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Resistive type gas sensors based on wide-bandgap semiconductor oxides are
remaining one of the principal players in environmental air monitoring. The rapid
development of technology and the desire to miniaturize electronics require the
creation of devices with minimal energy consumption. A promising solution may
be the use of photoactivation, which can initiate/accelerate physico-chemical
processes at the solid-gas interface and realize detection of flammable and
explosive gases at close to room temperature. This work examines the
mechanism underlying the increased sensitivity to various gases under
photoactivation. The review is intended to clarify the current situation in the
field of light-activated gas sensors and set the vector for their further
development in order to integrate with the latest technological projects.
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1 Introduction

Over the past decades, the rapid development of industry has led to an increase in the
number and type of pollutants and toxic substances in the atmosphere. The pollution level
often exceeds maximum permissible concentrations in megapolices and industrial areas,
which can lead to serious health problems and climate changes (World Health
Organization, 2006; National Research Council, 2012; Breisinger, 2012). Therefore, the
creation of air monitoring systems is an extremely important task (Santhanam and
Ahamed, 2018). Currently, to determine trace gas concentrations research centers and
technology laboratories use different complex methods as gas chromatography, mass
spectrometry and infrared spectroscopy, which are not suitable for mass use because of
the high cost of the instruments, their overall dimensions, large weight, high power
consumption and complex maintenance (Wang et al., 2023). An alternative could be
the development of miniature sensors for express and mobile gas detection (White and
Turner, 1997; Nikolic et al., 2020; Zhang et al., 2016).

Resistive gas sensors are promising for wide practical application due to their simple
design and low cost, high sensitivity, fast response and the possibility of integration into
electronic devices (Nikolic et al., 2020; Neri, 2015; Chai et al., 2022; Korotcenkov et al.,
2013). Wide gap semiconductor metal oxides (SMOs) are most often used as the sensitive
materials. The analytical signal is formed during the interaction of gas with the surface layer
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of the semiconductor that leads to a change in resistance (Nikolic
et al., 2020; Wang et al., 2010). Significant disadvantages of such
sensors include insufficient selectivity and stability, as well as
relatively high power consumption caused by high operating
temperatures (250–500°C). The development of new strategies for
the effective gas detection at close to room temperature (RT) has
great potential (Joshi et al., 2018; Majhi et al., 2021a; Srinivasan et al.,
2019). Light activation (Espid and Taghipour, 2017; Lee and Yoo,
2022;Wang et al., 2021; Chizhov et al., 2021; Xu andHo, 2017; Ma Z.
et al., 2021; Kumar et al., 2021; Majhi et al., 2021b) allows increasing
the concentration of free charge carriers, activating and controlling
the kinetics of ongoing chemical processes on the surface of
semiconductor oxides, and accelerating the process of desorption
of reaction products (Anothainart et al., 2003; Boukhvalov et al.,
2021; Liu et al., 2014). This article provides an overview on
semiconductor gas sensors operating under illumination and
discusses the importance of photoactivation for optimizing gas
sensor technology.

2 Photoactivated semiconductor metal
oxide gas sensor systems

Over the past decades, the number of scientific publications
devoted to the study of photoactivated gas sensors has increased
significantly (Figure 1) that demonstrates the effectiveness of this
approach in gas detection (Espid and Taghipour, 2017; Wang et al.,
2021; Chizhov et al., 2021; Xu and Ho, 2017; Ma Z. et al., 2021;
Kumar et al., 2020; Šetka et al., 2021).

The effect of ultraviolet (UV) and visible light irradiation
with the energy exceeding band gap of semiconductor/
photosensitizer, on the receptor function of wide-gap SMOs is
determined by the following factors (Majhi et al., 2021b; Scandola
et al., 1994).

• Increasing carrier concentration in a semiconductor matrix.
When a semiconductor oxide is illuminated with radiation of
appropriate energy for the band gap transition, an electron-
hole pair is generated and the electron is excited to the
conduction band (CB). The photogenerated hole
recombines with an electron localized by oxidizing gas
molecules chemisorbed on the surface. Photogenerated
electrons increase the concentration of charge carriers in
the CB, which provides an increase in the conductivity of
the n-type semiconductor. The value of conductivity is
determined by the dynamic equilibrium of the processes of
adsorption and desorption of an oxidizing gas.

• Changing the type and concentration of surface adsorption
sites. Photodesorption leads to a decrease in the concentration
of chemisorbed oxygen, whose positions can be occupied by
water molecules and hydroxyl groups according to the
molecular and dissociative adsorption mechanisms,
respectively. This leads to a significant increase in the
hydrophilicity of the surface of SMOs under UV radiation.

• Formation of highly active radical particles. Upon detection of
volatile organic compounds photolysis of analyte molecules
can occur on the semiconductor’s surface that facilitates their
subsequent oxidation with chemisorbed oxygen, leading to a
change in the conductivity of the semiconductor.

• Decreasing the intergrain energy barrier height by changing
the intergrain charge states and increasing the probability of
tunneling through the intergrain barriers by decreasing the
depletion layer widths in the adjacent grains for
polycrystalline materials.

The mechanism of sensor signal formation on the surface of the
sensitive layer of resistive gas sensors during photoactivation (UV
irradiation in the case of pristine SMOs) can be explained on the

FIGURE 1
Literature survey of publications for gas sensors operating at RT
under photoactivation from 2000 to October 2024, according toWeb
of Science. Core collection search keywords: TS = gas sensor AND
(TS = room temperature OR TS = low temperature) AND (TI = UV
OR TI = ultraviolet OR TI = light OR TI = illumination OR TI = LED OR
TI = photo OR TI = irradiation OR TI = activation OR TI =
photosensitive OR TI = light-activated OR TI = photo-activated).

FIGURE 2
Schematic illustration of SMOs gas sensing response in the
presence of oxidizing and reducing gases in dark conditions and under
illumination.
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basis of ionosortpion concept (Das et al., 2022; Ji et al., 2019; Staerz
et al., 2022; Mishra et al., 2004; Mall et al., 2018). In air, oxygen
molecules can be adsorbed on the surface of a semiconductor oxide in
the form of O−

2 , O
− and O2− ions by capturing electrons from the

conduction band (Barsan and Weimar, 2001; Barsan et al., 1999;
Barsan et al., 2007). As a result, an electron depletion layer comparing
to the bulk is formed. The difference between work functions leads to
the formation of a Schottky potential barrier at the boundaries of the
semiconductor crystalline grains resulting in the resistance increase.
These chemisorbed oxygen species play a key role in interactions with
reducing gases. At RT photogenerated holes can recombine with the
electrons localized by chemisorbed oxygen ions, facilitating oxygen
desorption (Equation 1) while photogenerated electrons can interact
with an oxygen molecule to form photosorbed oxygen species
(Equation 2) (Chizhov et al., 2023).

O−
2 ads( ) + h+ h]( ) ↔ O2 gas( ) (1)

O2 gas( ) + e− h]( ) ↔ O−
2 ads( ) (2)

The polarity of the sensor response depends on the type of gas-
analyte and the main charge carriers. Figure 2 shows a schematic
representation of n-type (SnO2, In2O3, ZnO, WO3) and p-type
(Co3O4, NiO, CuO) SMOs resistance behavior in the presence of
oxidizing (NO2, O3, Cl2) and reducing (NH3, CO, H2S) gases in dark
conditions and after under light irradiation. When n-type SMO
interacts with oxidizing gases with higher electron affinity (Eea
(NO2) = 2.27 eV, Eea (O3) = 2.10 eV) then that for O2 molecules
(Eea (O2) = 0.44 eV) (Zhou et al., 2001; Zemke et al., 1972), the
resistance increases due to electron depletion layer extension. The
adsorption of reducing gases, on the contrary, leads to a decrease in
resistance due to their reaction with chemisorbed oxygen and
releasing electrons into CB. Under illumination, electron-hole
pairs are generated that leads to an increase in the concentration
of electrons and photodesorption of oxygen from the surface by
photogenerated holes (Equation 1). The consequence of these
processes is a decrease in the resistance below the baseline value
in a pure air atmosphere. Oxidizing gases will be adsorbed at a
higher rate under such conditions, increasing the resistance of the
sensor. The amplitude of the decreasing resistance when interacting
with reducing gases is smaller, since the reaction requires
chemisorbed oxygen, which undergoes photodesorption.

SMOs with p-type conductivity react in a conversely manner.
These materials have higher baseline resistance comparing to n-type
SMOs due to the less-conducting core and semiconducting hole-
accumulation shell on the particles’ surface. Their resistance
decreases in the atmosphere of oxidizing gases since gas
molecules capture the electrons resulting in the increase in holes
concentration. When reducing gas interacts with chemisorbed
oxygen species the electrons release into the CB and the hole
concentration decreases leading to the increase in resistance.
Light illumination can further enhance sensing effect due to
availability of more charge carrier species.

2.1 Light activation of pristine SMOs

Saura (1994) found that UV illumination could improve the
sensitivity of SnO2-based gas sensor towards acetone and

trichloroethylene by increasing the concentration of
photogenerated charge carriers and decreasing the intergranular
barriers height. Later E. Comini et al. achieved an increase in
response of SnO2 thin film gas sensors toward NO2 under UV
light by concentrating the light flux onto the sensor surface using
optical fibers (Comini et al., 2001). These results were supported by
Mishra et al. (2004) who proposed a theoretical model of SMOs
sensor signal under UV irradiation. They concluded that the
sensitivity of sensors based on polycrystalline materials should
increase with increasing light fiux density and should decrease
with an increase in grain size of the sensor material. A
comparative study of single crystal SnO2 nanowires when
detecting NO2 under UV photoactivation and in dark conditions
demonstrated high sensor response in the first case. The results
showed that UV irradiation is a good alternative to thermal heating
not only for activation of surface chemical reactions and products
desorption, but also for increase in the sensor response towards
oxidizing gases (Prades et al., 2009).

A comparative assessment of the efficiency of porous TiO2 and
ZnO gas sensors when detecting formaldehyde and acetone at RT
under UV light demonstrated that the responses of ZnO were
1,000 times less than the responses of TiO2. Such a huge
difference between TiO2 and ZnO was explained by the quantity
of chemisorbed oxygen species on the sensors surfaces under UV
light confirmed by the ratio of light and dark currents for these
materials (Chen et al., 2012). Additionally, mass-spectrometry
analysis confirmed the possibility of oxygen photoadsorption on
SMOs under UV illumination (Chizhov et al., 2022). As radiation
sources, low-power miniature LEDs have certain advantages (Nam
et al., 2024). Replacing UV radiation with a visible light can further
reduce energy consumption. Moreover, the visible range of the
spectrum accounts for the maximum intensity of solar radiation,
which can be additionally used as a light source. It is worth noting
that wide gap SMOs are optically transparent in the visible spectral
range (Soler-Fernández et al., 2024).

Various approaches can be used to improve the selectivity and
reduce the power consumption of SMOs based resistive gas sensors
by controlling SMOs morphology, microstructure, type and
concentration of bulk defects and surface active sites (Nikolic
et al., 2020; Cho and Park, 2016). A promising direction is the
creation of new optimized gas sensitive materials that absorb visible
light. This approach opens up new possibilities and advantages for
practical application. Firstly, visible range light sources (mainly low-
power miniature LEDs) are currently widely available and
inexpensive, unlike sources with high photon energy (UV range),
which are still technologically and materially more expensive.
Moreover, such sources consume less energy than UV sources.
Secondly, as an alternative, natural sunlight can be used, a
significant part of which falls in the visible range (~5%
ultraviolet, ~43% visible and ~52% IR range). Shifting the SMOs
optical sensitivity to the long-wavelength region is possible by
creating defects in their crystal structure (Zhang et al., 2017) or
modifying their surface with photosensitizers (Bignozzi et al., 1995).

Commercial gas sensors used until the early 2000’s had an
energy consumption of about 400 mW–1 W. They were replaced
by smaller sensors with a thin film structure that consume
120–280 mW. The next step in the evolution are the sensors
based on MEMS (Micro Electro Mechanical Systems) technology,
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which are currently considered the most energy efficient with a
power consumption of 15–60 mW (Burgués and Marco, 2018).
Recent studies have shown ultra-low power consumption for sensors
integrated with μLEDs (micro light-emitting diodes) operating
under illumination. This method can reduce energy consumption
up to several hundreds of microwatts (Cho et al., 2020; Lee K.
et al., 2023).

2.2 Photosensitization of SMOs

An increase in the SMOs sensitivity and selectivity when
detecting various gases under visible light can be achieved using
photosensitizers – metal nanoparticles with the plasmon resonance
effect (Rossi et al., 2019; Zhang Q. et al., 2018; Gogurla et al., 2014),
organic dye molecules (Paolesse et al., 2017; Zhang et al., 2015; Peng
et al., 2011) or narrow gap semiconductors of the AIIBVI (CdS with
Eg = 2.4 eV; CdSe with Eg = 1.7 eV) and AIIIBV groups (InP with Eg =
1.35 eV) (Chizhov et al., 2016; Geng et al., 2016; Vasiliev et al., 2013;
Yang et al., 2014).

Plasmon resonance (PR) is known as the phenomenon of
collective oscillation of valence electrons relative to the atomic
core level, coinciding in frequency with external light radiation
(Rossi et al., 2019; Khurgin, 2019; Basova et al., 2016). The most
mentioned type of sensitizers exhibiting the PR effect under visible
light are gold and silver nanoparticles possessing high extinction
coefficient and stability (Suh et al., 2021; Panayotov and Morris,
2016). By varying the size and shape of nanoparticles, their
extinction coefficient can be controlled over a fairly wide spectral
range (Lu et al., 2009; Linic et al., 2011). The photosensitization by
plasmonic nanoparticles may be associated with various effects
(Chizhov et al., 2021; Rossi et al., 2019; Manjavacas et al., 2014;
Kim et al., 2018; Zhang Y. et al., 2018; Ma Q. et al., 2021; Watanabe
et al., 2006).

• The PR effect causes the formation of inhomogeneous
electric field near metal nanoparticles, which can
sufficiently influence on the formation of electron-hole
pairs in a semiconductor.

• Themultiple scattering of photons by plasmonic nanoparticles
can increase the optical path of light.

• Plasmonic nanoparticles can be a source of local heat
generation.

In work Zhang Q. et al. (2018) the authors obtained
heterostructures based on polycrystalline ZnO and Ag
nanoparticles. Compared with pure ZnO, the ZnO/Ag
heterostructures show an increase in the sensor response towards
NO2 (0.5–5 ppm) at RT under photoactivation in 365–520 nm
spectral range. The maximum signal and the greatest selectivity were
achieved at λ = 470 nm corresponding to the plasmon resonance of
Ag nanoparticles. Encapsulation of Ag nanoparticles in zeolitic
imidazolate frameworks-8 (ZIF-8) is another strategy for
increasing sensitivity by combining high porous material with
photoactive particles. The crucial role of the Ag nanoparticles
size effect on triethylamine sensing was shown: the less the
particles’ size the better effect of plasmon resonance realized,
resulting in higher sensor signal (Yao et al., 2024).

Decoration of ZnO with Au nanoparticles can also lead to
significant enhancement of gas sensing parameters. Thus,
combination of several effects, like localized surface plasmon in
Au nanoparticles, spillover effect and the enhancement of
chemisorption and dissociation of gas results in the enhanced
sensor response of the Au-modified ZnO nanosheet sensor to
NO2 at RT (Mun et al., 2013). Sensitivity of Au-ZnO
nanocomposite can also be enhanced both in UV and visible
region, leading to detection of NO (Gogurla et al., 2014).
Composite systems modified with bimetallic clusters, like AuAg/
ZnO (Sun et al., 2024a) and Pd@Ni/ZnO (Sun et al., 2024b), showed
superior CH4 sensing performance at RT under UV illumination.

Organic photosensitizers – organometallic complexes, are of
particular interest because the central cation can be an active
adsorption or catalytic center in solid-gas interaction, providing
an increase in selectivity. Under suitable radiation, the
organometallic complex goes into an excited state, the electrons
first move from the highest occupied molecular orbital (HOMO) to
the lowest unoccupied molecular orbital (LUMO), from where they
can be transferred to the semiconductor’s CB. Photogenerated holes
remaining at the HOMO level can drift to the crystal under electric
field gradient and subsequently recombine with electrons localized
on chemisorbed molecules of oxidizing gases. Thus, visible light
irradiation of hybrid materials leads to the photodesorption of
oxidizing gases (Anothainart et al., 2003).

To increase the efficiency of detecting gases under visible light
using hybrid materials, a number of requirements are imposed on an
organic photosensitizer (Kaushik et al., 2015).

• high molar extinction coefficient in the spectral region
coinciding with the LED radiation energy;

• chemical stability, thermal stability and photostability towards
probe analytes and external conditions;

• optimal alignment of energy levels to ensure energetically
favorable charge transfer: the LUMO of the photosensitizer
should be higher in energy than semiconductor’s CB, and the
HOMO should be between the semiconductor’s CB and the
oxidation reaction potential;

• optimal arrangement of the photosensitizer molecular parts in
space: HOMO should be far away from the semiconductor
surface, LUMO should be on the ligand or fragment of the
molecule associated with the semiconductor surface.

A number of works show effective results on using organic
molecules as photosensitizers. A study of the gas sensor properties of
hybrid materials with heterocyclic Ru(II) complexes towards NO or
NO2 in pulsed illumination mode with different wavelengths (470,
525 and 630 nm) showed that these photosensitizers allow shifting
spectral sensitivity to the visible region and detecting low
concentrations of nitrogen oxides at RT (Rumyantseva et al.,
2018; Nasriddinov et al., 2020). Different composites based on
porphyrins coated SMOs were developed, presenting promising
application in the detection of VOCs (Sivalingam et al., 2013;
Ekrami et al., 2018; Magna et al., 2017; Magna et al., 2014).

The authors Chizhov et al. (2016) studied the effect of the
surface sensibilization of nanocrystalline ZnO, SnO2 and In2O3 with
CdSe colloidal quantum dots (QD) on the interaction with NO2 at
RT under green light (λ = 525 nm) corresponding to the CdSe QD
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absorption band. Photogenerated electrons are injected from the QD
into the SMOs CB, while photoexcited holes can go into
recombination with electrons localized in chemisorbed O2 and
NO2 species. Besides, the photogenerated electrons enhances the
interaction with the oxidizing gas NO2. The most effective
photosensitization was demonstrated for the In2O3-based
nanocomposites due to the maximum difference in the position
of the energy level of the photoexcited electron at the CdSe QD and
the bottom of the In2O3 conduction band.

In addition to all of the above materials, in work Wang et al.
(2024) Bi2WO6 nanosheets supported on CuBi2O4 nanorods were
used as gas sensors working at 110°C under blue light. Formation of
heterojunction allowed increasing sensitivity and selectivity for
n-butyl alcohol among 25 kinds of common organic gases. The
authors Liu et al. (2024) obtained heterostructures based on
mesoporous Cu-BTC MOF (tricarboxylic acid metal organic
framework) and Bi2MoO6 nanocrystals. Such materials showed
high selectivity when detecting acetone under UV light. Some
other materials, like AgMoS2 and PdMoS2 (Rawat et al., 2024),
CoyZn1-yFe2O4 (Ravikumar and Sivaperuman, 2024) showed
enhanced light-assisted sensing response towards NH3 at RT.

Van der Waals two-dimensional (2D) materials and
heterostructures, such as graphene, transition metal
dichalcogenides, MXenes also have demonstrated considerable
results for gas detection under photoactivation (Joshi et al., 2018;
Kumar et al., 2020; Deb et al., 2024). Herein, several examples can
confirm their feasible practical application for gas sensing: g-C3N4

modified ZnO composite for CH4 detection (Zhang et al., 2023),
Ti3C2Tx/TiO2/graphene composite with sandwich structure for NH3

sensing (Lin et al., 2024), In2O3/rGO composites for NH3 detection
in humid conditions (Nasriddinov et al., 2023), Bi2S3/Sb2S3
heterostructure for trace H2S detection (Yu et al., 2024),
graphene-wrapped ZnO nanocomposite with enhanced toluene
sensing (Huang et al., 2024). Theoretical analysis of the HCHO
adsorption behavior on graphenylene-like ZnMgX2 (X = O, S)
monolayers showed that this type of interaction results in a
strong chemisorption and does not require the presence of
dopant (Chang et al., 2024). Significant improvements in gas
sensor characteristics by 2D materials may be associated with
tunable band gaps, unusual electronic and optical characteristics,
formation of p–n heterojunctions, which lead to effective charge
separation.

3 Further development prospects

The creation of gas sensors working under photoactivation is a
new, actively developing direction, which has a huge potential for
the design of breakthrough sensor technologies. The use of
photoactivated gas sensors with low power consumption and
compact LEDs allows one to create miniature monitoring
systems and portable gas analyzers (electronic noses) not only for
indoor and outdoor air monitoring, but also in other areas including
breath analysis for non-invasive medical diagnostics (Zheng and
Cheng, 2019; Righettoni et al., 2015). Such tasks impose strong
requirements for sensitivity and stability of gas sensors, since the
concentration of gases in the exhaled air lies in the ppb range, and
humidity reaches up to 100% (Güntner et al., 2019). Compared with

chromatographic and spectroscopic methods, the electronic nose
systems are cost-effective and allow for large-scale and rapid
research (Park et al., 2019; Hu et al., 2019; Lee SW. et al., 2023;
Eranna et al., 2004). Another promising application of the sensors is
robotics, which will be controlled by artificial intelligence system
(Chen et al., 2019). Robots similar to humans are being created now,
so they need to use some kind of sensor organs close to human ones
(including an artificial nose), and automatic centralized control of
Smart Home systems is no longer possible without such sensors
(Park et al., 2019; Kim et al., 2021; Jeong et al., 2020). An energy-
efficient gas sensor integrated into an unmanned aerial vehicle
(drone) will increase its battery life for monitoring the air
condition in industrial cities and hard-to-reach areas with a high
level of gas pollution (Rohi et al., 2020). The further works have to be
done to integrate the electronic nose and electronic tongue systems
into smartphones (Oletic and Bilas, 2013; Hasenfratz et al., 2012;
Aydogmus et al., 2023). The general trend in the development of
new sensors and organ-on-a-chip technology is to make them more
and more miniature and energy-efficient (Majhi et al., 2021a; Suh
et al., 2021; Burgués and Marco, 2018; Leung et al., 2022; Low et al.,
2021; Ingber, 2022).

However, an understanding of the effect of light irradiation on
the SMOs sensor signal has been attained only in the case of
oxidizing gases (NO2, O3) detection, while the vast majority of
target substances belong to reducing gases of various chemical
nature. To achieve the necessary characteristics of photoactivated
sensors, fundamental research is needed: development of new
materials with high gas sensitivity at close to room temperature
under UV or visible light; investigation of the reactivity of photo-
and gas-sensitive materials in interaction with reducing gases;
investigation of the sensor properties under conditions that meet
the real practical problems of air monitoring.

4 Concluding remarks

In summary, this review discussed recent progress in light-
activated gas sensors and illustrated that significant tasks still
need to be done to address the shortcomings in the future. Wide
gap semiconductor oxides can be used as a functional structure,
which provides economic advantages, mass production and high
stability. On the other hand, the strategy of replacing thermal
activation with light irradiation realizes not only high-
performance gas detection at close to room temperature, but also
facilitates the development and production of portable, integrated,
flexible and multifunctional sensing devices and IoT applications
(Nikolic et al., 2020; Soler-Fernández et al., 2024; Cho et al., 2018).
However, there are still some limitations and disadvantages in
design and manufacture of light-activated composites for gas
sensor systems. These pitfalls must be taken into account before
a full-scale transition to a new technological production: the lifetime
of the sensitive layer, especially organic dyes that tend to fade under
the influence of light over the time; selectivity towards certain gases;
stability in a humid atmosphere; the possibility of regenerating the
sensitive layer without heating.

The negative effects of humidity can be eliminated by using
porous membrane materials, zeolites, metal-organic frameworks.
Such passive filters operate on a dimensional effect; pores of a certain
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size can only allow certain gas molecules to pass through or interact
with analytical gases using the “guest-host” mechanism.
Modification of organic dye molecules to obtain more stable and
effective structures or its encapsulation can enhance their
persistence. The use of catalytic overlayers, different additives
and modifiers can further increase selectivity for detection of
certain group of gases due to electronic and chemical
sensitization effects. These approaches are expected to improve
sensor characteristics for gas detection at room temperature and
expand the scope of practical application.
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