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Background: Ganoderma lucidum is a widely used medicinal fungus whose
quality is influenced by various factors, making traditional chemical detection
methods complex and economically challenging. This study addresses the need
for fast, noninvasive testing methods by combining hyperspectral imaging with
machine learning to predict polysaccharide and ergosterol levels in Ganoderma
lucidum cap and powder.

Methods: Hyperspectral images in the visible near-infrared (385–1009 nm) and
short-wave infrared (899–1695 nm) ranges were collected, with ergosterol
measured by high-performance liquid chromatography and polysaccharides
assessed via the phenol-sulfuric acid method. Three machine learning
models—a feedforward neural network, an extreme learning machine, and a
decision tree—were tested.

Results: Notably, the extreme learning machine model, optimized by a genetic
algorithm with voting, provided superior predictions, achieving R2 values of
0.96 and 0.97 for polysaccharides and ergosterol, respectively.

Conclusion: This integration of hyperspectral imaging and machine learning
offers a novel, nondestructive approach to assessingGanoderma lucidum quality.
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1 Introduction

Ganoderma lucidum, a member of the Ganodermataceae family, is classified as a white-
rot fungi (Wang T. T. et al., 2024). This species primarily grows in tropical, subtropical, and
temperate climates. As one of the leading producers, China has developed a large-scale
Ganoderma lucidum planting industry. This fungus is rich in specific bioactive components,
including polysaccharides, triterpenes, proteins, and sterols (Cör et al., 2022). Ganoderma
lucidum, known for its remarkable antioxidant, antibacterial, tumor-inhibiting, and anti-
inflammatory effects, holds a significant position in the healthcare and nutrition market.
This is attributed to its three primary functions: nourishment, treatment, and tonification.
As awareness of the quality of Ganoderma lucidum increases, it becomes evident that its
quality is significantly affected by many factors, including producing area, cultivation
environment, harvest conditions, and so on. Researchers have developed various quality
control techniques for Ganoderma lucidum, including UV-Vis spectrophotometry (Jiang
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et al., 2018) and nuclear magnetic resonance (Wang M. et al., 2024)
spectroscopy for analyzing polysaccharides, high-performance
liquid chromatography (HPLC) for assessing triterpenoid acids
(Zeng et al., 2023) and ergosterol (Liu et al., 2011), HPLC-ELSD
lipid profiling (Xia et al., 2023), and high-performance capillary
electrophoresis for nuclear glycoside content analysis (Dai et al.,
2002). Although these methods can be employed to determine the
chemical composition of Ganoderma lucidum, traditional detection
techniques have limitations, including complexity, time
consumption, destructiveness, and sensitivity to standard
experimental procedures.

Advancements in spectral technology have significantly
improved non-destructive testing methods. Consequently,
researchers have quantitatively analyzed polysaccharides and
triterpene compounds in Ganoderma lucidum (Zhang and
Huang, 2021; Zhang, 2020) alongside rapid identification of
Ganoderma lucidum varieties (Yang et al., 2017) through near-
infrared fingerprint technology. Near-infrared spectroscopy works
by measuring samples that absorb near-infrared light, which
provides insight into their chemical composition and physical
properties. However, this technique typically offers lower spatial
resolution and is limited to spectroscopic information.
Hyperspectral imaging technology (HSI)—a novel analytical
method—integrates traditional imaging with spectroscopy to
simultaneously capture spatial and spectral information of
samples. This technology offers several advantages: it is non-
contact, non-destructive, fast, and capable of providing a large
amount of information. It holds significant potential for
applications across agriculture, food, medicine, and other fields.
Machine learning, an important branch of artificial intelligence,
automatically extracts features from large datasets and learns rules
by creating predictive models to accurately predict or classify
unknown samples. Xu et al. employed principal component
analysis (PCA) to extract feature bands and utilized a support
vector machine for modeling moldy walnuts (Xu et al., 2022).
Xiao et al. developed an SVM model using feature wavelengths
extracted via PCA and convolutional neural networks, achieving
results comparable to or better than those of the full-wavelength
model (Xiao et al., 2020). Li et al. extracted 13 characteristic
wavelengths using a stacked autoencoder and achieved optimal
predictive performance in a GA-ELM model, with an R2 value of
0.97 (Li et al., 2023a). This study achieved an overall classification
accuracy of 93%. Furthermore, Li et al. successfully used the SNV-
SPA-LS-SVM algorithm to detect protein content in mulberry
leaves. This method effectively assessed leaf quality, yielding an
RPD value of 3.83 and an R2for protein detection (Li et al., 2023b).

The researchers captured hyperspectral images of wheat flour in
the range of 968–2576 nm and developed models using partial least
squares discriminant analysis and SVM based on characteristic
wavelengths. The results indicate that the nonlinear discriminant
model outperformed the linear model in classifying the wheat flour
grades. Furthermore, the MSC-UVE-CARS-PSO-SVM model
provides superior prediction performance, achieving 100%
accuracy in the calibration and validation sets (Zhang et al.,
2023). Alfaro-Mejía et al. propose an unsupervised deep learning
model for endmember extraction and fractional abundance map
estimation from the HSI (Alfaro-Mejía et al., 2023). Other scholars
have used a fast and compact Hybrid CNN to process HSI data for

bloodstain identification and classification (Butt et al., 2022). Hou
et al. proposed a hyperspectral imagery classificationmodel based on
self-supervised contrastive learning (SSCL),where conventional
spectral-spatial features and deep models are combined to
improve the classification accuracy (Hou et al., 2021).
Advancements in HSI and machine learning algorithms are
further improving their application in the quality detection of
Ganoderma lucidum. For example, Pan et al. and other
researchers developed a prediction model by collecting
hyperspectral images of Ganoderma lucidum spore powder
samples with varying wall-breaking rates (Pan et al., 2024). The
model incorporated spectral preprocessing and characteristic band
extraction. The combination of Savitzky-Golay smoothing and
competitive adaptive reweighted feature band selection together
with partial least squares yielded the best prediction performance.
This technique successfully enabled a rapid, non-destructive testing
approach for determining the wall-breaking rate of Ganoderma
lucidum spore powder. Additionally, other researchers have
employed visible-near infrared HSI to pre-detect polysaccharide
content in Ganoderma lucidum fruiting bodies.Ganoderma lucidum
polysaccharide content has been accurately predicted by collecting
hyperspectral images, conducting spectral preprocessing, extracting
characteristic bands, and utilizing partial least squares modeling (Liu
Y. et al., 2021). The concentration of 15 inorganic elements,
including lead, in the entire fruiting body of Ganoderma lucidum
was higher than those in the caps (Liu et al., 2023). Furthermore,
while the caps contain higher concentrations of ganoderic acid A
(Huang et al., 2017) and ganoderic acid B (Shi et al., 2013), infrared
spectroscopy indicates that the levels of amino acids, peptides, and
proteins in Ganoderma lucidum were higher than those in the caps
(Huang et al., 2015).

In a previous hyperspectral study of Ganoderma lucidum
polysaccharides, only the cap was collected. However, differences
in the distribution of chemical compositions in Ganoderma lucidum
may result in inaccurate model predictions. Therefore, hyperspectral

TABLE 1 Samples of Ganoderma lucidum.

Origins Numbers Identification

Jilin Fusong 4 A1

Jiaohe, Jilin 3 A2

Huadian, Jilin 1 A3

Jilin City, Jilin Province 3 A4

Tonghua, Jilin 3 A5

Anqing, Anhui 1 B2

Bozhou, Anhui 3 B3

Tai’an, Shandong 3 C1

Liaocheng, Shandong 1 C2

Jixi, Heilongjiang 3 D

Longquan, Zhejiang 1 E

Baise, Guangxi 3 F

Linzhi, Tibet 3 G
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images of Ganoderma lucidum caps and powder were collected, and
the hyperspectral data were preprocessed using genetic algorithms
and principal component analysis, and three kinds of machine
learning models, BPNN, ELM, and DT, of the original spectral
data and the preprocessed spectral data, were established for the
prediction of the chemical content of the samples of different
morphologies of Ganoderma lucidum, and the best prediction
models were screened out by comparing different algorithms
with each other. It aims to provide a new method for non-
destructive testing of Ganoderma lucidum quality.

2 Materials and methods

2.1 Sample preparation and hyperspectral
image acquisition

In this study, 32 fruiting bodies of Ganoderma lucidum were
collected from 13 production areas. Table 1 provides detailed
information. Upon collection, the Ganoderma lucidum cap was
immediately crushed into powder, which was pressed onto
A4 paper to coin-sized shapes for consistent hyperspectral image
acquisition under the same conditions. During the collection, the
indoor temperature was kept at approximately 25°C. Each sample
was photographed three times, and the average spectrum was
calculated from the original spectral data.

The HSI system used for image acquisition adopts a dual-light
source set-up, consisting of a grating splitter, charge-coupled device,
an IMPERX 1920 × 1080 visible near-infrared camera (lens: Kowa
35 mm focal length), Guohui 640 × 512 short-wave infrared camera
(lens: AZURE 50 mm focal length), halogen light sources, electric
platform, and computer. The experimental equipment was provided
by the Changchun Institute of Optics and Precision Machinery,
Chinese Academy of Sciences (Figure 1).

Calibration images were collected (Reddy et al., 2023) before
acquiring the hyperspectral images to correct for any variations in
light source intensity and dark current, ensuring accurate spectral

data (Dai et al., 2023). The calibration formula is in the following
Equation 1.

R � Iraw − Idark
Iwhite − Idark

(1)

where R is the calibrated reflectance image, Iraw is the original
reflectance image, Idark represents the blackboard reference image,
and Iwhite is the whiteboard reference image.

Figure 2 Provides a schematic overview of the analysis process,
including the acquisition of spectral data and model development.

2.2 Region of interest extraction and sample
set division

The region of interest was manually delineated using
ENVI5.3 software, selecting three pixels and calculating their
average values as the spectral reflectance for each sample.
Overall, 128 regions of interest were extracted from
32 Ganoderma lucidum cap (GLC) and powder (GLP), which
were randomly divided into training and prediction sets at a
ratio of 115:13 for subsequent modeling.

2.3 Measurement of chemical composition

2.3.1 Polysaccharides
To measure polysaccharide content, 1.0 g of the fruiting body

powder of Ganoderma lucidum collected from the hyperspectral
images was weighed, and 40 mL of pure water was added. The
mixture was then boiled for 2 h, fixed volume to 50 mL, and filtered.
The filtrate (5 mL) was added to 25 mL of anhydrous ethanol,
followed by overnight precipitation. The mixture was centrifuged at
5000 rpm for 25 min. The resulting supernatant was discarded, and
the residue was dissolved in 25 mL of water. The solution (1 mL) was
thoroughly mixed with water to 2 mL, and the absorbance was
determined according to the phenol sulfate method. The
determination was repeated three times, and the average value
was calculated.

2.3.2 Ergosterol
A 1.0 g sample of the powder collected from the HSI was

dissolved in 20 mL of methanol, thoroughly mixed, and
sonicated for 1 h. Following filtration, the ergosterol content in
Ganoderma lucidum was determined using HPLC. The HPLC
conditions were as follows: an Agilent Eclipse Plus C18 column
(4.6 mm × 250 mm,5 μm), flow rate of 1.0 mL/min, detection
wavelength of 282 nm, injection volume of 10 μL, column
temperature of 30°C, and methanol as mobile phase.

2.4 Hyperspectral data processing methods

Hyperspectral data is high-dimensional and nonlinear, often
containing large volumes of information, noise, redundancy, and
collinearity, all of which complicate analysis (Chen et al., 2024; Sun
et al., 2024). Using full-spectrum modeling not only increases the
complexity of model training but also causes overfitting. Therefore,

FIGURE 1
Hyperspectral imaging system.
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reducing variables and selecting relevant wavelengths are essential
for enhancing classification accuracy and simplifying computations.

2.4.1 Variable dimensionality reduction
Dimensionality reduction is an essential preprocessing step in

data mining with broad applications, particularly for spectral data.
PCA is a commonly used unsupervised learning method.

PCA uses an orthogonal transformation to convert observed
data represented by linearly correlated variables into a smaller set of
linearly independent variables, known as principal components.
Principal components with high interpretive value retain most of
the critical information from hyperspectral images (Xiao et al., 2020;
Ye et al., 2022).

2.4.2 Characteristic wavelength selection
A GA is an optimization method inspired by the principles of

natural selection and Darwinian evolution theory. Following the
“survival of the fittest” principle, GA uses the “network” to find the
global optimal solution by simulating the biological evolution
process (Zhang et al., 2024). Using “minimum error” as the
evolutionary criterion, the optimal solution is searched in the
global scope (Wang et al., 2021). Compared with the inverse
gradient descent method, GA can search multiple solutions
within the solution space simultaneously without requiring
differential operation. This makes GA highly robust and widely
applicable (Wang et al., 2023). We propose two methods for
selecting feature wavelengths using GA. The first is iterative
feature selection, which reduces the number of wavelengths over
multiple iterations, refining the quality of the selected wavelengths.
The second approach uses voting-based feature selection, where
multiple runs are performed, and the wavelengths selected most
frequently are designated as the characteristic wavelength. The
roulette wheel selection strategy was used to select the most fit
individual. Additionally, single-point crossover was implemented to
improve the search process. The variation operator uses the
fundamental bitwise variation and sets the variation probability
to 0.05. This setting helped prevent the algorithm from getting stuck
in a local optimum. It also enhanced its ability to perform global
searches. These genetic operators collaborate to help the algorithm
discover a better combination of features in the feature selection
process, which ultimately improves the final model’s performance.

2.5 Model construction and evaluation

2.5.1 BP neural network
A back propagation (BP) neural network is a multilayer feed

forward network and one of the most widely used neural network
architectures (Figure 3). Each BP neural network (Yu and Sun, 2024)
consists of an input, hidden, and output layer, where there can be
one or more hidden layers (He and Zhou, 2022). The core concept of
a BP neural network is to adjust the connection weight of the
network through the backpropagation error, thus minimizing the
output error. However, in complex networks, training can often
become trapped in local minimum (Yuan et al., 2009). Additionally,
the performance of BP neural networks largely depends on the
settings of hyperparameters, such as the learning rate and number of
hidden layers and neurons. If the learning rate is too high, training
may become unstable, while too low may cause slow or stalled
training. Increasing hidden layers or nodes can reduce error and
improve model generalization, simultaneously increasing neural
network complexity, extending learning time, and may eventually
cause overfitting. Overfitting makes the model prone to getting
trapped in a local minimum, ultimately degrading its e performance.
Conversely, reducing the number of hidden layers may prevent the
network from achieving sufficient accuracy or cause underfitting.
Therefore, balancing the number of nodes is essential for optimizing
model performance, minimizing overfitting, and achieving a robust
fit (Liu et al., 2016). In this study, we configure the BPNN with the
following parameters: the hidden layer contains 100 neurons, the
maximum number of iterations is set to 1000, the initial learning rate
is 0.01, the activation function is the tanh, and the solver is the
lbfgs algorithm.

2.5.2 Decision tree
A decision tree (DT) is a machine-learning model that uses a

hierarchical tree structure composed of a root node, several internal
nodes, and leaf nodes to represent decision rules and classification
outcomes. The root node serves as the starting point of the tree, each
internal node represents a feature attribute or judgment condition
(Xu et al., 2022), and the leaf node represents the final prediction
result (Figure 4). The decision tree recursively partitions the dataset
until the stopping condition is met, thus forming a prediction model
(Li M. Y., 2024). Model stability generally increases with a lower

FIGURE 2
Schematic diagram of Ganoderma lucidum sample program analysis.
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learning rate. Additionally, the complexity of the model is influenced
by the tree depth and number of splits: as complexity increases, more
decision trees are required, which increases training time and
storage requirements (Zhang et al., 2024).

2.5.3 Extreme learning machine
Extreme learning machine (ELM) is a single-layer feedforward

neural network consisting of an input, a hidden, and an output layer

(Figure 5), known for its strong performance in classification and
regression (Jia et al., 2024; Huang et al., 2006; Liu et al., 2022; Feng
et al., 2024). The principle of the ELM is to map the input data into a
high-dimensional feature space to establish an optimal hyperplane
that best represents the relationship between inputs and outputs (Li
P. X., 2024). Unlike traditional feedforward neural networks, ELM
reduces complexity by avoiding iterative learning and parameter
tuning, transforming the training into a simple matrix inversion
problem. Hidden layer weights and thresholds are assigned
randomly, while output layer weights are directly calculated,
bypassing gradient descent. Therefore, ELM significantly reduces
training time and offers high learning efficiency, accuracy, and ease
of parameter adjustment (Chen and Wang, 2019; Lu et al., 2024; Liu
T. et al., 2021).

2.6 Model evaluation

The training set determination coefficient (RT
2), verification set

determination coefficient (RV
2), and mean square error (MSEP) are

utilized as indicators to determine the model performances. All the
models ran 10 times for averaging to ensure the robustness of the
model evaluation. The closer the determination coefficient (R2) is to
1, the better the fitting effect of the model (Li et al., 2023c). Among
them, R2 > 0.90 indicates excellent prediction ability of the model,
0.81 < R2 < 0.90 suggests good prediction performance of the model,
and 0.60 < R2 < 0.80 shows that the model is general but still useable
for prediction. The MSEP is employed to determine the deviation
between the predicted and real values. A larger R2 and a smaller
MSEP indicates higher accuracy and better stability of the model
(Cui et al., 2017).

3 Results

3.1 Chemical composition content

By mapping the average content of Ganoderma lucidum
polysaccharides and ergosterol (Figure 6), the polysaccharide

FIGURE 3
Topology diagram of backpropagation neural network.

FIGURE 4
Topology diagram of the decision tree.

FIGURE 5
Topology diagram of the extreme learning machine.
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content in Bozhou, Anhui, and Baise, Guangxi, was <1.0%, which
was the lowest among all the producing areas. In contrast, ergosterol
content was relatively high in Longquan, Zhejiang, and Fusong, Jilin

Province, with the highest levels found in Jilin City, Jilin Province.
These findings suggest significant variation in Ganoderma lucidum
contents across different areas; however, traditional separation and
detection methods were time-consuming and complex.
Furthermore, the performance of each component differs across
production areas, complicating the evaluation of Ganoderma
lucidum quantity based solely on a single component. Therefore,
using hyperspectral technology to predict the content and assess the
quality of Ganoderma lucidum may be highly valuable.

3.2 Spectral characteristics

The spectral reflectance of the GLC and GLP showed similar
trends in different wavelength bands, but their reflectance values
exhibited significant differences (Figure 7). The average reflectance
of the GLC was higher than that of the GLP. In the range of the
VNIR band, the reflectance map of the GLC appeared delaminated,
owing to structural variation, such as surface roughness and texture.
After crushing, the sample exhibited high uniformity, causing this
delamination effect to disappear and shifting the position of the
absorption peak accordingly. Absorption peaks were observed near
1100, 1300, and 1520 nm in the SWIR band; the peak at 1100 nm
may be related to the second overtone of N-H stretching, while that

FIGURE 6
Diagram of chemical composition content in Ganoderma
lucidum samples.

FIGURE 7
Spectral reflectance map of Ganoderma lucidum samples: (A) GLC spectrum in the range of SWIR and (B) VNIR. (C) GLP spectrum in the range of
SWIR and (D) VNIR.

Frontiers in Chemistry frontiersin.org06

Ran et al. 10.3389/fchem.2025.1534216

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1534216


at 1300 nm may be attributed to the second overtone of C-H
stretching. A local minimum is observed near 1200 and1430 nm;
the trough at 1200 nm may correspond to the ergosterol absorption
band in Ganoderma lucidum (Delwiche et al., 2019), and those at
1430 and 1520 nm may be related to the first overtone of O-H
stretching.

3.3 Modeling and analysis

Through the modeling of polysaccharide and ergosterol
contents in the GLC and GLP (Table 2), the training accuracy of
all models was >0.90, demonstrating strong performance. However,
model effects varied significantly across different band ranges. In the
SWIR band range, the BPNN and ELM models performed better
than those of the other models. The prediction of DT model results
showed that the GLC contained significantly higher levels of
polysaccharides and ergosterol compared to that of the GLP. The
prediction accuracy for the GLP was below 0.43, which was
insufficient for effective prediction. In the BP model, the
accuracy for predicting polysaccharides in the GLP slightly
exceeded that of the GLC, while the model achieved the highest
accuracy for predicting ergosterol, with an R2 value of 0.94.

In the VNIR band range, the BP model showed the optimal
prediction effect for polysaccharides in the GLP, achieving an R2of
0.96. In contrast, the ELM model predicted ergosterol in the GLC
with an R2 of 0.96. The performance of the DT model for GLP
significantly exceeded that of the SWIR band, particularly in
predicting ergosterol.

3.4 Characteristic wavelength selection

3.4.1 Result of characteristic wavelength selection
Two methods for feature-wavelength selection were proposed in

this study using the GA. The first method, iterative feature selection,
is conducted thrice to obtain different sets of feature wavelengths
(Figure 8). The second method is voting feature selection. The
second technique, voting feature selection, involves selecting
50 results with a determination coefficient >0.7. The wavelength
that appears most frequently is selected as the feature wavelength,
matching the count obtained from the iterative feature selection.

Polysaccharides select more characteristic wavelengths than
ergosterols in the VNIR band. This may be because
polysaccharides are polymeric compounds composed of multiple
monosaccharide molecules connected by glycosidic bonds that
contain numerous functional groups (e.g., OH). Its chemical
structure is complex, with various intramolecular and
intermolecular interaction types, such as hydrogen bonds and
van der Waals forces, which increase the overlap of the spectra.
Consequently, identifying the characteristic wavelengths becomes
challenging, and the number of these wavelengths is larger.

3.4.2 Characteristic wavelength modeling results
This study employed two GA to extract the characteristic

wavelengths and established three models: BPNN, ELM, and DT.
The first was used to predict polysaccharides (Table 3). The training
accuracy of all models was >0.81, and the MSEP of the verification
set was minimal, indicating good performance. When using two
types of GA selection across different wavelength ranges, the
prediction accuracy for GLC and GLP surpasses that of the
characteristic wavelength voting method. In the SWR range, the
prediction accuracy of the three models under voting conditions
ranked as follows: ELM > BPNN > DT. The ELMmodel showed the
best prediction performance for GLC and GLP, with R2 values of
0.96 and 0.95, respectively. The DT model of the GLC performed
worse than the original model under two types of GA conditions.
However, the prediction accuracy of iterative feature selection is
significantly higher than that of voting, with R2 values > 0.61. For
GLP, the prediction accuracy of the DT model was better than that
of the original model when using the voting GA. Across all three
models, the prediction accuracy for GLC was higher than that of
GLP. In the VNIR range, the prediction accuracy of the DT model
was significantly higher than that of SWIR, increasing from 0.23 to
0.90 by the third iteration of GLC. The prediction accuracies of the
two GA methods were significantly higher than those of the original
models. The prediction accuracy of the three models was consistent
within the SWIR range. The GLC achieved the highest prediction
accuracy with an R2 value of 0.96 in the ELMmodel under the voting
GA condition. Overall, for GLC, the average R2 values were 0.82 for
iterative GA selection and 0.90 for voting GA, while for GLP, the
values were 0.82 and 0.88, respectively.

All models for predicting ergosterol levels (Table 4) achieved a
training accuracy >0.93, the MSEP of the verification set was

TABLE 2 Predictive analysis based on original spectral modeling.

SWIR VNIR

GLC GLP GLC GLP

RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2

polysaccharides DT 0.79 0.16344 0.93 0.43 0.54344 0.86 0.70 0.39496 0.92 0.72 0.13792 0.94

BP 0.90 0.06663 0.96 0.91 0.04238 0.98 0.92 0.11338 0.95 0.96 0.03277 0.97

ELM 0.94 0.08107 0.90 0.92 0.08555 0.92 0.92 0.02883 0.93 0.91 0.06044 0.93

ergosterol DT 0.77 0.00090 0.96 0.28 0.00116 0.92 0.92 0.00024 0.96 0.86 0.00047 0.98

BP 0.91 0.00045 0.94 0.94 0.00041 0.96 0.92 0.00024 0.95 0.90 0.00030 0.99

ELM 0.91 0.00059 0.93 0.91 0.00029 0.93 0.96 0.00033 0.96 0.92 0.00041 0.92
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FIGURE 8
Number of characteristic wavelengths.

TABLE 3 Modeling and prediction results of polysaccharides based on different GA characteristic wavelength extraction methods.

SWIR VNIR

GLC GLP GLC GLP

RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2

Iteration GA1 DT 0.43 0.37866 0.86 0.22 0.41046 0.85 0.85 0.12045 0.92 0.72 0.21023 0.93

BP 0.88 0.08973 0.90 0.90 0.09160 0.94 0.92 0.05908 0.93 0.92 0.13836 0.96

ELM 0.95 0.05354 0.95 0.95 0.04008 0.97 0.96 0.02238 0.98 0.94 0.13313 0.95

GA2 DT 0.47 0.36487 0.81 0.5 0.29792 0.82 0.84 0.09545 0.89 0.82 0.08886 0.92

BP 0.91 0.10084 0.91 0.94 0.03787 0.94 0.92 0.07607 0.93 0.91 0.04212 0.95

ELM 0.92 0.07141 0.96 0.91 0.05589 0.91 0.96 0.04511 0.97 0.93 0.04819 0.94

GA3 DT 0.23 0.62163 0.81 0.73 0.12729 0.81 0.9 0.00020 0.9 0.73 0.13908 0.94

BP 0.84 0.19085 0.88 0.94 0.05518 0.96 0.92 0.06307 0.93 0.9 0.12113 0.92

ELM 0.94 0.05664 0.94 0.88 0.09554 0.94 0.92 0.14226 0.96 0.85 0.34920 0.92

Vote GA1 DT 0.62 0.41219 0.87 0.61 0.15264 0.81 0.86 0.05895 0.95 0.86 0.44724 0.83

BP 0.94 0.04855 0.94 0.92 0.06101 0.95 0.96 0.05150 0.96 0.95 0.03769 0.96

ELM 0.96 0.02695 0.96 0.95 0.04940 0.95 0.96 0.04319 0.98 0.94 0.07691 0.95

GA2 DT 0.76 0.08397 0.84 0.69 0.10474 0.82 0.91 0.07629 0.92 0.91 0.03906 0.94

BP 0.94 0.03086 0.94 0.94 0.05594 0.95 0.94 0.01371 0.94 0.93 0.08137 0.95

ELM 0.96 0.03483 0.96 0.95 0.03872 0.95 0.96 0.03272 0.97 0.94 0.03446 0.97

GA3 DT 0.76 0.11890 0.88 0.73 0.17983 0.83 0.91 0.07568 0.91 0.76 0.17893 0.93

BP 0.95 0.08343 0.93 0.94 0.04940 0.96 0.95 0.03238 0.96 0.9 0.12855 0.88

ELM 0.96 0.04188 0.97 0.95 0.08341 0.92 0.94 0.06976 0.97 0.89 0.22995 0.92
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minimal, demonstrating effective training. In the SWIR range, the
DT model performs worse than that of the BPNN and ELMmodels.
The iterative GA prediction accuracy for ergosterol in GLP
was <0.54, and the accuracy of GA1 was lower than that of the
original model, with an R2 value of only 0.21. The DTmodel selected
by the three-voting GA outperformed the original model, achieving
an R2 value > 0.61. In contrast, the ELM model in GA3 exhibited a
lower performance compared to that of the iterative model. The
prediction effect of the three models of GLC under voting GA was
ranked as ELM > BPNN > DT, with the ELM achieving the highest
accuracy at 0.95. In the iterative GA selection, the BPNN model
performed worse than the original model inGA1andGA3, and only
the DTmodel in GA2 outperformed the original model. In the VNIR
range, the DT model developed using GLP demonstrated superior
performance than that of the SWIR range. The prediction accuracy
of the three models assessed in the voting GA3 was slightly lower
than that of the iterative GA3. The predictive performance of the
three models utilizing GLC was consistent with the SWIR findings,
ranking as follows: ELM > BPNN > DT, with ELM achieving the
highest prediction accuracy of 0.97. Overall, the average R2 of the
iterative GA model based on the characteristic wavelengths of the
GLC was 0.87; however, the voting GA model achieved 0.91. The
iterative GA model using the characteristic wavelengths of GLP
resulted in an R2 of 0.82, compared to an R2 of 0.87 for the voting GA
model. In summary, the predictions for ergosterol and

polysaccharides are consistent across different models, with the
model employing characteristic wavelengths selected by voting
GA being the most effective. Among them, the predictive
performance of ELM in the GA1 and GA2 in the VNIR band
was the highest, with R2 of 0.97.

3.4.3 Variable dimension reduction
The first five principal components for analysis were retained in this

study. Only the DT model in the SWIR band improved the predictions
of polysaccharides and ergosterol in the fruiting body powder (Table 5),
increasing R2 from 0.43 to 0.28 to 0.63 and 0.70, respectively. The
predictive results from the other models were inferior to those of the
original model, the ELM model achieved MSEP of 3.02734 and
2.49455 for polysaccharide prediction of GLP in SWIR and VNIR
bands, respectively, probably because PCA is generally more effective
for linear data; however, most hyperspectral data exhibit high-order
correlations, affecting dimensionality reduction outcomes.

3.5 Visualization of polysaccharide and
ergosterol content

We collected a complete hyperspectral image of Ganoderma
lucidum with a stalk (Figure 9) and visualized the distribution of
polysaccharide and ergosterol content. The results showed that the

TABLE 4 Modeling and prediction results of ergosterol based on different GA characteristic wavelength extraction methods.

SWIR VNIR

GLC GLP GLC GLP

RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2

Iteration GA1 DT 0.73 0.00084 0.97 0.21 0.00302 0.85 0.87 0.00030 0.92 0.87 0.00051 0.98

BP 0.86 0.00060 0.94 0.92 0.00047 0.96 0.92 0.00044 0.93 0.81 0.00079 0.98

ELM 0.94 0.00017 0.95 0.92 0.00039 0.93 0.94 0.00021 0.95 0.92 0.00027 0.96

GA2 DT 0.79 0.00018 0.93 0.54 0.00183 0.91 0.79 0.00079 0.87 0.94 0.00031 0.95

BP 0.9 0.00036 0.91 0.94 0.00014 0.95 0.92 0.00026 0.93 0.87 0.00044 0.92

ELM 0.95 0.00020 0.97 0.93 0.00015 0.95 0.93 0.00036 0.95 0.88 0.00149 0.94

GA3 DT 0.73 0.00058 0.94 0.46 0.00283 0.86 0.77 0.00077 0.83 0.91 0.00037 0.98

BP 0.94 0.00033 0.95 0.92 0.00043 0.94 0.91 0.00040 0.91 0.92 0.00058 0.93

ELM 0.95 0.00048 0.97 0.92 0.00283 0.94 0.9 0.00105 0.94 0.89 0.00186 0.94

Vote GA1 DT 0.75 0.00056 0.92 0.62 0.00119 0.92 0.89 0.00039 0.92 0.88 0.00045 0.94

BP 0.94 0.00017 0.94 0.95 0.00013 0.97 0.95 0.00019 0.97 0.93 0.00025 0.98

ELM 0.95 0.00015 0.96 0.93 0.00020 0.94 0.97 0.00033 0.98 0.94 0.00027 0.94

GA2 DT 0.8 0.00037 0.88 0.74 0.00134 0.89 0.86 0.00041 0.90 0.94 0.00026 0.98

BP 0.94 0.00024 0.94 0.95 0.00030 0.96 0.95 0.00044 0.95 0.94 0.00026 0.96

ELM 0.95 0.00019 0.97 0.95 0.00043 0.96 0.97 0.00013 0.98 0.94 0.00060 0.96

GA3 DT 0.86 0.00029 0.93 0.61 0.00192 0.91 0.88 0.00097 0.89 0.8 0.00060 0.97

BP 0.94 0.00041 0.95 0.83 0.00067 0.93 0.96 0.00020 0.99 0.89 0.00052 0.91

ELM 0.95 0.00063 0.97 0.91 0.00086 0.96 0.92 0.00032 0.96 0.86 0.00131 0.93
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polysaccharide content of the Ganoderma lucidum stalk was
significantly lower than that of the Ganoderma lucidum cap. The
average levels of polysaccharide and ergosterol decreased following
pulverization, which may explain why predictive accuracy for GLP
was lower than that of the GLC. Additionally, pulverization
improves sample homogeneity, increasing the spectral reflectance
and potentially reducing prediction accuracy.

The whole Ganoderma lucidum fruiting body maintains its
natural morphology and tissue structure, which may play a role
in the synthesis, storage, and release of its active components. The
structural integrity allows for interactions among various
compounds, creating a relatively stable system that protects active
components from environmental factors, such as oxidation. In
contrast, pulverizing Ganoderma lucidum disrupts this natural
structure, increasing its surface area and making it more
susceptible to external factors, causing the degradation of active
components and affecting predictive accuracy.

4 Discussion

HSI was used in this study to predict the chemical composition
of the GLP and GLC. The results showed that the average predictive

ability of the GLC was better than that of GLP. HSI technology was
used to determine calcium and other trace elements in wheat grains
and flour (Zhang et al., 2010). The results showed that the prediction
accuracy of wheat grains was higher than that of wheat flour. This is
consistent with the findings of the present study, in which intact
samples yielded better predictions.

In the original BPNN and ELM models, polysaccharides and
ergosterols achieved high prediction accuracies, R2 > 0.9. However,
in the GLP range of the SWIR band, the DT model showed a lower
prediction accuracy, R2 < 0.43, particularly ergosterol, with an R2 of
only 0.28. Furthermore, the predictive performance across models in
the SWIR band is inferior to that in the VNIR band,and the MSEPs
of the three models are significantly higher in the SWIR band. This
may be attributed to the visible light and part of the near-infrared
spectrum included in the VNIR band, providing extensive
information on the color, texture, and chemical composition of
objects. The SWIR band, while valuable, does not provide as
abundant spectral information as that in the VNIR band.
Common environmental substances, such as soil (Li et al.,
2023a), show strong spectral responses in the VNIR band, and
chlorophyll exhibits pronounced absorption features in the VNIR
band (Sun et al., 2022). Additionally, the VNIR reflectance spectrum
is less affected by water (Yang et al., 2023). VNIR band sensor

TABLE 5 Modeling and prediction results based on variable dimensionality reduction methods.

SWIR VNIR

GLC GLP GLC GLP

RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2 RP
2 MSEP RT

2

polysaccharides DT 0.50 0.49257 0.80 0.63 0.12218 0.72 0.54 0.17276 0.72 0.71 0.17911 0.85

BP 0.32 0.38350 0.57 0.55 0.14353 0.81 0.57 0.25815 0.64 0.34 0.37401 0.43

ELM 0.60 0.45253 0.83 0.53 3.02734 0.91 0.69 0.43786 0.95 0.38 2.49455 0.95

ergosterol DT 0.62 0.00132 0.82 0.70 0.00114 0.74 0.68 0.00101 0.73 0.86 0.00039 0.93

BP 0.48 0.00183 0.56 0.57 0.00096 0.66 0.58 0.00121 0.80 0.76 0.00087 0.76

ELM 0.61 0.06103 0.89 0.53 0.01555 0.95 0.65 0.00445 0.92 0.74 0.00282 0.96

FIGURE 9
PCA diagram of Ganoderma lucidum. (A) Polysaccharides and (B) ergosterol.
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technology is well-developed, facilitating data acquisition and
processing with high spatial and spectral resolution. This
technology has been extensively validated and applied in
agriculture, forestry, geology, and environmental monitoring. In
contrast, data from the SWIR band tends to be more complex, often
resulting in large datasets that require more sophisticated algorithms
to eliminate noise and manage other processing challenges.
Therefore, advanced techniques are typically needed to handle
SWIR data effectively. In summary, the VNIR band provides a
better predictive performance than the SWIR band owing to its
richer spectral content, higher data quality, and simpler processing
methods, making it suitable for several applications.

In this study, characteristic wavelengths extracted through
different GA methods were used to construct the predictive
model. In most cases, models based on the characteristic
wavelength performed better than those of the original model.
The GA effectively extracts feature wavelengths, reducing noise
and minimizing redundant input data, aligning with findings
from other studies. Additionally, GA voting offers distinct
advantages over GA iteration, probably owing to the inherent
randomness in GA iteration processes, such as the initial
population generation, crossover, and mutation, which may lead
to inconsistent results. Each run can yield significantly different
results, and the algorithm may become trapped in local optimal
solution. Owing to its sequential nature, where each iteration
depends on the previous results, greatly affected by the final
results. In contrast, GA voting aggregates multiple independent
GA results, favoring solutions that perform well across numerous
runs, thus reducing the influence of randomness., This approach
enhances the reliability and stability of the results, increasing the
likelihood of finding a global optimal solution. The voting approach
can efficiently screen for superior solutions and may achieve
improved outcomes without requiring extensive iterations.

PCA dimensionality reduction often underperforms relative to
the original model, likely because of its limited ability to capture the
inherent structure and complexity of nonlinear data (Baytas et al.,
2016). Additionally, the high sensitivity of PCA leads to deviations
in the principal components, highlighting the need for data
preprocessing to mitigate these deviations. Moreover, PCA
reduces data dimensions by projection, potentially leading to the
loss of some information. Furthermore, PCA assumes independence
among input features. However, when features are highly correlated,
PCA may fail to capture all data variances, negatively affecting the
performance of the reduced-dimensional model.

This study examines how different feature wavelength extraction
and regression algorithms perform in analyzing the chemical
composition of Ganoderma lucidum in various states. The results
indicate that the model combining feature wavelength extraction
with machine learning algorithms effectively predicts the chemical
components of Ganoderma lucidum. Among them, the ELM model
built by GLC after voting feature selection was the most effective for
polysaccharides and ergosterol prediction table. This study
highlights the effectiveness of hyperspectral imaging in the SWIR
and VNIR ranges for quickly evaluating quality parameters in
Ganoderma lucidum and has potential applications in other
traditional Chinese medicines. These findings offer important
insights that could advance innovative approaches in this field

and serve as a reference method for quality control in traditional
Chinese medicines.

The application of HSI technology in traditional Chinese
medicine (TCM) is well-documented and widely studied, but
studies focused on Ganoderma lucidum remain limited. Despite
the achievements made in this study, some limitations persist, such
as a small sample size, variability in origin and strain, and the initial
stages of model parameter optimization. Especially the small sample
size of only 13 samples in the test set presents numerous challenges
for model evaluation, generalization performance assessment, and
data mining analysis. Therefore, future research should consider
expanding the sample size to improve the accuracy and reliability of
the results. Studies should also examine Ganoderma lucidum from
diverse production areas and varieties, incorporate predictions for
additional chemical components, and further refine model
parameters.

HSI is a powerful analytical technology with broad application
prospects and development potential. Simultaneously, the
integration of artificial intelligence and big data expands the
application of HSI technology, especially in fields of TCM, such
as authenticity identification, quality evaluation, and origin
traceability. It can also support monitoring of cultivation, harvest,
and processing of TCM. HSI contributes to quality control and
production process optimization, making outstanding contributions
to standardizing TCMs.
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