead compounds formed hydrogen bonding with residue
Asn93 during molecular docking.

3.5 Molecular dynamics simulation

The kinetics of the TGR5-compound complex was investigated
using molecular dynamics simulations to assess the bond
configuration stability after the binding of lead compounds
within the protein cavity. Simulations were conducted over a
100 ns period for the co-ligand (INT-777) and the four lead
compounds. The thermodynamic stability of these complex
systems was analysed using three key parameters: root mean
square deviation (RMSD), root mean square fluctuation (RMSF),
and radius of gyration (RoG), all of which were monitored
throughout the molecular dynamics simulation.

FIGURE 8
2D structures of the lead compounds from the COCONUT database (A) CNP0209363, (B) CNP0424850, (C) CNP0417335, (D) CNP0224616.
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As shown in Figure 10, the RMSD of the TGR5 protein in its apo
state demonstrated instability throughout the 100 ns simulation but
became more stable upon binding to the co-ligand. Moreover, when
the TGR5 protein was bound to the lead compounds, stability was
observed within the range of 1 Å to 3 Å after the 25 ns mark.

Among the lead compounds, CNP0224616 exhibited the highest
stability, with an RMSD value of approximately 0.8 Å, compared to
the co-ligand (INT-777), which showed an RMSD of 0.6 Å
CNP0209363, however, displayed lower stability, with its RMSD
fluctuating between 1 Å and 2.2 Å, throughout the 100 ns
simulation. Meanwhile, CNP0417335 and CNP0424850 stabilised
after 10 ns and 25 ns, with respective RMSD values of about 1.8 Å
and 2.7 Å (Figure 10).

RMSF values provide insight into the magnitude of fluctuations
for each residue in a protein; higher RMSF values indicate greater
flexibility, and lower values suggest rigidity. Figure 11 shows that
RMSF values between 2 Å and 5 Å were recorded during the 100 ns
simulation, and the RMSF profiles of the co-ligand (INT-777) were
comparable to those of the lead compounds.

Another parameter used to assess structural stability is the
radius of gyration (RoG). Figure 12 illustrates the stability trends
of the lead compounds and the co-ligand. CNP0417335 and
CNP0224616 initially displayed slight fluctuations during the first
10 ns but stabilised for the remainder of the simulation, similar to
the co-ligand, which remained stable around 4.6 Å.
CNP0417335 and CNP0224616 stabilised at 4.7 Å and 4.6 Å,
respectively. In contrast, CNP0424850 reached stability only after
50 ns, with a value close to 5 Å, while CNP0209363 showed little to
no stability throughout the simulation.

Figure 13 shows the intramolecular hydrogen bonds within the
compounds. Only the lead compounds showed intramolecular
hydrogen bonding up to a magnitude of 4. INT-777 showed no
intramolecular hydrogen bonding during the simulation run.

Figure 14 shows the distribution of hydrogen bonds,
hydrophobic bonds, ionic bonds and water bridges formed
between the compounds and TGR5 during MDS. All the
compounds showed binding to TGR5 via hydrogen bonds,
hydrophobic bonds, and water bridges. Only INT-777,

FIGURE 9
(A) 3D conformations of the compounds within the active site of TGR5, represented as coloured sticks: orange (INT-777), purple (CNP0209363), red
(CNP0424850), green (CNP0417335) and blue (CNP0224616). (B) 2Dmolecular interaction diagrams of INT-777 (a), lead compounds (b. CNP0209363, c.
CNP0424850, d. CNP0417335, e. CNP0224616) and TGR5. Hydrogen and hydrophobic bonds are shown. All the lead compounds show binding to
residue Asn93.
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TABLE 3 Overview of interacting amino acid residues and bond types of the compounds and TGR5 from molecular docking studies.

Compound name Docking scores (kcal/mol) Interacting amino acid residue Bond type

INT-777 −9.01 Tyr 89
Tyr 240
Ser 247
Leu 71
Tyr 89
Pro 92
Phe 96
Leu 97
Tyr 240

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond

CNP0209363 −15.39 Ser 157
Ser 247
Asn 93
Leu 74
Tyr 89
Leu 71
Pro 92
Phe 96
Leu 97
Leu 166
Val 170
Tyr 240
Leu 244
Tyr 251

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond

CNP0424850 −14.87 Ala 250
Ser 247
Asn 93
Pro 259
Pro 255
Val 248
Leu 244
Tyr 240
Leu 266
Leu 262
Leu 263
Leu 71
Leu 74

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond

CNP0417335 −14.14 Asn 93
Thr 243
Pro 259
Val 248
Ala 250
Tyr 251
Tyr 89
Pro 92
Phe 96
Leu 97
Leu 166
Tyr 240
Leu 262
Leu 71
Leu 74
Leu 266

Hydrogen bond
Hydrogen bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond

CNP0224616 −14.01 Ser 247
Leu 74
Asn 93
Tyr 240
Ser 157
Leu 71
Leu 262
Leu 263
Leu 266
Ala 250
Leu 244
Leu 97
Phe 96
Val 170
Tyr 89

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
Hydrophobic bond
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CNP0424850 and CNP0224616 showed ionic bonding via
Gln253 residue.

Figure 15 shows the ligand-protein contacts made during
simulation. An overview of the interactions is provided in
Table 4. All the compounds showed binding with the
Ser247 residue; this interaction was also observed from molecular
docking studies. Only CNP0424850 and CNP0417335 showed pi-
pi stacking.

4 Discussion

Type 2 diabetes is a leading cause of mortality (Abdul Basith
Khan et al., 2020). Despite the therapeutic advancement in this
disease management, imbalance in glucose homeostasis and energy
expenditure associated with the progression of the diseases remains

TABLE 3 (Continued) Overview of interacting amino acid residues and bond types of the compounds and TGR5 from molecular docking studies.

Compound name Docking scores (kcal/mol) Interacting amino acid residue Bond type

Tyr 240
Pro 92
Leu 166

Hydrophobic bond
Hydrophobic bond
Hydrophobic bond

FIGURE 10
RMSD trajectories of TGR5 in the apo state and complex with
INT-777, CNP0209363, CN 0424850, CNP0417335, and
CNP0224616. Simulations were performed over a
100 ns (nanosecond) duration.

FIGURE 11
RMSF trajectories of TGR5 in the apo state and complex with INT-777, CNP0209363, CNP0424850, CNP0417335 and CNP0224616.

FIGURE 12
Radius of gyration (RoG) of the compounds in complex with TGR5.
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FIGURE 13
Only the lead compounds showed the presence of intramolecular hydrogen bonds present within the compounds. Only the lead compounds
showed the presence of hydrogen bonds.

FIGURE 14
Protein-ligand contacts between TGR5 and the compounds during simulation run. The figure shows protein interactions with the ligand. The
interactions are categorized into hydrogen bonds, hydrophobic bond, ionic bonds and water bridges. The bar charts show the amount of time a specific
interaction is sustained.
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a challenge (Mirzadeh et al., 2022; Reed et al., 2021; Büsing et al.,
2019; Stein et al., 2013). In this study, predictive machine learning-
based models, molecular docking, and molecular dynamics
simulation were used in the identification of TGR5 agonists for
the management of type 2 diabetes.

Compounds with their corresponding EC50 values exhibiting
biological activity towards TGR5 were downloaded from the
ChEMBL database. Considering the biological activity of the
compounds, they were characterised as either active or
inactive. The ML evaluation of TGR5 agonists showed that the
molecular weight (MW), number of hydrogen bond donors
(nHDonors), and number of hydrogen bond acceptors
(nHAcceptors) were the significant descriptors between active
and inactive compounds (Sasaki et al., 2023). This observation
can be further compared with drug-likeness principles such
as the Lipinski’s Rule of Five, where smaller MW and ideal
hydrogen bonding are efficient for pharmacokinetics and
biopharmaceutical availability (Brueckner et al., 2024).
Nevertheless, some bioactive natural compounds have higher
molecular weight (Feher and Schmidt, 2003; Clardy and
Walsh, 2004). Besides meeting the Ro5 criteria, natural

products with high molecular masses have penetrated the
pharmaceutical markets as approved oral drugs (Shultz, 2018;
Price et al., 2024).

Active site residues of the crystal structure of TGR5 in complex
with its co-crystallised ligand, INT-777, are Leu74, Tyr89, Phe161,
Leu166, Tyr240, Thr 243, Leu244, Ser247, Tyr251, Leu262, Leu263,
Leu266, and Ser270 as reported by Yang et al. (2020). The docking
results show that all the compounds were positioned within the
active site of TGR5. It also showed that hydrogen bonding and
hydrophobic interactions are important in TGR5 receptor and
agonist binding. Particularly, residues such as Tyr240 and
Asp348 were predicted to be critical in stabilising the ligand-
receptor complex, supporting previous findings on
TGR5 activation (Guo et al., 2016). Nevertheless, the flexibility of
that binding site remains a major problem for predicting the binding
affinities, and to overcome that problem, dynamic studies are
required in order to capture the conformational changes of the
receptor upon the ligand binding (Mursal et al., 2024).

Molecular dynamics simulations further validated the stability
of these interactions, showing that the identified lead compounds
formed stable complexes with TGR5 throughout the simulation

FIGURE 15
Ligand-protein contacts between the compounds and TGR5 during simulation run (A) INT-777; (B) CNP0209363; (C) CNP0424850; (D)
CNP0417335; (E) CNP0224616. The figure shows a schematic detail of the interactions that occur for more than 30% of the simulation time.
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period. RMSD and RMSF are critical indicators of structural stability
and flexibility for a simulation (Ahmad et al., 2020). According to
Sindhu and Srinivasan (2015), smaller RMSD values for backbone
atoms suggest that the predicted structural models closely match
experimental data, indicating higher model accuracy. In contrast,
larger RMSD values point to greater deviations and reduced
accuracy. This is important in an effort to document the idea
that potential drugs do not relinquish their efficiency when
exposed to tangible physiology (Brueckner et al., 2024).
Simulation studies show compound stability within the
TGR5 binding pocket, especially for CNP0417335 and
CNP0224616; however, in vivo and/or in vitro experimental
validation is necessary to determining the pharmacokinetic and
toxicity profiles of these compounds in biological systems.
Intramolecular hydrogen bonds may have stabilised the bioactive
conformation of the ligands, which might have led to stronger
association observed between the lead compounds and TGR5.
These bonds could have acted by lowering the translational and
conformational entropy during binding (Davoren et al., 2016),
resulting in lower binding energies. Water bridges are also an
excellent way to manage protein-ligand complexes; these bridges
exist where one or more water molecules are present between the
protein and the ligand. Water bridges could have facilitated the
formation of a water tunnel in TGR5 during the simulation, as
mentioned by Olaposi et al. (2019), leading to the stability of
the complexes.

The development of effective TGR5 agonists has been hampered
due to gastrointestinal side effects (Zhuo et al., 2024). For instance,

INT-777 was found to activate TGR5; however, when tested in the
first phases, it was discovered that it poses negative effects on the
gastrointestinal tract (Guo et al., 2016). For this reason, there is a
need to find selective agonists that do not possess such
undesired activity.

Machine learning has enhanced drug discovery and
development by increasing efficiency and prediction accuracy.
Incorporating big chemical data together with artificial neural
network algorithms has enhanced the speed and accuracy of the
predictions compared to conventional methods (van Heerden et al.,
2023). However, as pointed out in this analysis, existing ML models
are vastly dependent on the quality and size of data used in their
development, and this has reduced the generality of models in
practice. Molecular docking using TGR5 as a subject can also be
enhanced by the help of special structural techniques such as cryo-
electron microscopy or X-ray crystallography to gain more
information regarding the active conformation of the receptor.
The integration of these experimental methodologies with MD
simulations may improve the reliability of the binding energy
predictions and would be beneficial for the design of more
selective TGR5 agonists (Brueckner et al., 2024).

5 Conclusion

According to this study, new TGR5 agonists for T2D could be
developed via ML, MD and MDS techniques. Interestingly, the
computational methods studied here illuminate new directions in

TABLE 4 Overview of the interacting amino acid residues and bond types of the compounds and TGR5 during MDS.

Compound name Interacting amino acid residue Bond type

INT-777 Trp 75
Gln 253
Leu 74
Cys 155
Tyr 89
Ser 157
Ser 247
Tyr 240

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond

CNP0209363 Ser 157
Ser 247
Pro 259

Hydrogen bond
Hydrogen bond
Hydrogen bond

CNP0424850 Glu 169
Ser 247
Asn 93
Ser 270
Leu 266
Phe 96

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
π-π stacking

CNP0417335 Ser 270
Thr 243
Asn 93
Pro 259
Ser 247
Leu 71
Ala 67
Phe 96

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
π-π stacking

CNP0224616 Ser 247
Leu 71
Ser 157
Tyr 89

Hydrogen bond
Hydrogen bond
Hydrogen bond
Hydrogen bond
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the search for TGR5 agonists; the actual effectiveness of these
approaches remains contingent on the experimental testing of
predicted compounds. The integration of these techniques will
provide a framework for designing novel TGR5 agonists, and
improve the accuracy of identification of lead compounds for
T2D treatment.
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