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Background: Breast cancer (BC) remains a leading cause of cancer-related
mortality in women. The oncoprotein MDM2 negatively regulates the tumor
suppressor p53, and its overexpression in BC promotes tumor progression and
resistance to therapy. Targeting the MDM2-p53 interaction represents a
promising therapeutic approach. However, many existing MDM2 inhibitors
suffer from poor pharmacokinetics and off-target toxicity, necessitating the
discovery of novel, more selective alternatives. This study aims to identify
natural terpenoid compounds with potent MDM2 inhibitory potential through
computational approaches.

Methods: A library of 398 natural terpenoids was sourced from the NPACT
database and filtered based on Lipinski’s Rule of Five. A two-stage docking
strategy was applied: 1) rigid protein-flexible ligand docking to screen for
high-affinity binders, followed by 2) ensemble docking using multiple
MDM2 conformations derived from molecular dynamics (MD) simulations. The
top candidates were further evaluated for their pharmacokinetic and toxicity
profiles using ADMET analysis. Finally, 150 ns MD simulations and binding free
energy (MM-PBSA) calculations were performed to assess the stability and
strength of protein-ligand interactions.

Results: Three terpenoid compounds, olean-12-en-3-beta-ol, cabralealactone,
and 27-deoxyactein demonstrated strong binding affinities toward MDM2 in
ensemble docking studies. ADMET analysis confirmed their favorable
pharmacokinetic properties. Further MD simulations indicated that these
compounds formed highly stable complexes with MDM2. Notably, 27-
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deoxyactein exhibited the lowest binding free energy (−154.514 kJ/mol),
outperforming the reference inhibitor Nutlin-3a (−133.531 kJ/mol), suggesting
superior binding stability and interaction strength.

Conclusion: Our findings highlight 27-deoxyactein as a promising MDM2 inhibitor
with strong binding affinity, stability, and a favorable pharmacokinetic profile. This
study provides a computational foundation for further experimental validation,
supporting the potential of terpenoid-based MDM2 inhibitors in BC therapy.
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GRAPHICAL ABSTRACT

1 Introduction

Breast cancer (BC), being the most frequently occurring
malignant cancer, is the foremost contributor to cancer-related
deaths in women across the world. The incidence of female BC
has surpassed that of lung cancer, with around 2.3 million newly
reported cases reported worldwide (Sung et al., 2021; Ali et al.,
2024c). BC, a diverse set of diseases originating in breast tissue,
usually appears as a lump or mass. Primarily, BC develops from the
epithelial cells that line the milk duct (Lai and Roy, 2004; Polyak,
2011). Surgery is the main approach for treating BC, with additional
options such as chemotherapy, radiation, hormone therapy, targeted
therapy, and immunotherapy available. Nonetheless, these
treatments may not fully tackle the disease due to negative side
effects, the toxicity of chemotherapeutic drugs, resistance or
tolerance to therapy, and the progression of BC to metastatic
stages (Abdulameed et al., 2023; Shekar et al., 2024). Hence, it is
essential to find cost-effective therapeutic methods with minimal
adverse effects to enhance the existing treatment options for BC

patients. There has been a significant move away from synthetic
pharmaceuticals towards natural product-based remedies, and
numerous studies have started exploring the anticancer properties
of phytochemicals (Ali L. et al., 2024; 2024b). These compounds
have demonstrated safety, efficacy, and non-toxicity, making them
promising candidates for BC treatment (Svolacchia et al., 2023).
Terpenoids, the largest class of natural products, consist of over forty
thousand diversified structures mostly derived from plants
(Gershenzon and Dudareva, 2007; Rabi and Bishayee, 2009).
Comprising five carbon isoprene units, they are further
categorized as hemiterpenoids, monoterpenoids, sesquiterpenoids,
sesterterpenoids, diterpenoids, triterpenoids as well as
polyterpenoids (Huang et al., 2019). Along with, their abundant
biological properties, their anti-proliferative, apoptotic, anti-
angiogenic, and anti-metastatic properties are well pronounced.
The balance of activating and inhibiting certain proteins
responsible for cancer initiation and propagation can be
modulated by terpenoids (Ghantous et al., 2010; Luo et al., 2019;
Ashrafizadeh et al., 2020). Paclitaxel, a terpene-based anticancer
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drug, is well-known among other terpene-based therapeutics
(Howat et al., 2014). Recent findings have shown that terpenoids
exhibit dual roles as both chemopreventive and chemotherapeutic
agents against BC, displaying multifaceted anticancer properties
supported by encouraging outcomes in preclinical research
(Bishayee et al., 2011). Several anti-breast cancer agents obtained
from terpenoids are japonicone A, inulanolide A, lineariifolianoid A,
and hispolon (Qin et al., 2018). However, additional investigations
are needed to fully utilize the vast array of compounds with diverse
structures to meet the unmet requirements for BC therapy, ensuring
both safety and efficacy are sufficiently addressed.

Murine double minute 2 (MDM2), an oncoprotein, was
discovered by its increased expression in a spontaneously
transformed mouse cancer cell line (Kussie et al., 1996; Wade
et al., 2010; Popowicz et al., 2011; Wang et al., 2012).
MDM2 serves as the primary suppressor of the tumor suppressor
p53. In normal cells, p53 restricts MDM2 by attaching to its
N-terminal activation domain, and conversely, MDM2 controls
p53 by facilitating its degradation via ubiquitin-mediated protein
degradation (Fan et al., 2019). This finely tuned auto-regulatory loop
regulates low cellular levels of p53 in normal conditions, important
for preserving normal cell division and development, thereby
emphasizing the intricate interplay between MDM2 and p53 in
cellular homeostasis (Wu et al., 2006). However, studies on human
cancers have demonstrated that MDM2 is frequently modified and
upregulated particularly in BC (Karni-Schmidt et al., 2016). Elevated
levels of MDM2 protein have been detected in at least one-third
(38%) of cases of human BC. However, the overexpression of
MDM2 is particularly prominent in estrogen receptor-positive
(ER+) and progesterone receptor-positive (PR+) luminal BC,
often occurring alongside wild-type p53 (Yu et al., 2014).
MDM2 exerts its tumor-promoting effects in BC through
pathways that involve both p53-dependent and p53-independent
mechanisms (Haupt et al., 2017). In a p53-dependent manner,
MDM2 inhibits the transcriptional activity of p53 by binding to
it, thereby preventing its capacity to trigger cell cycle arrest as well as
apoptosis (Figure 1). This fosters unregulated cell proliferation
characteristic of BC in early tumorigenesis (Nag et al., 2013).
Furthermore, MDM2 helps the ubiquitination and subsequent
breakdown of p53, further attenuating its tumor-suppressive
activities. MDM2 overexpression upsets the delicate balance
between MDM2 and p53, promoting oncogenic signaling
cascades and bolstering tumor growth (Brooks and Gu, 2006).
p53-independent pro-tumor effects of MDM2 in BC encompasses
several mechanisms. MDM2 increases the tumor-promoting ERα
levels while decreasing those of ERβ, a recently identified tumor
suppressor that can decrease BC cell migration potential by
upregulating adhesion protein expression (Haupt et al., 2017).
MDM2 ubiquitinates and encourages the breakdown of this
hormone receptor by forming a complex with ERβ and the
coactivator CBP in response to AKT signaling (Sanchez et al.,
2013). Furthermore, it was shown that increased MDM2 levels
encouraged the ubiquitination and degradation of E-Cadherin,
consequently, hastening the aggressiveness of cancer cells (Yang
et al., 2006). Moreover, MDM2 overexpression in BC cells was
associated with higher expression of matrix metalloprotease 9, a
known promoter of invasion and metastasis (Chen et al., 2013).
Furthermore, increased MDM2 E3 ligase function can promote

therapy resistance via a variety of mechanisms. There is evidence
that MDM2 ubiquitinates and degrades SIRT6, a significant tumor
suppressor. In human epidermal growth factor receptor 2 positive
(HER2+) BC, it was discovered that this contributed to trastuzumab
resistance (Thirumurthi et al., 2014). MDM2 overexpression in
combination with MDM4 impacted the transcriptional activity of
the SMAD family of proteins, preventing TGF-β mediated growth
arrest in several BCs that were not responsive to TGF-β. It was a
factor in TGF-β resistance (Haupt et al., 2017). These studies
highlight the crucial involvement of MDM2 in the development,
progression, invasiveness, and resistance to therapy of BC, through
both p53-dependent and p53-independent mechanisms, outlining
potential therapeutic opportunities for intervention. Several
MDM2 inhibitors have been already designed of identified, with
themost notable ones being Nutlin-3a, RG7112, MI-63, MI-219, and
AMG-232. Despite demonstrating certain levels of effectiveness
against the MDM2 protein, none of these inhibitors have
received clinical approval thus far due to drawbacks such as
limited potency, unfavorable physicochemical characteristics, or
inadequate pharmacokinetic properties (Vu et al., 2013; Oyedele
et al., 2023). Hence, there is still an expectation for the emergence of
more potent MDM2 inhibitors with improved pharmacokinetic
properties, holding promise as a valuable addition to the
arsenal against BC.

Computer-Aided Drug Design (CADD) employs computational
techniques to aid discovery, identification and development new
drugs. It accelerates the identification of potential drug molecules,
integrates the process, and reduces costs (Hassan Baig et al., 2016).
By giving compounds that are most worthy of experimental testing
priority, CADD accelerates the search for new drugs as well as
enhances the efficacy of drug development process (Song et al., 2009;
Huang et al., 2010). CADD study incorporates techniques like
molecular docking, ensemble docking, ADMET investigations,
and molecular dynamics (MD) simulations (Shah et al., 2024).
Molecular docking analysis identifies potential lead candidates
based on ligands’ binding scores with proteins. Ensemble
docking, a relatively newer computational drug design technique,
considers multiple receptor conformations to better capture the
structural flexibility of proteins. This method often yields superior
results in virtual screening compared to traditional rigid protein-
flexible ligand docking approaches (Mohammadi et al., 2022). Once
lead compounds are identified, they are screened for their ADMET
properties, reducing the need for extensive re-evaluation of
pharmacokinetic (PK) attributes and safety profiles such as
toxicity and carcinogenicity, thereby minimizing labor.
Additionally, MD simulations help assess the stability of protein-
ligand interactions (Islam et al., 2024).

In this computational study, a compound library containing
398 natural terpenoid compounds is utilized. Initially, these
compounds undergo the Lipinski rule of five (Ro5) filter.
Subsequently, a two-step docking process is employed. The first
step involves traditional rigid protein-flexible ligand docking,
followed by docking of ligands with an ensemble of multiple
MDM2 structures to identify potential lead compounds.
Following this, ADMET investigations and 150 ns MD
simulations are conducted to assess the PK properties as well as
safety profiles and stability of protein-ligand interactions for these
lead compounds, respectively. The goal of this study is to identify a
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novel MDM2 inhibitor from the natural terpenoid compounds to
treat BC using a comprehensive computational approach.

2 Materials and methods

2.1 Ligand preparation

A compound library of 398 natural terpenoid compounds
(Supplementary Table S1) was collected from the NPACT database
(Mangal et al., 2013), which compiles data on naturally occurring
plant-derived compounds with proven anti-cancer properties, both
in vitro and in vivo, to supplement other databases. Terpenoid
compounds stand out due to their structural diversity, favorable
bioavailability, and multimodal anticancer mechanisms, such as
apoptosis induction, autophagy modulation, and microtubule
stabilization (Kamran et al., 2022). Terpenoids possess polycyclic, rigid
frameworks that enable stronger and more stable binding to molecular
targets, promoting selective cytotoxicity and minimizing off-target effects
(Huang et al., 2012; Yang et al., 2020). Their enhanced lipophilicity
compared to alkaloids and polyphenols improves cellular permeability,
leading to better absorption, distribution, and overall therapeutic efficacy
(Chen et al., 2016). For all the aforementioned reasons, this study aimed
to explore novel terpenoid-based compounds as potential
MDM2 inhibitors, utilizing their structural advantages to develop
more effective and targeted anticancer therapies.

Selected terpenoid compounds underwent screening with the
Lipinski Ro5 filter (Lipinski, 2004) to confirm their drug-like
characteristics. The canonical SMILES notation of each compound

was utilized as input in the SwissADME server (Daina et al., 2017),
and compounds that violated no more than one rule of the Lipinski
Ro5 were considered to possess drug-like properties. Then, all
compounds were obtained from the PubChem database in 3D SDF
format. Open Babel GUI software (O’Boyle et al., 2011) was used to
convert compounds from 2D SDF format to 3D SDF format whose 3D
conformer was not available in the PubChem Database. The
minimization of the compounds was accomplished using the
mmff94 force field (Tosco et al., 2014). Subsequently, all the
compounds were converted into PDBQT format and denoted as ligands.

2.2 Protein preparation

The three-dimensional crystal structure of MDM2 was obtained
from the RCSB Protein Data Bank (https://www.rcsb.org/), and its PDB
ID is 4HG7 (Resolution: 1.60 Å). Using Biovia Discovery Studio
(Studio, 2008), undesirable atoms, and water molecules were cleaned
up. After that, a universal forcefield GROMOS96 (Lemkul et al., 2010)
was applied to minimize the protein in the SPDB viewer (Guex and
Peitsch, 1997) to evaluate the protein’s missing h-bond, side-chain
abnormalities, and incorrect bonds. Finally, the protein was ready for
additional computational procedures such as molecular docking.

2.3 Molecular docking

Molecular docking is an essential technique in CADD and
structural molecular biology (Sany et al., 2025). The purpose of

FIGURE 1
Role of MDM2 in breast cancer. Activation of the p53 protein triggers cell cycle arrest, DNA repair, and apoptosis. However, in breast cancer,
heightened levels of MDM2 lead to the ubiquitination of p53, prompting its degradation through proteasomes. To counter this, MDM2 inhibitors can be
utilized to impede their interaction with p53, thereby averting its degradation.
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ligand-protein docking is to apprehend the predominant binding
modes between a ligand and a drug-target protein (Morris and Lim-
Wilby, 2008; Ali Md. L. et al., 2024). The compounds varied in their
interactions and binding affinities with the target protein. Using the
Broyden–Fletcher–Goldfarb–Shanno algorithm, Autodock Vina
(Eberhardt et al., 2021), a built-in docking tool in PyRx software
(Dallakyan and Olson, 2015), was used for molecular docking. All of
the ligands and the protein’s 3D structure were imported into PyRx
software and changed to PDBQT format. As a reference molecule,
the co-crystallized ligand Nutlin-3a (a recognized inhibitor of
MDM2) was also included in the compound library. Nutlin-3a,
being a standard inhibitor of MDM2, binds with crucial residues
within the MDM2 protein referred to as the active site. A grid box
was positioned to cover the complete extent of this active site. Before
docking ligands into the active site of the protein, the docking
procedure is validated by redocking the co-crystallized ligand,
Nutlin-3a into the MDM2 protein’s binding pocket. Then, the
co-crystallized ligand’s lowest energy pose, produced by
Autodock Vina, was superimposed over the experimental binding
pose identified by X-ray crystallography. Subsequently, the root
mean square deviation was calculated and the RMSD value had to be
less than 2 �A (Acharya et al., 2019). After the docking validation
procedure, the grid box of dimensions (25 × 25 × 25) Å, including
the grid box center, was set to “X = − 23.273” “Y = − 8.1073”, and
“Z = − 13.6129” for the MDM2 protein. Based on their highest
negative scores, which indicated the highest binding affinities, the
compound’s docking results were computed and ranked (Hossain
et al., 2023). A collection of nine unique bound conformations,
ascertained by the binding affinity of each ligand. For more inquiry,
only the conformational states exhibiting the lowest binding energy
for the ligand molecules were chosen. From the docking procedures
involving the crystal structure of MDM2 protein, compounds were
identified with binding energies lower than that of the standard
inhibitor, Nutlin-3a. Subsequently, the best receptor-ligand
interactions were visualized and characterized using
Discovery Studio.

2.4 Ensemble docking

When employing MD simulation to generate an “ensemble” of
drug target conformations for docking candidate ligands in
computational structure-based drug discovery, this process is
known as ensemble docking (Amaro et al., 2018). Using an
ensemble of different protein structures is one way to include
protein flexibility in molecular docking. It is computationally
impractical to sequentially dock each ligand into a large number
of protein structures, which hampers large-scale database screening
(Huang and Zou, 2007). That’s why the term ’ensemble docking’was
introduced into our work procedure.

After the bound ligand was eliminated from the structure of the
crystallographic protein, the protein with a well-equilibrated and
solvated system underwent a 250 ns MD simulation. All parameters
were the same as “Molecular dynamics simulations” section.
Approximately 25,001 post-MD study trajectories were grouped
into 15 conformations using a 1.25 Å root mean square deviation
cutoff using the gmx clustermodule (Supplementary Table S3). Top
three conformations were taken for ensemble docking as these three

conformers represent 99% of the total structure population. The
ensemble docking was carried out using the Autodock Vina program
(Trott and Olson, 2010) which included multiple protein
conformations and multiple ligands. The 3 conformers, obtained
by clustering MD simulation trajectory data, were docked with the
top compounds obtained from the previous rigid protein-flexible
ligand docking procedure. In this case, active site-specific docking
procedures were utilized and a grid box with a dimension of (25 ×
25 × 25) Å was placed in a way that it covered critical active site
residues of this MDM2 protein such as Leu-54, Leu-57, Gly-58, Ile-
61, Met-62, Val-93, His-96, and Ile-99 (Chukwuemeka et al., 2022;
Oyedele et al., 2023). Following that, the top three compounds were
identified by considering their lowest average binding energies
across all three protein conformers.

2.5 In-silico ADMET investigations

The efficacy and safety of a drug candidate are largely dependent
on the absorption, distribution, metabolism, and excretion (ADME)
parameters and several toxicities (T). Hence the evaluation of
ADMET properties is crucial to minimize the failures in drug
discovery at the R&D phase (Dong et al., 2018). It’s been noted
that ligands demonstrating antagonistic reactions to target proteins
may not necessarily be as effective as drugs. Therefore, in CADD, the
assessment of PK properties plays a vital role in determining the
applicability of drug candidates in biological systems. Furthermore,
PK properties help evaluate the efficacy and integrity of compounds
during the initial phases of CADD. The analysis of PK properties for
our chosen compounds was conducted using the SwissADME server
(Daina et al., 2017) and admetSAR 1.0 server (Cheng et al., 2012).
Furthermore, evaluating the potential adverse effects of chemical
compounds is a critical aspect of drug development prior to clinical
trials. Therefore, toxicity assessment is an indispensable component
of the drug design process. In this study, the SMILES notation of the
compounds was inputted into the ProTox-II web server (Banerjee
et al., 2018) to predict the in silico toxicity properties of the
selected compounds.

2.6 Molecular dynamics simulations

MD simulation is the simulation of moving system particles
inserted into macromolecules to determine variations from the
relative positions of atoms in proteins over time (Karplus and
Petsko, 1990). The highly reliable method of MD simulation is
utilized to visualize and assess the stability of macromolecules such
as proteins and nucleic acids within the constantly moving human
body (Hospital et al., 2015). Apo protein, protein-ligand complexes
of selected top three compounds, and reference molecule, Nutlin-3a
were subjected to MD simulation utilizing Gromacs 2023.3 software
(Abraham et al., 2015) to determine their stability. The topology for
proteins was generated using the CHARMM27 all-atom force field
(Bjelkmar et al., 2010), while the SwissParam server (Bugnon et al.,
2023) was employed to generate the topology for ligands. Following
topology generation for both ligands and proteins, the complex was
solvated using the TIP3P water model and neutralized by adding
four Cl−ions. Subsequently, equilibration was performed using both
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canonical NVT and isobaric-isothermal NPT ensembles. The final
MD simulation run for the protein-ligand complexes lasted 150 ns
under the NPT ensemble, with a temperature of 300 K and a
pressure of 1 bar, as previously described (Vegad et al., 2023).
The “trjconv” module was used to centralize and compact the
protein in the resultant MD run trajectory files. Root mean
square deviation (RMSD), root mean square fluctuation (RMSF),
solvent accessible surface area (SASA), and radius of gyration (RG)
of protein as well number of hydrogen bonds (H-bond) were formed
between each ligand and proteins, were calculated and plotted to
comprehend the molecular-level dynamics alterations of the
protein-ligand complexes. Subsequently, principal component
analysis (PCA) is performed with the help of gmx covar and gmx
anaeig tools. Using the gmx covar tool, the covariance matrix for the
apo protein and each complex was created, yielding diagonal
eigenvectors that show associated motions within the protein.
The value of each eigenvector is represented by the
corresponding eigenvalues, which provide information about the
atomic contributions to the motion of the protein-ligand complex
system. Using the gmx anaeig tool, 2D projections of the trajectory
were created for visualization by superimposing the first two
principal components (Kar et al., 2023). The gmx sham package
was implemented to calculate the two-dimensional illustrations of
the free energy landscapes (FEL) (Altis et al., 2008).

2.7 MM-PBSA binding free energy
calculation

An open-source program called g_mmpbsa can read the
trajectories produced by GROMACS and use the MM-PBSA
method to estimate the binding free energy of the protein-ligand
complex (Kumari et al., 2014). The binding free energy of the
protein-ligand complex can be calculated using Equation 1, as
described below:

ΔGbind � ΔEMM + ΔΔGsol –TΔS (1)
Where, ΔGbind is the notation for the binding free energy, ΔS
represents the change in entropy, T is the absolute temperature,
Δ ΔGsol is the distinction in solvation-free energy, and ΔEMM is the
variation in intramolecular energy in a vacuum. By using the “g_
mmpbsa” tool, the binding free energies of the protein-ligand
complexes were determined at 10 ps intervals for the last 10 ns
of MD simulations (total 1000 frames).

3 Results

3.1 Docking validation

Molecular docking procedure authentication is a critical step in
the virtual screening of drugs used to predict the validity and
precision of the docking technique (Mukherjee et al., 2010).
Hence, to verify the docking process, the reference ligand’s
lowest energy pose, which was acquired via Autodock Vina, was
compared to an empirically determined binding pose using X-ray
crystallography. The maximum dependability of the docking

technique is indicated by an RMSD of 0.243 Å between the
docked position and the experimental pose, which is within a
range of 2 Å (Acharya et al., 2019). By superimposing the two
poses, as depicted in Figure 2, the resemblance between the two
conformations can be observed.

3.2 Molecular docking

Molecular docking, a computational method utilized in
medicinal chemistry and drug discovery, predicts the
arrangement and binding strength of a small molecule (ligand)
with a target protein or biomolecule (receptor). This method plays a
pivotal role in screening large compound libraries, prioritizing
potential lead compounds, and optimizing their structures for
enhanced binding affinity which aids in the rational design of
novel therapeutic agents by providing insights into the molecular
mechanisms of ligand-protein interactions (Agarwal and
Mehrotra, 2016).

A total of 330 compounds were selected for molecular docking
after filtering by Lipinski Ro5 (Supplementary Table S1). These
compounds did not violate more than one rule of Lipinski Ro5 and
are considered to have drug-likeness attributes. These compounds
and the reference molecule, Nutlin-3a were docked into the active
site of the MDM2 protein. A total of 19 terpenoid compounds
showed more favorable binding affinity than standard inhibitor,
Nutlin-3a and were subjected to further screening process
(Supplementary Table S2). Among these compounds,
4 compounds, namely, lupeol (PubChem Id: 259846)
(Muhammad et al., 2020), alpha-amyrin (PubChem Id: 73170)
(Victory et al., 2018), celastrol (PubChem ID:122724) (Aziz et al.,
2021), balsaminoside A (PubChem ID: 44555454) (Gatti et al.,
2011), were already investigated regarding MDM2. Moreover,
seven more compounds were also found to have toxicity issues
(carcinogenic or mutagenic) during our initial toxicity
investigations. Following the exclusion of four compounds that
were previously studied and seven compounds identified as toxic,

FIGURE 2
Superimposition of co-crystallized ligand before (green) and
after (orange) docking (RMSD = 0.243 Å).
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8 compounds were chosen as potential inhibitors of MDM2 and
underwent additional evaluation. 2D structures and two-
dimensional protein-ligand interactions of these eight compounds
are depicted in Figure 3 and Figure 4, respectively. The binding
energies and analysis of protein-ligand interactions for these eight
docked compounds and the standard inhibitor, Nutlin-3a, are
presented in Table 1.

Previously, Chukwuemeka et al. identified three key sub-pockets
within the hydrophobic cleft of the MDM2 protein, crucial for its
binding with p53. The first sub-pocket is composed of amino acids
Ile-61, Met-62, and Val-93. The second region includes three amino
acid residues Leu-57, Gly-58, and Ile-99. Lastly, the third sub-pocket
comprises Leu-54 and His-96. It’s important to note that the
attachment of small molecules or ligands to any of these three
sub-pockets would hampers the dimerization process between
MDM2 and p53 (Chukwuemeka et al., 2022).

Standard inhibitor, Nutlin-3a showed a binding energy
of – 8.2 kcal/mol to the MDM2, which served as a benchmark. It
stabilized its protein-ligand complex by forming twelve hydrophobic
contacts with seven distinct amino acid residues of MDM2 protein,
including Tyr-100, His-96, Val-93, Leu-54, Leu-57, Ile-61, Ile-99. In
our investigation, the eight top-docked compounds exhibited a
binding pattern resembling that of the standard inhibitor.
Cabralealactone (– 8.6 kcal/mol) and 27-deoxyactein (– 8.6 kcal/
mol) showed the highest binding affinity toward MDM2 protein,
followed by olean-12-en-3-beta-ol (– 8.5 kcal/mol) and
cabraleahydroxylactone (– 8.4 kcal/mol).

Cabralealactone (– 8.6 kcal/mol), a natural compound found in
Cleome brachycarpa (Malik et al., 2018), exhibited five hydrophobic
interactions with theMDM2 protein, all of which were hydrophobic.
Specifically, this compound formed three alkyl interactions with
Leu-54, as well as one alkyl interaction with Lys-51 and one pi-alkyl

FIGURE 3
2D structure of selected top-docked terpenoid compounds.
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FIGURE 4
Two-dimensional representation of interactions between selected compounds with MDM2 protein. (A) Cabralealactone, (B) 27-deoxyactein, (C)
Olean-12-en-3-beta-ol, (D) Cabraleahydroxylactone, (E) Resiniferol 20-(4-hydroxy-3-methoxyphenylacetate) 9,13,14-ortho-phenylacetate, (F)
Sulphurenic acid, (G) Canophyllic acid, and (H) Isoiguesterol.
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interaction with His-96. Another top compound, 27-deoxyactein
(– 8.6 kcal/mol), a compound extracted from Cimicifuga racemose
(Suh et al., 2018), exhibited superior hydrophobic interactions with
the protein compared to the previous compound. It formed eleven
hydrophobic interactions with the protein’s active site. Specifically, it
engaged in three alkyl interactions each with Ile-61 and Val-93.
Additionally, two alkyl interactions with Val-75 and one alkyl
interaction with Met-62 were observed. Furthermore, two pi-alkyl
interactions were noted, one with Phe-91 and another with Tyr-67.
Olean-12-en-3-beta-ol (− 8.5 kcal/mol), a compound isolated from
Dianthus basuticus (Nafiu and Ashafa, 2017), established fifteen
hydrophobic interactions with the MDM2 protein, five of which
were hydrophobic (four interactions with His-96 and one with Tyr-
100). Additionally, it formed one alkyl bond each with Tyr-100 and
Ile-19. Furthermore, this compound engaged in multiple
interactions with Leu-54 (two alkyl interactions), Ile-61 (two
alkyl interactions), and Val-93 (four alkyl interactions).
Cabraleahydroxylactone (– 8.4 kcal/mol), a compound isolated
from Aglaia exima (Loong et al., 2010), established one hydrogen
bond with Gln-24 and a pi-alkyl interaction with His-96. It also
engaged in three alkyl interactions with Leu-54, as well as one
interaction each with Lys-51, Ile-61, Met-62, and Val-93. Resiniferol
20-(4-hydroxy-3-methoxyphenylacetate) 9,13,14-ortho-
phenylacetate (a derivative of resiniferatoxin), sulphurenic acid (a
triterpenoid compound from Antrodia camphorata) (Lin et al.,
2019), and canophyllic acid (a bioactive molecule from
Calophyllum inophyllum) (Prasad et al., 2012) exhibited the same
binding energy of – 8.4 kcal/mol. However, while resiniferol 20-(4-
hydroxy-3-methoxyphenylacetate) 9,13,14-ortho-phenylacetate
formed three hydrogen bonds (one each with Gln-24, Leu-54,
and Lys-51), sulphurenic acid, and canophyllic acid only formed
one hydrogen bond each. These three compounds showed several

hydrophobic interactions with active site residues, especially with
Leu-54, Ile-61, Val-93, and His-96. Finally, isoiguesterol, a
phytosterol isolated from Salacia kraussii (Figueiredo et al.,
1998), exhibited a binding energy of – 8.3 kcal/mol and engaged
in numerous interactions with the MDM2 protein. All of these
interactions were hydrophobic and involved residues such as Leu-
54, His-96, Val-93, Ile-61, Met-62, Ile-99, and Tyr-100.

Here, every selected top compound exhibited hydrophobic bond
interactions with active site residues such as Leu-54, Leu-57, Gly-58,
Ile-61, Met-62, Val-93, His-96, and Ile-99, indicating a potential
disruption of MDM2-p53 dimerization and suggesting a viable
therapeutic strategy for altering the MDM2-p53 interaction in
BC treatment.

3.3 Ensemble docking

In the realm of molecular docking, ensemble docking is a
computer-aided method that takes into account several protein
receptor conformations or structures to predict the binding
mechanism and affinity of ligands to a target protein (Amaro
et al., 2018). In contrast to conventional molecular docking,
which usually utilizes a single, static protein structure, ensemble
docking acknowledges and takes into consideration the intrinsic
flexibility and dynamic characteristics of biomolecules (Huang and
Zou, 2007). Numerous investigations have indicated that protein
structures generated from MD simulations yield superior docking
results than protein structures docked to the crystal structure
(Osguthorpe et al., 2012).

We employed 250 ns MD trajectories of the unbound
MDM2 protein to generate an ensemble of protein structures,
capturing the varied conformations of binding site residues.

TABLE 1 Molecular docking results of selected top docked terpenoid compounds and reference molecule, Nutlin-3a with MDM2 protein.

SN Compounds PubChem
ID

Binding energy
(kcal/mol)

Interacting residues

Hydrogen
bonds

Hydrophobic interactions

1 Cabralealactone 44421647 −8.6 None Leu-54, Lys-51, His-96

2 27-deoxyactein 6537501 −8.6 None Val-75, Val-93, Ile-61, Phe-91, Met-62

3 Olean-12-en-3-beta-ol 6708529 −8.5 None Val-93, Leu-54, Ile-19, Ile-61, His-96,
Tyr-100

4 Cabraleahydroxylactone 44421648 −8.4 Gln-24 Val-93, Leu-54, Ile-61, Met-62, Lys-51,
His-96

5 Resiniferol 20-(4-hydroxy-3-
methoxyphenylacetate) 9,13,14-ortho-
phenylacetate

53776296 −8.4 Gln-24, Leu-54
Lys-51

Val-93, Ile-19, Ile-99, Leu-54, Leu-57,
Ile-61, Phe-91, His-96

6 Sulphurenic acid 5321559 −8.4 Val-93 Ile-61, Val-93, Met-62, Leu-54, Val-75,
Lys-51

7 Canophyllic acid 596679 −8.4 Gln-24 Leu-54, Val-93, Ile-19, His-96, Tyr-100

8 Isoiguesterol 10477355 −8.3 None Leu-54, His-96, Val-93, Ile-61, Met-62,
Ile-99, Tyr-100

9 Nutlin-3a (Standard inhibitor) −8.2 None Tyr-100, His-96, Val-93, Leu-54, Leu-57,
Ile-61, Ile-99

*Active site residues of MDM2 protein are marked as bold.
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Employing a clustering cutoff of 1.25 Å, we identified 15 clusters
from the MDM2 protein simulation (Supplementary Table S3).
Figure 5 presents the 3D visualization of the central structures
from all these clusters. However, only the top three clusters
(Cluster-1, Cluster-2, and Cluster-3) were chosen, which
represented the majority of the simulation trajectory. Cluster-1,
comprising the highest number of confirmations, accounted for
82.81% of the total members. Moreover, Cluster-2 and Cluster-3
represented 9.34% and 7.04% of the total conformations
respectively. Together, these three clusters encompassed over 99%
of the conformations, encompassing most of the principal
conformations of the protein’s structural changes. This justified
the selection of the top three representative structures using
clustering. Further analysis focused on the middle structure from

each of these three clusters to capture the diversity in the
conformation of the binding site.

Table 2 highlights the binding energies of docked compounds
with representative conformations of all three clusters, with Nutlin-
3a serving as the standard inhibitor to provide a point of
comparison. Remarkably, as compared to Nutlin-3a, all eight
compounds exhibit greater binding affinities, except for
sulphurenic acid.

Among these compounds, olean-12-en-3-beta-ol was the
compound with the highest binding affinity in the ensemble
docking data, with an average docking score of – 8.13 kcal/mol
across all three clusters, despite not showing particularly high
binding affinities within Cluster-1. Moreover, 27-deoxyactein and
cabralealactone stood out for their considerable affinity across all
three clusters, as indicated by their optimal average binding energy
of – 7.93 kcal/mol. Strong interactions are suggested by the constant
or marginally enhanced binding energies for 27-deoxyactein, olean-
12-en-3-beta-ol, and cabralealactone across clusters. In contrast,
canophyllic acid showed a significant drop in binding energy in
Cluster-3, indicating a weaker interaction at that particular binding
site. The rest of the compounds exhibited comparatively higher
average binding energies, suggesting a lower overall binding affinity.

These results suggest that olean-12-en-3-beta-ol, 27-
deoxyactein, and cabralealactone exhibited the strongest binding
affinities towards the principal conformations of theMDM2 protein.
Therefore, they hold potential as promising candidates for further
exploration and lead optimization in drug discovery endeavors.

3.4 ADMET investigations

ADMET analysis is an essential step of drug discovery that
determines the potential path of how our body will eventually treat
the drug material and if this drug is safe to use or not. It is very
crucial to determine the pharmacokinetics as well as the drug-
likeliness profile of a chemical compound at the very early stage

FIGURE 5
3D representation of structural conformations of MDM2 protein
generated by clustering of MD simulation trajectory data. Cluster-1,
the largest, constituted 82.81% of all conformations; Cluster-2
accounted for 9.34%; and Cluster-3 comprised 7.04%. Cluster-1,
cluster-2, and cluster-3 are indicated in red, yellow, and blue colors
respectively.

TABLE 2 List of Compounds included in ensemble docking along with their binding energies.

SN
Compound name PubChem

ID

Binding energy (kcal/mol) Average binding energy
(kcal/mol)

Cluster-
1

Cluster-
2

Cluster-
3

1 Olean-12-en-3-beta-ol 6708529 −7.9 −8.2 −8.3 −8.13

2 27-deoxyactein 6537501 −8.3 −7.9 −7.6 −7.93

3 Cabralealactone 44421647 −8.5 −7.8 −7.5 −7.93

4 Canophyllic acid 596679 −8.7 −8 −6.6 −7.77

5 Resiniferol 20-(4-hydroxy-3-methoxyphenylacetate)
9,13,14-ortho-phenylacetate

53776296 −8.3 −7.6 −7.2 −7.70

6 Cabraleahydroxylactone 44421648 −8 −7.5 −7.1 −7.60

7 Isoiguesterol 10477355 −7.6 −7.5 −6.8 −7.30

8 Nutlin-3a (Standard inhibitor) 11433190 −7.3 −6.8 −6.1 −6.73

9 Sulphurenic acid 5321559 −6.8 −6.3 −5.9 −6.33
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of drug discovery because it has been one of the leading causes of
failure in clinical trials (Dong et al., 2018). Moreover, toxicological
features of selected compounds including, hepatotoxicity, AEMS
mutagenicity, carcinogenicity, and cytotoxicity were analyzed via
Protox II webserver. Table 3 shows all the parameters related to PK
characteristics as well as the toxicity profiles of our selected
compounds and standard inhibitor, nutlin-3a.

Analyzing the drug-likeness profile of a chemical compound is
equally indispensable because it estimates whether the compound
holds suitable properties for being employed as an orally active drug
(Lipinski et al., 1997). To stick to the drug-likeness profile, a
chemical compound must follow the Lipinski Ro5 without
violating more than one rule. This rule implies that a good drug
candidate must follow these five laws including- 1) holding
molecular mass less than 500 Da 2) Log P should not be less
than 53) Total polar surface area (TPSA) should not be greater
than 140 Å (4) Hydrogen bond doner (HBDs) should not be less
than 5 and 5) Hydrogen bond acceptors (HBAs) should not be less
than 10 (Anza et al., 2021). On the other hand, Verber’s rule is
another important parameter to determine oral absorption of a drug
molecule which states that a chemical compound should possess
10 or less than 10 rotatable bonds and should hold a surface area not
more than 140 Å to exert good oral absorption (Hou et al., 2007).
Here the number of rotatable bonds of all the compounds is less than

10 which makes them conformationally stable (Abdelrheem et al.,
2021). Based on the obtained results, selected compounds were
perfectly eligible to be utilized as drug molecules as all of them
adhered to Lipinski and Verber’s rules. However, Nutlin-3a
presented two Lipinski violations, whereas the selected terpenoids
had only one, indicating a slight advantage in their drug-
likeness profile.

A comparative analysis between the three selected terpenoid
compounds and the reference molecule Nutlin-3a reveals key
differences and similarities in their ADMET profiles. Nutlin-3a, a
well-established MDM2 inhibitor, demonstrated high GI absorption
similar to 27-Deoxyacetein and Cabralealactone, whereas Olean-12-
en-3-beta-ol exhibited low GI absorption, which may impact its
bioavailability. Furthermore, our evaluation revealed that none of
the top selected compounds could cross the blood-brain barrier
(BBB), indicating a reduced risk of central nervous system adverse
effects. Moreover, all the chosen compounds exhibited satisfactory
bioavailability scores, with values reaching up to 55%. Pan-Assay
Interference Compounds (PAINS) are substances responsible for
producing false positive results during the initial virtual screening
process of the drug discovery stage which is often misleading.
However, all of the compounds here had been reported to show
zero PAINS alert. The three respective compounds we selected had
not demonstrated any inhibition or interference with enzymes

TABLE 3 ADMET profiling of selected terpenoid compounds as potential inhibitors of MDM2.

Properties Olean-12-en-3-beta-ol 27-Deoxyacetein Cabralealactone Nutlin-3a (standard inhibitor)

Molecular weight 426.72 g/mol 602.80 g/mol 414.62 g/mol 581.49 g/mol

Hydrogen bond acceptors 1 8 3 5

Hydrogen bond donors 1 3 0 1

Log P value 7.18 4.1 5.61 4.53

Rotatable Bond 1 2 1 8

TPSA 20.23 Å2 110.14 Å2 43.37 Å2 83.47 Å2

Lipinski violations 1 1 1 2

Verber Rule Violations 0 0 0 0

Pains Alert 0 alert 0 alert 0 alert 0 alert

Bioavailability Score 0.55 0.55 0.55 0.17

Blood-Brain Barrier No No No No

GI absorption Low High High High

Synthetic accessibility 6.04 8.73 5.1 5.16

CYP3A4 inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor

CYP2D6 inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-Inhibitor

hERG inhibition Weak inhibitor Weak inhibitor Weak inhibitor Weak inhibitor

AMES Toxicity Non-AMES Toxicity Non-AMES Toxicity Non-AMES Toxicity Non-AMES Toxicity

Carcinogenicity Non-carcinogens Non-carcinogens Non-carcinogens Non-carcinogens

Hepatotoxicity Non-hepatotoxic Non-hepatotoxic Non-hepatotoxic Non-hepatotoxic

Cytotoxicity Non-cytotoxic Non-cytotoxic Non-cytotoxic Non-cytotoxic

Predicted LD50 2.0842 mol/kg 3.3088 mol/kg 2.4518 mol/kg 2.5907 mol/kg
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CYP3A4 and CYP2D6; two vital enzymes that account for the
metabolism of 30% of prescribed drugs (Zanger and Schwab,
2013). In contrast, Nutlin-3A was identified as a
CYP3A4 inhibitor, suggesting a higher potential for drug-drug
interactions compared to the selected terpenoids. Therefore, the
selected compounds were expected to undergo metabolism easily in
the body without generating any toxic metabolites.

It has been established that toxicity is one of the key concerns in
the drug discovery and development phase (Xu et al., 2012).
Therefore, investigating the toxicological profile of a drug at the
preclinical stage is extremely important to ensure safe and
efficacious drug delivery. Carcinogenicity, hepatotoxicity, acute
toxicity, and AMES mutagenicity are four fundamental types of
toxicities that make a chemical compound unsuitable to be utilized
as a drug molecule if any of them are present in that compound. In
our investigation, three selected terpenoid compounds were
thoroughly free from the risk of creating hepatotoxicity,
carcinogenicity, cytotoxicity, and AEMS mutagenicity like the
reference molecule, Nutlin-3a. Many of the marketed drugs are
being withdrawn due to causing severe adverse hepatic side effects
(Low et al., 2011). Fortunately, none of our experimental
compounds have shown to cause hepatotoxicity.

A major constraint in the path of drug development is the
inhibition of Human ether-a-go-go-related-gene (hERG) which
causes massive cardiotoxicity (Saxena et al., 2016). Three of our
selected compounds had shown a very weak extent of hERG
inhibition activity which indicated that their possibility to exert
cardiotoxicity was very negligible though further detailed
investigation is required. Another important parameter to
determine acute toxicity is the median lethal dose, LD50 value
(dose of an experimental compound that kills 50% of the tested
animal population at a specific period) (Lei et al., 2016). Based on
our assessment, all the compounds have demonstrated a moderate
level of LD50 values, indicating their safety. However, Nutlin-3a had
a lower predicted LD50 than 27-Deoxyacetein, suggesting the latter
may have a higher safety margin.

Thus, while Nutlin-3a remains a potent reference inhibitor, the
selected terpenoids exhibit comparable or even superior
pharmacokinetic and safety profiles, making them promising
candidates for further drug development.

So, ADMET analysis revealed that all three selected compounds
displayed favorable PK properties and safety profiles, indicating
their potential as promising drug candidates.

3.5 Molecular dynamics simulations

MD simulation plays a crucial role in post-docking analysis,
allowing for the exploration of the stability and dynamic nature of
biological macromolecules over time. A 150 ns MD simulation was
conducted to gain insights into the structural dynamics, binding
mechanisms, and flexibility of the apo state of MDM2, as well as its
complexes with olean-12-en-3-beta-ol, cabralealactone, 27-
deoxyactein, and Nutlin-3a. After a 150 ns dynamic trajectory,
various parameters were computed and examined, including
RMSD, RMSF, RG, SASA, and the number of hydrogen bonds
(depicted in Figures 6, 7). These measurements were conducted as
they are crucial for achieving favorable protein-ligand stabilities.

Additionally, PCA and FEL analyses were carried out to investigate
alterations in the conformational dynamics of the protein prior to
and following ligand binding.

3.5.1 RMSD and RMSF
RMSD values for the Cα backbones of all residues were

calculated to confirm the stability of the apo protein and all
complexes (Figure 6A). The apo protein remained stable
throughout the simulation, with an average RMSD value of
0.137 nm. A slight increase in the RMSD value was observed
after 48 ns, which persisted until 150 ns. All complexes exhibited
lower RMSD values than the apo protein, indicating the stability of
the protein-ligand complexes post-ligand binding. The average
RMSD values for the olean-12-en-3-beta-ol complex,
cabralealactone complex, 27-deoxyactein complex, and Nutlin-3a
complex were 0.111 nm, 0.108 nm, 0.107 nm, and 0.100 nm,
respectively. Although all complexes remained relatively stable
throughout the simulation with minor fluctuations, a significant
fluctuation in the RMSD value was observed between 70–80 ns in the
case of the olean-12-en-3-beta-ol complex.

The RMSF values of both the apo protein and the protein-ligand
complexes were calculated to evaluate the flexibility of the docked
complexes across amino acid residues (Figure 6B). The average
RMSF value for the Cα backbones of protein residues in the apo
protein, olean-12-en-3-beta-ol complex, cabralealactone complex,
27-deoxyactein complex, and Nutlin-3a complex was 0.078 nm,
0.078 nm, 0.073 nm, 0.072 nm, and 0.069 nm, respectively. The
N-terminal exhibited higher fluctuations, but all ligand bindings
reduced the flexibility of the N-terminal as well as the overall protein
flexibility. Several regions, including residues 42–47, 69–73, 78–80,
and 95–97, displayed higher flexibility compared to the rest.

3.5.2 SASA and RG
The SASA values of the apo protein, docked complexes, and the

control were examined to comprehend alterations in the protein
volume (Figure 7A). A greater SASA value suggests an expansion of
the protein surface area, while a lower SASA value suggests a
reduction in the protein volume. The average SASA value of the
apo protein, olean-12-en-3-beta-ol complex, cabralealactone
complex, 27-deoxyactein complex, and Nutlin-3a complex was
59.48 nm2, 60.22 nm2, 60.16 nm2, 60.28 nm2, and 59.89 nm2,
respectively. As ligand binding to the active site of the protein
caused a slight, negligible increase in the overall protein volume, the
volume of all protein-ligand complexes remained the same as the
volume of the apo state of the protein.

The RG profile was examined to evaluate the flexibility of the
apo protein as well as protein-ligand complexes (Figure 7B). An
elevated RG profile indicates greater flexibility attributed to the
protein’s folding or unfolding mechanism. The average RG value of
the apo protein, olean-12-en-3-beta-ol complex, cabralealactone
complex, 27-deoxyactein complex, and Nutlin-3a complex was
1.3 nm, 1.29 nm, 1.29 nm, 1.30 nm, and 1.29 nm, respectively.
Ligand binding did not affect the compactness of the protein.
However, an increased RG value was observed in the case of
olean-12-en-3-beta-ol complex during 70–80 ns which may be
related to the increased RMSD value of the complex at that same
time. So, protein complexes were as compact as apo protein which
aligns with the results of the SASA value.
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3.5.3 Number of hydrogen bonds
We additionally assessed the hydrogen bonding between the

ligands and the proteins (Figure 7C). Cabralealactone exhibited the
formation of zero to two hydrogen bonds with the protein. Both
Olean-12-en-3-beta-ol and Nutlin-3a established zero to three
hydrogen bonds with the protein. However, in the case of 27-
deoxyactein, the hydrogen bond plot revealed a maximum of
four hydrogen bonds, with three hydrogen bonds consistently
observed. Conversely, only one stable hydrogen bond was noted
in the case of Nutlin-3a.

3.5.4 PCA and FEL
PCA was employed to assess the stability, conformational

space, and transition dynamics of both the apo protein and
protein-ligand complexes by examining the relative movement
of Cα atoms and the overall protein movement. The analysis
resulted in clusters formed based on the projection of two
eigenvectors, 1 and 2. A highly stable cluster, denoting higher
stability, occupies a smaller phase space, while an unstable cluster
occupies a larger space. From Figures 8A–E, 27-deoxyactein and
control ligand, Nutlin-3a acquired lesser conformational space
compared to the other three systems indicating their reduced
motion and comparatively higher stability. Moreover, the

compactness and stability of both the apo protein and
protein-ligand complexes were assessed through the
covariance matrix score. This evaluation revealed scores for
olean-12-en-3-beta-ol complex (0.717), cabralealactone
complex (0.583), 27-deoxyactein complex (0.584), and Nutlin-
3a complex (0.481), indicating reduced flexibility or more
restrained movements of the backbone Cα atoms in
comparison to the apo state of the protein (0.784).
Consequently, it can be inferred that the binding of these
ligands to the protein induced stability in the protein
conformations.

We performed an analysis of the Gibbs free energy landscape
using the first two principal components. In Figures 9A–E, the
deepest blue hue indicates the protein’s conformation with the
lowest energy, while the red hue indicates the conformation with
the highest energy state. The profound well signifies a
thermodynamically favorable state for the proteins. In this study,
we have computed the free energy landscape for the apo state of
MDM2 and its related protein-ligand complexes. Apo protein
showed two energy minima with distinct large energy barriers
which confirmed its two conformational states. On the contrary,
Nutlin-3a complex showed one larger global minimum. So, it is
confined to one conformational state. The rest of the three systems

FIGURE 6
(A) RMSD analysis on Cα atoms of MDM2-ligand complexes. (B) RMSF analysis for residues of MDM2-ligand complexes.
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showed 2–3 energy minima indicating that they could acquire
multiple conformational states which are separated by relativity
small energy barriers. The overall energy range of the system

decreased following the binding of the ligand to the protein,
suggesting that these ligands formed stable and energetically
favorable protein-ligand complexes with the protein.

FIGURE 7
(A) SASA analysis of MDM2-ligand complexes. (B) RG analysis of MDM2-ligand complexes. (C) Number of hydrogen bond between
MDM2 and ligands.
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3.6 MM-PBSA binding free energy
calculations

The binding energy is governed by various molecular forces,
including hydrogen bonding, van der Waals interactions,
hydrophobic interactions, and electrostatic interactions between
the ligand and the macromolecule. These favorable forces, in
addition to solvent-accessible surface area and unfavorable polar
solvation energy, were determined using MM-PBSA. The binding
free energies, outlined in Table 4 and Figure 10A, were calculated
using MM-PBSA methods, with more negative values indicating
stronger bindings. The average binding free energies for olean-12-
en-3-beta-ol, cabralealactone, 27-deoxyactein, and Nutlin-3a
were – 127.414 kJ/mol, – 109.429 kJ/mol, – 154.514 kJ/mol,
and – 133.531 kJ/mol, respectively. In all cases, van der Waals
energy contributed the most to the binding free energy of the
protein-ligand complexes. Notably, 27-deoxyactein exhibited
lower binding free energy compared to other molecules and the
control Nutlin-3a, suggesting its relatively better and favorable
binding with the protein. Additionally, the olean-12-en-3-beta-ol
complex displayed similar free energy compared to the control
molecules, while cabralealactone showed the least binding affinity
based on MM-PBSA calculations. Figure 10B showed that certain
amino acids such as Met-62, Ile-61, Tyr-67, Val-93, Leu-54, Ile-99,
Leu-57, Gly-58, Phe-55, Val-75, Lys-94, Gln-59, Phe-91, Ile-19, His-
73 and His-96 played a major role for binding of ligand molecules to
the protein in all instances.

4 Discussion

BC’s varied pathology, clinical behavior, histologic
classifications, and reactions to anticancer treatments complicate
its safe and effective management (Lamichhane et al., 2023). The
CADD approach offers a swift and cost-efficient method to

investigate the anticancer properties of diverse natural
compounds for the development of lead candidates aimed at
combating cancer (Ahmed et al., 2023). This investigation
utilized a comprehensive computational strategy to assess the
anti-breast cancer potential targeting the MDM2 protein among
398 terpenoids sourced from the NPACT database. Following
Lipinski’s Ro5 filtration, a two-stage screening process was
employed. Initially, the terpenoid compounds were docked into
the rigid crystal structure of the MDM2 protein’s active site. Then,
the top-docked compounds from the initial screening were subjected
to docking into the ensemble conformations of theMDM2 structure,
generated through MD simulation, to capture the dynamic nature of
the protein’s binding site. Three terpenoid compounds, olean-12-
en-3-beta-ol, 27-deoxyactein, and cabralealactone, displayed
considerable binding affinities towards the MDM2 protein and
showcased favorable PK and safety profiles. However, findings
from MD simulation and MM-PBSA binding free energy
calculations unveiled that compound 27-deoxyactein, one of the
primary components extracted from Cimicifuga racemosa (Suh
et al., 2018), exhibited enhanced stability of the protein-ligand
complex and demonstrated the lowest binding free energy in
comparison to both the standard inhibitor, Nutlin-3a, and the
other lead compounds.

MDM2 is an oncoprotein that interacts with the tumor
suppressor protein p53, sometimes referred to as the “guardian
of the genome,” to regulate the cell cycle and programmed cell death
(Iwakuma and Lozano, 2003). MDM2 was reported to contribute to
BC progression, invasion, and therapy resistance in both p53-
dependent and -independent ways (Karni-Schmidt et al., 2016).
A group of MDM2 inhibitors, including RG7112, idasanutlin,
AMG-232 (KRT-232), APG-115, siremadlin (HDM201),
milademetan, and CGM097, are presently undergoing clinical
studies for solid tumors (Konopleva et al., 2020). Though these
molecules showed significant efficacy in phase 1 or 2 trials, there are
still obstacles to overcome such as possible toxicity related to the

FIGURE 8
Principal component analysis of (A) Apo protein, (B)MDM2 protein-olean-12-en-3-beta-ol complex, (C)MDM2 protein-cabralealactone complex,
(D) MDM2 protein-27-deoxyactein complex, and (E) MDM2 protein-Nutlin-3a complex.
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bone marrow, such as neutropenia, febrile neutropenia, and
thrombocytopenia as well as gastrointestinal toxicity like nausea,
vomiting, and diarrhea that may be dose-limiting (Khurana and
Shafer, 2019). Additionally, there is a chance of hematopoietic
defects triggering a cascade of signaling events (Kojima et al.,
2005) and also developing resistance (Cinatl et al., 2014). Hence,
the study we conducted strives to identify novel MDM2 inhibitors
for BC to improve therapy efficacy, combat resistance, and reduce

side effects, ultimately offering patients more individualized and
efficient therapeutic options.

MDM2 comprises of multiple domains such as a C-terminal
RING (Really Interesting New Gene) domain, an N-terminal
domain, as well as a central acidic domain and each domain has
distinct functionality. Its interaction with the P53 depends on the
availability of a p53-binding site in the N-terminal domain. The
N-terminal region of MDM2 harbors a well-defined p53-binding

FIGURE 9
Free energy landscape of (A) Apo protein, (B) MDM2 protein-olean-12-en-3-beta-ol complex, (C) MDM2 protein-cabralealactone complex, (D)
MDM2 protein-27-deoxyactein complex, and (E) MDM2 protein-Nutlin-3a complex.

TABLE 4 Van der Waal’s, electrostatic, polar salvation, SASA as well as binding free energy of top three selected compounds and standard inhibitor, Nutlin-
3a in kJ/mol presented as mean ± standard deviation.

Compound van der waals
energy

Electrostatic
energy

Polar solvation
energy

SASA
energy

Binding free
energy

Olean-12-en-3-
beta-ol

−151.498 ± 12.123 −17.915 ± 8.995 59.274 ± 10.960 −17.275 ± 1.199 −127.414 ± 13.537

Cabralealactone −157.457 ± 10.117 −0.859 ± 6.854 63.328 ± 8.936 −16.159 ± 0.950 −109.429 ± 9.316

27-deoxyactein −204.712 ± 11.456 −21.038 ± 15.455 93.189 ± 17.477 −21.953 ± 0.922 −154.514 ± 12.211

Nutlin-3a −193.152 ± 15.075 −15.890 ± 8.252 97.384 ± 12.384 −21.873 ± 1.239 −133.531 ± 14.477
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pocket. The RING domain acts as the active site for MDM2’s
E3 ubiquitin ligase activity. In this region, MDM2 catalyzes the
transfer of ubiquitin molecules to specific lysine residues on p53.
This ubiquitination marks p53 for proteasomal degradation,
regulating its cellular levels (Moll and Petrenko, 2003). Previous
research has identified three distinct sub-pockets within the
hydrophobic cleft of the MDM2 protein, each playing a
crucial role in the binding to the transactivation domain of
p53. These sub-pockets create an environment that
accommodates specific amino acid residues of p53, disrupting
the dimerization of MDM2 and p53 (Murray and Gellman, 2007).
The first sub-pocket, comprising amino acids Ile-61, Met-62, and
Val-93, forms the vicinity of the Phe-19 residue in p53. The
second region, composed of Leu-57, Gly-58, and Ile-99,
accommodates the Trp-23 residue in p53. Lastly, the Leu-54
and His-96 residues correspond to the Leu26 sub-pocket. It’s
noteworthy that the binding of small molecule ligands to any of
these sub-pockets has the potential to interfere with the MDM2-
p53 dimerization, presenting a potential therapeutic avenue for

modulating the MDM2-p53 interaction (Munisamy et al., 2021;
Chukwuemeka et al., 2022; Oyedele et al., 2023).

In this study, we initially conducted traditional molecular
docking, where the protein was maintained as a rigid structure
while the ligand was allowed to be flexible. From our library of
terpenoid compounds, we identified eight novel compounds that
exhibited significantly higher binding affinities than the standard
inhibitor, Nutlin-3a. The range of binding energies for these top-
docked terpenoid compounds was between – 8.6 kcal/mol
and – 8.3 kcal/mol. Among them, cabralealactone (– 8.6 kcal/
mol) and 27-deoxyactein (– 8.6 kcal/mol) exhibited the highest
binding affinity toward the MDM2 protein, followed by olean-12-
en-3-beta-ol (– 8.5 kcal/mol). Each of these top-docked compounds
exhibited multiple non-bonding interactions with the binding site
residues of the MDM2 protein, indicating their potential as novel
MDM2 inhibitors. Following our preliminary molecular docking
investigations, which yielded insightful information about the
binding interactions between compounds of interest and the
target protein, we came to understand that incorporating protein

FIGURE 10
(A) Computed binding free energy (kJ/mol) of olean-12-en-3-beta-ol, cabralealactone, 27-deoxyactein, and Nutlin-3a with MDM2, (B) residues
with free energy contribution of MDM2 with olean-12-en-3-beta-ol, cabralealactone, 27-deoxyactein, and Nutlin-3a. The colors represented MDM2-
olean-12-en-3-beta-ol complex, MDM2-cabralealactone complex, MDM2-27-deoxyactein complex, and MDM2-Nutlin-3a complex in A and B are
yellow, and green respectively.
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flexibility into the analyses would enhance the precision of our
results. Hence, we expanded our research to include ensemble
docking, a method that takes into account several protein
conformations to represent the dynamic character as well as
structural flexibility of the binding site. Ensemble docking
investigations were carried out for the eight compounds that
exhibited the highest docking scores from the initial docking
studies. These compounds were docked against the top three
conformers obtained from a 250 ns MD simulation of the
MDM2 protein. Among these eight compounds, olean-12-en-3-
beta-ol, 27-deoxyactein, and cabralealactone emerged as the top
three compounds exhibiting superior binding affinities and
favorable non-covalent molecular interactions (Supplementary
Table S4). These interactions are indispensable for building and
safeguarding the integrity of docking complexes. Resilient
conventional hydrogen bonds significantly improve the overall
stability of ligand-receptor complexes and are necessary for
molecular recognition (Shikder et al., 2021). 27-deoxyactein was
identified to form significant interactions within the binding region
of the p53 andMDM2 proteins in the initial docking investigation. It
specifically made conventional hydrogen bonds with Val-93 and
His-96, forming crucial connections. Furthermore, hydrophobic
interactions involving Val-75, Val-93, Ile-61, and Phe-91 were
observed, which improved the ligand’s stability inside the crucial
binding region even more. Furthermore, in ensemble docking, 27-
deoxyactein was found to form one conventional hydrogen bond
with Gly-58 in cluster-1 and one with Thr-49 in cluster-2. Notably,
this compound demonstrated its significance by consistently
forming and maintaining hydrophobic bonds with active site
amino acids, including Leu-54, Val-93, Ile-99, and Ile-61 across
all clusters. These findings reinforced the ligand’s potential as a
promising candidate for further exploration in drug development, as
it exhibited consistent and favorable interactions across different
protein conformations in the ensemble. On the other hand,
compounds such as olean-12-en-3-beta-ol and cabralealactone
displayed comparatively similar binding patterns in the initial
docking analysis. Specifically, both compounds formed
conventional hydrogen bonds with Gln-24. Cabralealactone
further established hydrophobic bonds with critical amino acid
residues, including Leu-54, Val-93, Ile-61, Met-62, and Lys-51.
Similarly, olean-12-en-3-beta-ol engaged in hydrophobic
interactions with Val-93, Leu-54, Ile-19, Ile-61, His-96, and Tyr-
100. During ensemble docking, olean-12-en-3-beta-ol showed an
intriguing binding pattern by not forming hydrogen bonds with the
first two clusters. However, it notably established conventional
hydrogen bonds with the active site amino acid residue Tyr-100
in cluster-3. This observation suggested a specific molecular
interaction contributing to the higher binding affinities observed
within cluster-3. Nevertheless, olean-12-en-3-beta-ol consistently
formed hydrophobic bonds with key active site residues, including
Leu-54, Ile-99, Met-62, and Val-93, across all three clusters. This
consistent interaction profile underscored the ligand’s capability to
contribute to the stability of the ligand-receptor complex, further
emphasizing its potential as a valuable candidate for drug
development. However, in the case of cabralealactone, despite
forming a hydrogen bond with Gln-72 in cluster-1, this
interaction was not observed in the other two clusters. However,
the molecule consistently formed hydrophobic interactions with

critical residues of amino acids, including Leu-54, Ile-61, and Val-93,
in each of the three clusters. The compound’s stability and potential
as a promising ligand were highlighted by its persistent hydrophobic
interaction profile, which also illuminated the underlying causes for
its greater binding affinities.

Servers for computational ADME and toxicity evaluations have
dramatically enhanced recenlty, which allowed for swift analyses to
assess numerous pharmacokinetic, pharmacodynamic as well as
toxicity characteristics of drug candidates (Tao et al., 2015). In
this study, a comprehensive analysis of selected top three chemical
compounds, olean-12-en-3-beta-ol, 27-deoxyacetein, and
cabralealactone were studied to understand their attributes and
suitability as drug candidates. Absorption is a critical parameter
influencing a drug’s bioavailability and therapeutic efficacy.
Compounds with high GI absorption, such as 27-deoxyacetein
and cabralealactone, are more likely to reach systemic circulation
in sufficient quantities to exert therapeutic effects. In contrast,
Olean-12-en-3-beta-ol exhibits lower GI absorption, which may
necessitate higher doses or alternative delivery strategies to
achieve therapeutic concentrations. Moreover, all three lead
compounds have good bioavailability scores. The BBB protects
the brain from harmful substances by permitting only certain
substances to pass from the bloodstream into the brain (Wu
et al., 2023). None of the three compounds cross the BBB, so the
risk of CNS adverse effects is greatly reduced. The metabolism of
medications and foreign substances depends on cytochrome
p50 enzymes. Specifically, the most important cytochrome
p50 enzymes are CYP3A4 and CYP2D6 (Lynch and Price, 2007).
Our three selected phytochemicals do not inhibit CYP3A4 or
CYP2D6. PAINS criterion revealed zero alerts for all three
selected terpenoid compounds indicating that these leads would
not cause false positive results (Baell and Nissink, 2018). Moreover,
27-Deoxyacetein demonstrated a high synthetic accessibility value,
while the remaining two lead compounds displayed a moderate level
of synthetic accessibility. As a result, all three compounds can be
easily synthesized. Moreover, the toxicity assessments yielded
favorable outcomes, showing no significant adverse effects across
multiple toxicity endpoints and parameters. This further supports
our selection of the top three lead candidates. However, it’s essential
to recognize that predictive toxicity assessments have limitations
and should be complemented with experimental data to validate
safety profiles accurately.

Several MDM2 inhibitors have been identified from terpenoid
compounds, including Celastrol, Triptolide, Withaferin A,
Costunolide, and Betulinic Acid (Cascão et al., 2017; Zhao et al.,
2022; Ramli et al., 2024). However, despite their anticancer potential,
many of these compounds possess reactive functional groups and
exhibit poor pharmacokinetics, limiting their clinical utility. For
instance, Celastrol contains a highly reactive quinone methide
moiety, which contributes to off-target toxicity and metabolic
instability. Its poor aqueous solubility further hampers
bioavailability (Shi et al., 2020). Similarly, Triptolide harbors an
epoxide group that predisposes it to non-specific protein binding,
leading to undesirable side effects and restricted clinical applicability
(Ren et al., 2021).

In contrast, Olean-12-en-3-beta-ol, 27-Deoxyactein, and
Cabralealactone offer distinct structural advantages that enhance
their pharmacological viability. These compounds are more
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structurally stable due to the absence of highly reactive moieties,
ensuring greater metabolic stability and reduced off-target toxicity.
Their functional groups, such as hydroxyl (-OH) and lactone (-COO-),
promote hydrogen bonding while maintaining hydrophobic
interactions essential for strong MDM2 binding (Ishmuratov et al.,
2015). Olean-12-en-3-beta-ol possesses a pentacyclic triterpenoid
backbone, optimizing its fit within the MDM2 binding pocket while
minimizing steric hindrance, a challenge faced by bulkier polar
compounds such as Ganoderic Acid A (Jia et al., 2023). 27-
Deoxyactein, with its steroidal framework, enhances binding
efficiency by maintaining optimal molecular rigidity, overcoming the
flexibility issues seen in Japonicone A and Parthenolide, which have
sesquiterpene lactone structures that lower binding stability (Schmidt,
2006). Cabralealactone stands out due to its rigid bicyclic lactone core,
ensuring superior geometric alignment within the binding site
compared to structurally flexible counterparts. Unlike Costunolide
and Parthenolide, whose lactone moieties exhibit high
conformational flexibility, Cabralealactone’s rigid structure enhances
its binding affinity and selectivity (Zhang et al., 2023). Furthermore,
these newly identified terpenoids share beneficial pharmacophoric
features with previously studied compounds while offering distinct
advantages. The hydrophobic interactions of Olean-12-en-3-beta-ol,
27-Deoxyactein, andCabralealactone resemble those of Ganoderic Acid
A, ensuring stable MDM2 binding. However, their structural rigidity
prevents steric clashes, improving binding efficiency. The hydroxyl
(-OH) and lactone (-COO-) groups, also found in Withaferin A and
Betulinic Acid, contribute to selective and stable interactions while
enhancing metabolic stability. Notably, the lactone moiety in
Cabralealactone mirrors those in Costunolide and Parthenolide, yet
its more rigid framework provides superior binding alignment,
reducing conformational entropy loss upon binding.

These structural and pharmacokinetic advantages position Olean-
12-en-3-beta-ol, 27-Deoxyactein, andCabralealactone asmore selective,
metabolically stable, and pharmacologically viable MDM2 inhibitors
compared to previously studied natural terpenoids. Their improved
binding efficiency, reduced reactivity, and enhanced pharmacokinetic
profiles advance current research on MDM2 inhibition, offering
promising candidates for breast cancer therapy.

MD simulations are essential for grasping the dynamic behavior of
macromolecules, including their structural stability and degree of
flexibility. Various parameters such as RMSD, RMSF, RG, SASA,
the number of hydrogen bonds, PCA, and FEL are employed to
assess the dynamic characteristics of biological macromolecules and
protein-ligand complexes (Roe and Cheatham III, 2013). Together,
these parameters reveal the intricate relationship between stability and
structural dynamics, providing vital knowledge for comprehending bio-
molecular interactions and directing the logical development of drugs.

RMSD was analyzed to observe the overall stability of apo
protein and protein-ligand complexes. From the result, it is
observed that all the complexes achieved stability in their 150 ns
MD simulation except for a little deviation of the olean-12-en-3-
beta-ol complex. However, 27-deoxyactein complex was more stable
along with Nutlin-3a complex compared to apo and the rest of the
two complexes. RMSF was calculated to analyze the flexibility of the
backbone atoms of the residues in apo-protein and protein-ligand
complexes. Except for the N-terminal of the protein, all the
complexes show almost the same RMSF values. Upon ligand
binding, the flexibility of the protein reduces initially compared

to apo-protein but in the other region, these complexes show almost
similar flexibility. However, 27-deoxyactein complex showed
comparatively less fluctuation among the apo protein and other
complexes along with Nutlin-3a complex, thus confirming 27-
deoxyactein’ well-fitting in the active site of the protein and
forming a stable complex. So, RMSD and RMSF values comply
with each other in favor of the stability of 27-deoxyactein complex.

SASA value mainly clarifies a protein’s solvent behavior,
specifically if it demonstrates hydrophilic or hydrophobic
characteristics. It took into account interactions between atoms
that are both polar and non-polar. Since SASA represents the
middle part of the solvent molecules surrounding the receptor
molecule, it was used as a metric to assess changes in the protein’s
structure. In our investigations, SASA was slightly increased after the
ligand binding to the protein. This phenomenon was observed in the
complexes of three lead compounds as well as in the complex formed
by the standard inhibitor, Nutlin-3a. This could happen because these
ligands occupy the active site of the protein, primarily located within
the large hydrophobic cleft of the MDM2 protein. Moreover, RG was
analyzed to investigate the compactness of the protein upon binding
to ligands. The RG value of was Nutlin-3a complex was 1.2909 nm
whereas the apo-protein showed an RG value of 1.2961 nm. All
protein-ligand complexes, including the 27-deoxyactein complex
(1.2989 nm), the olean-12-en-3-beta-ol complex (1.2949 nm), and
the cabralealactone complex (1.2919 nm), exhibited a close alignment
with the apo-protein. Hence, it is observed that the compactness of all
protein-ligand complexes remained almost the same as apo-protein.

Hydrogen bonds formed between the ligands and the protein
throughout the simulation are assessed using the gmx hbond utility. The
highest average number of hydrogen bonds was observed in the 27-
deoxyactein complex (1.1349), which was significantly greater than that
in the standard inhibitor, Nutlin-3a complex (0.3374). Other
complexes, such as olean-12-en-3-beta-ol and cabralealactone,
formed an average of 0.4543 and 0.0264 hydrogen bonds,
respectively. The number of intermolecular hydrogen bonds was
particularly prominent in the 27-deoxyactein complex, and these
hydrogen bonds remained stable throughout the simulation,
indicating the formation of a more stable complex between 27-
deoxyactein and the MDM2 protein compared to the other complexes.

PCA assessed the stability, conformational space, and transition
dynamics of apo protein and protein-ligand complexes via Cα atoms’
relative movement and overall protein motion. From the result, 27-
deoxyactein complex and the Nutlin-3a complex acquired less
conformational space and had a lower covariance matrix score than
the other three systems including apo protein which proved the
superiority of these two compounds based on their stability and
compactness over others. This is due to the binding of ligands to
the active site of the proteinwhich restricted themovement and reduced
flexibility of the backbone of Cα atoms of the protein. FELs offer a
thorough understanding of the thermodynamic features of
biomolecular systems, including energies, folding processes, and
stability. The mechanisms driving biological activities including
protein folding, ligand binding, and molecular recognition can be
understood in light of this information. From FELs, it is observed
that the apo protein showed two conformational states, whereas the
Nutlin-3a possessed only one conformation. But the rest of the system
including 27-deoxyactein showed several stable conformations. This is
due to the strong bond formation of these compounds to MDM2 and
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changing the folding of the protein chain to several energetically
favorable distinguish structures.

MM-PBSA binding free energy calculation is awidely used technique
to validate molecular docking results. When comparing the binding
energies found using this method to the scores produced by
AutoDock Vina, the former turned out to be more trustworthy. The
spontaneous nature of the binding of all complexes tested was confirmed
by the observation of negative total binding energies. Intermolecular
Vander Waals energy, electrostatic energy, SASA energy, and polar
solvation energy make up a complex’s binding free energy. 27-
deoxyactein had lower binding energy (– 154.514 kJ/mol) compared
to Nutlin-3a (– 133.531 kJ/mol). Indeed, Vander Waals energy,
electrostatic energy, and SASA energy favored the binding of 27-
deoxyactein to MDM2 than the standard inhibitor, Nutlin-3a to
MDM2. Moreover, the increased number of hydrogen bonds and their
sustainability further confirm the findings. Major contributing amino
acids of 27-deoxyactein complex in the bond energy was Leu-54
(– 7.76 kJ/mol), Ile-61 (– 7.05 kJ/mol), Val-93 (– 5.71 kJ/mol), Met-62
(– 5.10 kJ/mol), Ile-99 (– 4.30 kJ/mol), Gly-58 (– 3.75 kJ/mol) and Leu-57
(– 3.12 kJ/mol). These amino acids’ positions are in the active site of the
protein, thus confirming the binding of 27-deoxyactein to the active place
of the MDM2.

Analyzing these parameters, it can be concluded that the MDM2-
27-deoxyactein complex was the most stable, where 27-deoxyactein
bind to the active site of the targeted protein MDM2 with sufficient
binding affinities. Among all the compounds, it was the most potent
compound for effectively inhibiting MDM2. It also showed favorable
ADME and toxicity attributes to be a potential drug candidate. Hence,
the natural terpenoid compound, 27-deoxyactein, holds promise as a
strong candidate for inhibitingMDM2,warranting further investigation
as a lead compound in experimental and clinical studies to enhance
breast cancer treatment efforts.

Our findings contribute to current breast cancer research by
identifying novel, pharmacologically viable natural terpenoid
inhibitors that target MDM2 with greater stability and selectivity
than previously studied compounds. While MDM2 inhibitors have
been explored for BC therapy, many face challenges such as metabolic
instability, off-target effects, and poor pharmacokinetics, limiting their
clinical application (Ramli et al., 2024). By addressing the limitations
of existing inhibitors, our study provides a strong computational
foundation for experimental validation, advancing the search for
effective MDM2-targeted therapies to overcome BC progression
and drug resistance. Computational methods play a crucial role in
real-world drug development by accelerating the discovery of
potential drug candidates, reducing costs, and improving success
rates. These methods help prioritize compounds with high
therapeutic potential, streamlining lead optimization and reducing
reliance on costly and time-consuming laboratory screening.
However, Experimental validation is essential to confirm the
therapeutic potential of these inhibitors, yet it presents its own
challenges. In vitro studies, though useful for preliminary
screening, fail to replicate the complexity of the tumor
microenvironment, and in vivo models introduce variability and
ethical concerns. Furthermore, terpenoid metabolism and long-
term safety must be thoroughly assessed, as rapid metabolism can
diminish efficacy. Therefore, more effective bioassays need to be
developed to assess and facilitate the translation of computational
results into clinical settings.

5 Conclusion

To sum up, breast cancer (BC) remains the leading cause of cancer-
related deaths in women, with MDM2, a critical inhibitor of the tumor
suppressor p53, playing a central role in its progression. This study
utilized computational approaches to explore the potential of natural
terpenoid compounds as novel inhibitors of MDM2. Initially, rigid
protein-flexible ligand molecular docking identified eight compounds
with higher binding affinities than the standard inhibitor Nutlin-3a.
These compounds were further evaluated using ensemble docking with
multiple MDM2 conformations derived from a 250 ns MD simulation.
Among the compounds tested, olean-12-en-3-beta-ol, 27-deoxyactein,
and cabralealactone showed significantly high binding affinities across
various conformations. ADMET analysis confirmed favorable
pharmacokinetic and pharmacodynamic properties for all three, with
minimal side effects. Additionally, these lead compounds demonstrated
substantial stability during 150 ns MD simulations. Notably, 27-
deoxyactein emerged as the most promising candidate according to
MM-PBSA analysis, showing superior binding stability. However, while
computational findings are promising, we recommend further in vitro
and in vivo investigations to experimentally validate these results and
assess their real-world therapeutic potential.
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