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Introduction: More than a thousand new marine natural products have been
isolated each year over the past ten years, and compared to synthetic
compounds, the success ratio of approved marine drugs to the total number
of reported potential marine natural products is extremely high. In a recent in vitro
cytotoxicity test, 11 suberitenones–a class of oxidized sesterterpenes–were
identified and shown to have low levels of cytotoxicity. This study focuses on
the investigation of the anti-neoplastic ability of of these suberitenones through
different in silico analysis.

Methods: The study uses a variety of computational techniques, including
quantitative structure–activity relationship (QSAR), ADMET, prediction of
activity spectra for substances (PASS) prediction, network pharmacology,
molecular docking, and molecular dynamics simulation.

Results and discussion: The molecular docking showed that Suberitenone I,
Secosuberitenone A, and Suberitenone J exhibited higher binding affinity of - 8.9,
-9.4, and -8.8 kcal/mole against CASP3, MAPK3, and EGFR respectively which is
further supported by molecular dynamics simulation analysis and can be
considered for in vitro and in vivo investigation as potential antineoplastic agents.
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Highlights

• Terpenoids were found to be effective against rapid tumor growth.
• Suberitenones, a class of oxidized sesterterpenes, demonstrated strong binding affinity
for EGFR, MAPK3, and CASP3.

• Compared to the FDA-approved medication Osimertinib, two of the experimental
Suberitenones demonstrated a greater binding affinity against EGFR.

•Molecular dynamics simulation suggests that Suberitenone I, Secosuberitenone A, and
Suberitenone J may be used as antitumor agents against various targets.
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1 Introduction

Marine sponges found are sessile invertebrates known to be
significant contributors of novel bioactive compounds. The natural
products extracted from marine sponges are good antimicrobial,
antitumor, and cytotoxic agents (Varijakzhan et al., 2021). Over the
last decade, the number of newmarine natural products isolated yearly
is more than one thousand. The success ratio between the approved
marine drugs and the total number of potential marine natural
products reported is very high compared to synthetic compounds
(Jiménez, 2018). The first marine isoprenes that Bergmann discovered
during the 1930s–1940s from various microorganisms were steroidal
terpenoids (Ebada and Proksch, 2012). Terpenoids and their many
derivatives obtained from marine resources dominate the literature.
Terpenoids are generally categorized according to the number of
isoprene units building their parent terpene scaffold, such as
hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15),
diterpenoids (C20), sesterterpenoids (C25), triterpenoids (C30),
tetraterpenoids (C40), and polyterpenoids (more than C40) (Liu
et al., 2007; Wang et al., 2013). Sesterterpenoids, with a 25-carbon
chain backbone, are one of the derivatives of marine terpenoids first
reported in 1980 with antibiotic activity against Streptomyces pyogenes
and Staphylococcus aureus (Dillp de Sllval and Scheuer, 1980; Ebada
et al., 2010). All the reported subgroups, which are linear,

monocarbocyclic, bicarbocyclic, tricarbocyclic, tetracarbocyclic,
and miscellaneous sesterterpenoids, were found to exhibit
significant cytotoxicity against tumor cells (Liu et al., 2007; Hog
et al., 2012; Wang et al., 2013; Zhang and Liu, 2015). The
suberitenones are a class of oxidized sesterterpenes from the
genus Suberites of Antarctic sponges (Díaz-Marrero et al.,
2004). Recently, Bracegirdle and researchers have characterized
11 suberitenones, of which only suberitenone A and suberitenone
B were reported previously (Figure 1) (Bracegirdle et al., 2023). All
the suberitenones were isolated from an Antarctic marine
organism, and all showed a low cytotoxicity level against
A549 cells (Bracegirdle et al., 2023).

Cancer is a leading cause of death worldwide due to significant
therapeutic obstacles, such as chemoresistance, toxicity, relapse, and
metastasis. According to GlOBOCAN 2020, the number of recent
cancer cases is 19.3 million, and nearly 10 million people died of
cancer in 2020 (Ferlay et al., 2021). Cancer is a life-threatening disease
that results from genetic mutations followed by the promotion of
uncontrollable division of cells. The primary response of cells to
exogenous or endogenous DNAdamage is stimulating a repair system
such as tumor suppressor gene P53 that can induce apoptosis
according to the necessity and control cell cycle arrest to suppress
subsequent damage (Kamran et al., 2022). However, when this
response is disrupted, the process can lead to rapid tumor
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development. Some terpenoids, such as Abisilin®, were found to
inhibit tumor growth in vivo and effectively stimulate apoptosis
against different cancer cells (Li et al., 2015; Torgovnick and
Schumacher, 2015; Nevzorova et al., 2017; Kuete et al., 2019). In
this study, all suberitenones that have been isolated and characterized
by Bracegirdle and researchers are investigated for their potential as
antineoplastic agents through different in silico approaches such as
network pharmacology, QSAR, ADMET analysis, molecular docking,
and molecular dynamics (MD) simulation (Figure 2).

2 Materials and methods

2.1 Prediction of QSAR properties

Quantitative structure–activity relationship (QSAR) is a
quantum chemical method that is used to find the connection
between the molecular structure of a compound and its

biological action. QSAR is frequently used in scientific drug
development. Quantum structure–activity interactions are one of
the most critical areas of chemometrics, which is used to link a
specific biological or chemical activity to molecular characteristics
derived from a molecular structure by establishing a mathematical
relationship between molecular structure and properties using a
mathematical statistical algorithm (Wang et al., 2021). The
HyperChem Professional 8.0.7 program and a free
cheminformatics software web tool, Molinspiration
(Molinspiration Cheminformatics Free Web Services, https://
Www.Molinspiration.Com, Slovensky Grob, Slovakia), were used
to perform all the calculations (Molinspiration Cheminformatics,
2002). The partition coefficient (logP) and topological polar surface
area (TPSA) values play a key role individually in measuring the cell
permeability of the investigational compounds. Physical parameters
such as mass, hydration energy, and polarizability are also helpful in
measuring pharmacological properties (Matta, 2014; Isyaku et al.,
2020; Mohapatra et al., 2021; Gholivand et al., 2022).

FIGURE 1
The structures of potential suberitenones.
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2.2 In silico pharmacokinetic analysis

Computer-aided in silico methods in pharmacokinetic studies
are useful in filtering many drug candidates to a few with the best
properties. Effective computer systems and theoretical chemistry
approaches are utilized to calculate the physicochemical
characteristics of candidate drugs. By combining pharmacokinetic

processes in one model, the in silico pharmacokinetic studies help
predict the possible behavior of candidate drugs in vivo (Hamidović
et al., 2021).

2.2.1 ADME and drug-like parameter prediction
Absorption, distribution, metabolism, and excretion (ADME)

analysis studies the pharmacokinetic properties and features of

FIGURE 2
Graphical abstract of methods.
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TABLE 1 QSAR studies of the suberitenones.

Properties Neosuberitenone A Norsuberitenone A Secosuberitenone A

Mass (amu) 428.61 278.44 386.58

HE (Kcal/mol) −3.13 0.037 −2.42

MR (A3) 107.07 77.82 89.20

Pol (A3) 47.70 32.20 45.11

LogP 5.27 3.68 5.02

TPSA (A2) 63.60 37.30 57.53

Volume 424.77 290.96 399.01

nHA 31 20 28

nON 4 2 3

nOHNH 1 1 2

Nviolations 1 0 1

Nrotb 2 0 4

Enzyme inhibitor 0.60 0.63 0.55

Nuclear receptor ligand 0.65 0.58 0.76

G protein-coupled receptor (GPCR) ligand 0.06 0.14 0.13

Ion channel modulator 0.03 0.18 0.3

Protease inhibitor −0.02 −0.01 0.01

Kinase inhibitor −0.52 −0.57 −0.61

Properties Suberitenone A Suberitenone B Suberitenone E

Mass (amu) 428.61 446.63 444.61

HE (Kcal/mol) −0.69 −2.75 −3.95

MR (A3) 101.72 110.47 105.99

Pol (A3) 48.22 49.11 48.56

LogP 5.49 4.73 4.93

TPSA (A2) 63.60 83.83 76.13

Volume 429.70 443.61 433.76

nHA 31 32 32

nON 4 5 5

nOHNH 1 2 1

Nviolations 1 0 0

Nrotb 3 3 3

Enzyme inhibitor 0.60 0.48 0.57

Nuclear receptor ligand 0.77 0.50 0.68

G protein-coupled receptor (GPCR) ligand 0.12 0.23 0.18

Ion channel modulator 0.24 0.16 0.26

Protease inhibitor −0.00 0.05 0.20

(Continued on following page)
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TABLE 1 (Continued) QSAR studies of the suberitenones.

Properties Suberitenone A Suberitenone B Suberitenone E

Kinase inhibitor −0.64 −0.65 −0.59

Properties Suberitenone F Suberitenone G Suberitenone H

Mass (amu) 444.61 442.60 478.67

HE (Kcal/mol) −4.34 −3.43 −3.13

MR (A3) 102.90 98.88 124.07

Pol (A3) 48.92 48.37 51.78

LogP 4.58 4.39 4.38

TPSA (A2) 83.83 80.67 93.07

Volume 437.74 431.88 475.39

nHA 32 32 34

nON 5 5 6

nOHNH 2 1 2

Nviolations 0 0 0

Nrotb 3 3 4

Enzyme inhibitor 0.50 0.55 0.53

Nuclear receptor ligand 0.55 0.60 0.51

G protein-coupled receptor (GPCR) ligand 0.14 0.02 0.28

Ion channel modulator 0.24 0.08 0.12

Protease inhibitor 0.01 −0.04 0.24

Kinase inhibitor −0.61 −0.070 −0.42

Properties Suberitenone I Suberitenone J

Mass (amu) 444.61 444.61

HE (Kcal/mol) −4.38 −6.00

MR (A3) 108.39 103.05

Pol (A3) 48.34 48.92

LogP 4.72 4.58

TPSA (A2) 72.84 83.83

Volume 434.11 437.74

nHA 32 32

nON 5 5

nOHNH 1 2

Nviolations 0 0

Nrotb 2 3

Enzyme inhibitor 0.67 0.57

Nuclear receptor ligand 0.73 0.72

G protein-coupled receptor (GPCR) ligand 0.13 0.09

(Continued on following page)
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drug-like compounds based on their molecular structures. Two
online tools, pkCSM (PkCSM ADMET descriptors algorithm
protocol, a freely accessible web server (http://Structure.Bioc.Cam.
Ac.Uk/Pkcsm)) and SwissADME (http://www.swissadme.ch/) (Daina
et al., 2017), were used to predict the physicochemical qualities,
absorption, distribution, metabolism, elimination, and other
pharmacokinetic properties of the investigational compounds,
which is vital information in planning the procedure of clinical
trials. After intestinal absorption, the distribution of drugs
depends on different factors, including the blood–brain barrier
(BBB) permeability (logBB), central nervous system (CNS)
permeability, and the volume of distribution (VDss) (Han
et al., 2019). Different cytochrome P (CYP) models, such as
CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, are used
for substrate or inhibitor analysis to predict the metabolism and
excretion of the substance based on the total clearance model
(Han et al., 2019).

2.2.2 Assessments of toxicity
One of the necessary steps in pharmacokinetic analysis is the

prediction of toxicity of investigational compounds to identify their
harmful effects on animals, humans, plants, or the environment.
Although different animal models are used to determine the toxicity
of drug candidates, in vivo animal tests are also restricted by poor
prediction of drug safety in humans, time, cost, and ethical
considerations (Raies and Bajic, 2016; Van Norman, 2019).
Therefore, in silico toxicology analysis as an emerging field is
considered valid when aiming to decrease the use of animal
experiments (Hemmerich and Ecker, 2020). In this study, the
quantitative and qualitative measurements of different classes of
toxicity such as mutagenicity, carcinogenicity, acute toxicity,
hepatotoxicity, and other features like lethal dose 50 (LD50),
cardiac failure, heart block, and human ether-à-go-go-related
gene (hERG) toxicity were accessed through the ProTox-II, and
CardioToxCSM web servers (https://tox-new.charite.de/protox_II/)
(Banerjee et al., 2018; Iftkhar et al., 2022).

2.3 PASS prediction

The two-dimensional (2D) structures of all suberitenones were
drawn using ChemDraw Professional 16.0, and the 3D structures
for energy optimization were prepared and converted to their
SMILES file format using Chem3D 16.0 followed by the utilization
of SMILES file to predict the biological activities using the
prediction of activity spectra for substances (PASS) online tool

(https://www.way2drug.com/PassOnline/index.php) (Lagunin
et al., 2000). The PASS online tool was designed to provide
95% accurate predictions of a wide variety of biological
activities (Parasuraman, 2011). The result is presented as Pa
(probability for active compound) and interpreted at prediction
threshold of Pa > 0.3, Pa > 0.5, and Pa > 0.7. When Pa > 0.7, the
chance of determining the activity experimentally is high
(Parasuraman, 2011).

2.4 Prediction of antineoplastic-related
substances in suberitenones based on
network pharmacology

2.4.1 Screening of targets of suberitenones
To predict the information of suitable targets of all

suberitenones, the Swiss Target Prediction database (http://www.
swisstargetprediction.ch/, accessed on 16 July 2023) was used by
importing SMILES format file of all suberitenones. The UniProt
database (https://www.uniprot.org/, accessed on 16 July 2023) was
used to search and validate the gene names by importing the target
information. The screening condition was set by selecting “Homo
sapiens” as the species, with probability > 0.

2.4.2 Screening of potential targets for
antineoplastic activity

The genes related to antineoplastic activity were searched in the
GeneCards database (https://www.genecards.org/, accessed on
16 July 2023) for concise genomic-related information and the
OMIM database (https://omim.org/, accessed on 16 July 2023)
that is used for getting information related to human genes and
genetic phenotypes. The targets from the GeneCards database were
screened using the median screening method, and the antineoplastic
targets from the OMIM database were selected for the removal of
duplicates and to obtain the final list of targets related to
antineoplastic effects.

2.4.3 Protein interaction network
construction (PPI)

A Venn diagram was drawn by importing the file, including the
analysis of the intersection of the targets of all suberitenones and
potential antineoplastic targets using the online website Venny 2.1.0
(https://bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on
17 July 2023). STRING, a functional protein association networks
database (https://cn.string-db.org/, accessed on 17 July 2023), was
used to preliminarily obtain and export the protein interaction

TABLE 1 (Continued) QSAR studies of the suberitenones.

Properties Suberitenone I Suberitenone J

Ion channel modulator 0.16 0.20

Protease inhibitor 0.20 0.04

Kinase inhibitor −0.45 −0.61

aHE = hydration energy; LogP = octanol–water partition coefficient; MR = molecular refractivity; nHA = number of heavy atoms; nOHNH = total number of -OH and -NH groups; nON = total

number of oxygen and nitrogen atoms; Nrtob = number of rotatable bonds; Pol = polarizability; TPSA = topological polar surface area.
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TABLE 2 ADME analysis of the suberitenones.

Model name Neosuberitenone A Norsuberitenone A Secosuberitenone A

Absorption

Intestinal absorption (human) (% absorbed) 99.37 95.95 95.42

Distribution

VDss (human) (Log L/kg) 0.27 0.38 0.03

BBB permeability (Log BB) −0.23 −0.01 −0.33

CNS permeability (Log PS) −1.6 −2.35 −1.75

Metabolism

CYP2D6 substrate No No No

CYP3A4 substrate Yes No Yes

CYP3A4 inhibitor No No No

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No

Excretion

Total clearance (logmL.min−1.kg−1) 0.12 0.62 0.71

Other properties

Lipinski rule Yes;
1 violation: MLOGP>4.15

Yes;
0 violation

Yes;
0 violation

PAINS (alert) 0 0 0

Brenk (alert) 1 alert: isolated_alkene 0 1 alert: isolated_alkene

Model name Suberitenone A Suberitenone B Suberitenone E

Absorption

Intestinal absorption (human) (% absorbed) 96.36 95.32 97.83

Distribution

VDss (human) (Log L/kg) 0.15 −0.1 0.12

BBB permeability (Log BB) −0.04 0.26 −0.16

CNS permeability (Log PS) −0.27 −3.04 −2.87

Metabolism

CYP2D6 substrate No No No

CYP3A4 substrate Yes No Yes

CYP3A4 inhibitor No No Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No

Excretion

Total clearance (LogmL.min−1.kg−1) 0.35 0.33 0.26

(Continued on following page)
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TABLE 2 (Continued) ADME analysis of the suberitenones.

Model name Suberitenone A Suberitenone B Suberitenone E

Other Properties

Lipinski rule Yes;
1 violation: MLOGP>4.15

Yes;
0 violation

Yes;
0 violation

PAINS (alert) 0 0 0

Brenk (alert) 1 alert: isolated_alkene 0 1 alert: Three-
membered_heterocycle

Model name Suberitenone F Suberitenone G Suberitenone H

Absorption

Intestinal absorption (human) (% absorbed) 99.13 99.96 81.82

Distribution

VDss (human) (Log L/kg) 0.09 0.12 −0.06

BBB permeability (Log BB) 0.22 0.08 0.006

CNS permeability (Log PS) −2.72 −2.69 −2.77

Metabolism

CYP2D6 substrate No No No

CYP3A4 substrate No Yes Yes

CYP3A4 inhibitor No No Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No

Excretion

Total clearance (LogmL.min−1.kg−1) 0.41 0.38 0.41

Other Properties

Lipinski rule Yes;
0 violation

Yes;
0 violation

Yes;
0 violation

PAINS (alert) 0 0 0

Brenk (alert) 1 alert: isolated_alkene 0 0

Model name Suberitenone I Suberitenone J

Absorption

Intestinal absorption (human) (% absorbed) 97.21 94.66

Distribution

VDss (human) (Log L/kg) 0.02 −0.09

BBB permeability (Log BB) −0.19 −0.23

CNS permeability (Log PS) −1.68 −1.78

Metabolism

CYP2D6 substrate No No

CYP3A4 substrate Yes Yes

CYP3A4 inhibitor No No

CYP1A2 inhibitor No No

(Continued on following page)
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networking file of the antineoplastic effect in TSV file format. A
protein interaction network was constructed by importing the TSV
file format into Cytoscape_v3.10.0 for the antineoplastic targets
(Shannon et al., 2003).

2.4.4 GO enrichment and KEGG pathway analysis
The Gene Ontology (GO) enrichment analysis and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
were performed by importing the obtained antineoplastic target
proteins of all suberitenones into the Database for Annotation,
Visualization, and Integrated Discovery(DAVID) database
(https://david.ncifcrf.gov/, accessed on 17 July 2023). Entries with
p < 0.05 were selected and sorted as significantly enriched GO
entries or KEGG pathways.

2.5 Preparation of proteins and energy
optimization of all suberitenones for
molecular docking analysis

The complete sequence of CASP3, MAPK3, and EGFR was
searched in the NCBI database, and three-dimensional (3D)
structures were obtained from the PDB database (PDB codes:
3KJF, 6GES, and 6JXT, respectively) (Berman et al., 2000; Wang
et al., 2010; Rao et al., 2019; Yan et al., 2020). Biovia Discovery Studio
2020 was utilized to remove unnecessary hetero atoms, and Swiss-
PDB viewer (version 4.1.0), using the steepest descent algorithm,
and the GROMOS96 43B1 force field were used to perform the
energy minimization of the proteins and remove bad contacts in the
protein structure (Ciucx and Peitsrh Urctrophuresis, 1997; Biovia,
2020). All three ligands were removed individually using Biovia
Discovery Studio 2020 for redocking purposes. Gaussian 09w
software was used to perform the energy optimization process,
followed by the docking of all suberitenones by AutoDockVina
in PyRx software (version 0.8) against all proteins individually
(Dallakyan and Olson, 2015; Khaldan et al., 2024). The open-
source software AutoDockVina and AutoDock Tools (ADT) of
the MGL software package were utilized to convert all pdb files
into the pdbqt format. In VinaWizard (Version v1.2.3), the grid box

was preserved at (i) X:39.9451, Y:12.4630, and Z:72.8688; (ii) X:
22.9456, Y:−3.6424, and Z:11.4726; and (iii) X:−16.3197, Y:54.5071,
and Z:9.1460 for (i) 3KJF, (ii) 6GES, and (iii) 6JXT, respectively. The
structures with the highest binding scores were saved in pdb format
using UCSF Chimera (candidate version 1.13) (Pettersen et al.,
2004). Later, the non-bonding interactions between amino acids
of receptor proteins and ligands were searched to determine the best
binding pose using Biovia Discovery Studio 2020.

2.6 Protein–ligand stability analysis by
molecular dynamics simulation

Molecular dynamics (MD) simulation analysis is used to check
the structural stability of protein–ligand complexes in drug
discovery. A 100-ns MD simulation was carried out to observe
the consistency in the binding of 3KJF-Control B92, 3KJF-
suberitenone I, 6GES-Control 6H3, 6GES-secosuberitenone A,
6JXT-suberitenone E, 6JXT-suberitenone J, and 6JXT-Control
YY3 complexes using a Linux (Ubuntu-20.04.1 LTS)
environment with an Intel Core i7-10700K processor CPU,
3200 MHzDDR4 RAM, and RTX 3080 DDR6 8704 CUDA core
GPU following a previously reported protocol (Bhowmik et al.,
2023). In the Desmond package available at the Schrödinger suit, the
protein preparation wizard was used to preprocess protein–ligand
complex structures generated from molecular docking (Bowers
et al., 2006; Goyal and Goyal, 2020). To solve the system for
each complex and maintain a specific volume, a simple point-
charge (SPC) water model was used, followed by assigning an
orthorhombic periodic boundary box shape with a distance (10 ×
10 × 10 Å3). The salt concentration of the solvated system was
maintained at 0.15M by placing Na+ and Cl− ions randomly, and the
minimization and relaxation of the system were maintained using
the OPLS3e force field (Roos et al., 2019). The constant
pressure–constant temperature (NPT) ensemble was performed at
300.0 K temperature and 101,325 × 10−5 bar pressure, followed by the
performance of the final production run with an energy of 1.2 eV after
the relaxation of the system using 100 picoseconds recording interval
for each complex (Ahammad et al., 2021; Bouback et al., 2021). Finally,

TABLE 2 (Continued) ADME analysis of the suberitenones.

Model name Suberitenone I Suberitenone J

Metabolism

CYP2C19 inhibitor No No

CYP2C9 inhibitor No No

Excretion

Total clearance (LogmL.min−1.kg−1) 0.26 0.41

Other properties

Lipinski rule Yes;
0 violation

Yes;
0 violation

PAINS (alert) 0 0

Brenk (alert) 1 alert: isolated_alkene 1 alert: isolated_alkene
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the calculated root mean square deviation (RMSD), root mean square
fluctuation (RMSF), Rg, solvent accessible surface area (SASA), and
protein–ligand contact analysis data were analyzed to get a notion of

possible changes in vibrant binding behavior of the aforementioned
protein–ligand complexes in various poses under specific
physiological environments compared to the protein in the apo state.

TABLE 3 Toxicity analysis of suberitenones.

Compound name Toxicity class LD50 (mg kg−1) Cytotoxicity and mutagenicity

Neosuberitenone A 4 2,000 Inactive

Norsuberitenone A 5 5,100 Inactive

Secosuberitenone A 6 9,000 Inactive

Suberitenone A 3 200 Inactive

Suberitenone B 5 3,300 Inactive

Suberitenone E 3 79 Inactive

Suberitenone F 5 2,450 Inactive

Suberitenone G 5 3,300 Inactive

Suberitenone H 6 50,100 Inactive

Suberitenone I 2 34 Inactive

Suberitenone J 3 200 Inactive

Compound name Immuno-toxicity Carcinogenicity Hepato-toxicity

Neosuberitenone A Active Inactive Inactive

Norsuberitenone A Inactive Inactive Inactive

Secosuberitenone A Active Active Inactive

Suberitenone A Active Inactive Inactive

Suberitenone B Active Inactive Inactive

Suberitenone E Active Active Inactive

Suberitenone F Active Active Inactive

Suberitenone G Active Inactive Inactive

Suberitenone H Active Inactive Inactive

Suberitenone I Active Inactive Inactive

Suberitenone J Active Active Inactive

Compound name Cardiac failure Heart block hERG toxicity

Neosuberitenone A Toxic Safe Safe

Norsuberitenone A Toxic Safe Safe

Secosuberitenone A Safe Safe Toxic

Suberitenone A Safe Safe Safe

Suberitenone B Safe Safe Safe

Suberitenone E Toxic Toxic Safe

Suberitenone F Toxic Safe Safe

Suberitenone G Toxic Safe Safe

Suberitenone H Toxic Safe Safe

Suberitenone I Toxic Safe Safe

Suberitenone J Safe Safe Safe
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3 Results and discussion

3.1 Prediction of QSAR properties

Various properties, including mass, HE, MR, LogP value, TPSA,
and numbers of H bond donors and acceptors, are investigated to
understand the possible transportation efficiency and structural
flexibility of the drug candidates. Drugs with a molecular weight
below 450 atomic mass units (amu) can have good blood–brain
barrier (BBB) penetration (van de Waterbeemd et al., 1998). Based
on the statistical distribution, HE values less than −5 kcal/mol and
MR scores between 40 Å3 and 130 Å3 are preferable for developing
successful drug candidates (Zafar and Reynisson, 2016; Akash et al.,
2023). The HE values given in Table 1 are higher than −5 kcal/mol;
however, one negative factor alone does not determine the final
potential of these candidates. The polar surface area indicates the
oral absorption, oral bioavailability, intestinal permeability, and
central nervous system (CNS) penetration capability of small
molecule drugs (Clark, 2011). A positive LogP value represents
hydrophobicity, while hydrophilicity is indicated by a negative LogP
value (Islam et al., 2019). As drugs with high hydrophobicity or high
hydrophilicity are not good in transportation through the
bloodstream or efficient in binding to the target, respectively, a
LogP value in the moderate range is advantageous in both cases.
Drugs with good intestinal permeability and CNS penetration ability
have a TPSA of less than 140 Å2 and 60 Å2, respectively (Pajouhesh
and Lenz, 2005; Shityakov et al., 2013). According to the TPSA
values given in Table 1, all investigational compounds are good for

intestinal permeation, while only neosuberitenone A, norsuberitenone
A, secosuberitenone A, and suberitenoneA can be considered good for
CNS penetration as well. The total number of oxygen and nitrogen
atoms (nON), the total number of -OH and -NH groups (nOHNH),
and the number of rotatable bonds (nrotb) less than 7, 3, and 8,
respectively, are characteristics of drugs withmore structural flexibility
and good capability of CNS penetration (Pajouhesh and Lenz, 2005).
Although the CNS permeability of all investigational compounds is
indicated by other properties like nON, nOHNH, and nrotb, the TPSA
values show that only four of the compounds can interpenetrate and
diffuse through the CNS. Overall, all investigational compounds can
be considered good drug candidates according to theQSAR studies. Of
the experimental drug candidates, only neosuberitenone A,
norsuberitenone A, secosuberitenone A, and suberitenone A should
be regarded as ideal choices due to their capacity to penetrate and
diffuse through the CNS as well as penetrate the intestine according to
all parameters.

3.2 Prediction of pharmacokinetic
properties

A percentage of gastrointestinal absorption of small molecules
below 30% is considered poorly absorbed (Kalantzi et al., 2006). All
investigational compounds showed a high absorption percentage by
the human intestine, which is given in Table 2. The threshold level
for the steady-state volume of distribution (VDss), the BBB
permeability (LogBB), and the CNS index (Log PS) are 0.45, 0.3,

TABLE 4 Data of pass prediction.

Compound name Antineoplastic properties (Pa) Other properties (Pa)

Neosuberitenone A Antineoplastic
0.844

Apoptosis agonist
0.794

Ecdysone 20-monooxygenase inhibitor
0.774

Norsuberitenone A Antineoplastic
0.846

Testosterone 17 beta dehydrogenase (NADP+)
inhibitor
0.922

CYP2J substrate
0.920

Secosuberitenone A Antineoplastic
0.809

Transcription factor NF kappa B stimulant
0.849

Antieczematic
0.846

Suberitenone A Antineoplastic
0.819

Apoptosis agonist
0.816

CYP2J substrate
0.819

Suberitenone B Antineoplastic
0.861

Ecdysone 20-monooxygenase inhibitor
0.782

Caspase 3 stimulant
0.763

Suberitenone E Antineoplastic
0.873

Chemopreventive
0.740

Caspase 3 stimulant
0.744

Suberitenone F Antineoplastic
0.749

Caspase 3 stimulant
0.850

CYP2J substrate
0.789

Suberitenone G Antineoplastic
0.817

Caspase 3 stimulant
0.856

Apoptosis agonist
0.807

Suberitenone H Antineoplastic
0.894

CYP2H substrate
0.781

Ecdysone 20-monooxygenase inhibitor
0.730

Suberitenone I Antineoplastic
0.848

Hepatic disorder treatment
0.825

Glyceryl-ether monooxygenase
inhibitor
0.736

Suberitenone J Antineoplastic
0.807

Apoptosis agonist
0.837

Caspase 3 stimulant
0.824
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and −2, respectively (Pires et al., 2015; Han et al., 2019; Speciale et al.,
2021). All compounds are suitable for BBB permeation; however,
neosuberitenone A, secosuberitenone A, suberitenone I, and
suberitenone J might be less effective in the case of CNS
permeation. More than 90% of drugs that have passed the first
phase of metabolism are bio-transformed by cytochrome P450
(CYP) (1A2, 2C9, 2C19, 2D6, and 3A4). The isoforms 3A4 and
2D6 alone account for the metabolism of more than 50% and about
25% of all drugs in the market, respectively (Wang et al., 2009;
Zanger and Schwab, 2013; Teo et al., 2015; Rodrigues-Junior et al.,
2020). All compounds, excluding norsuberitenone A, suberitenone
B, and suberitenone F, can be metabolized by CYP3A4.

All investigational compounds except neosuberitenone A and
suberitenone A tend to fulfill the Lipinski “Rule of Five” criteria.

To identify problematic fragments within the structure of all
investigational suberitenones, pan assay interference compounds
(PAINS), a.k.a. frequent hitters or promiscuous compounds, and
Brenk’s structural alert are analyzed. The substructures of any
compounds that give false positive biological output in assays are
identified by PAINS, and Brenk provides a list of 105 fragments
responsible for poor pharmacokinetic properties (Brenk et al., 2008;
Baell and Holloway, 2010). According to the Brenk alert, the presence
of the isolated alkene in neosuberitenone A, secosuberitenone A,
suberitenone A, suberitenone F, suberitenone I, and suberitenone J
and the presence of the three-membered heterocycle in suberitenone E
can be disadvantageous in the case of having good ADME properties.

3.3 Toxicity analysis

The late rise of severe and unfavorable side effects after using
different small molecules against different targets is one of the most
important factors for many research projects not reaching the final
stage. In many cases, small molecule drugs can bind to a minimum of
6–11 off-targets on average with weak binding affinity, excluding their
intended pharmacological target, leading to adverse side effects such as
failure of major organs (Metz and Hajduk, 2010; Whitebread et al.,
2016; Peón et al., 2017). The study of the possible toxicity of the
investigational compounds can help identify the secondary
pharmacology of those compounds (Whitebread et al., 2016).
According to the toxicity analysis data given in Table 3,
suberitenones other than suberitenone A, suberitenone E,
suberitenone I, and suberitenone J showed good toxicity properties.
Some of them may be carcinogenic or exhibit toxicity against the
immune system. According to the lethal dose 50 (LD50) values,
secosuberitenone A and suberitenone H will be the most tolerated
inside the human body compared to other suberitenones. Only
suberitenone E was found to be toxic in case of both cardiac
failure and heart block. Suberitenone J has no possibility of causing
cardiac failure, heart block, or hERG toxicity.

3.4 Biological activities using PASS
prediction

PASS software can predict the probability of different small or
drug-like molecules belonging to a specific class of bioactive
compounds based on the structure–activity relationship (Lagunin
et al., 2000). The PASS Online tool can predict more than
3,678 pharmacological effects, modes of action, and other
biological properties of compounds such as carcinogenicity,
teratogenicity, etc (Marwaha et al., 2007; Matin et al., 2016).
According to the PASS prediction given in Table 4 and
considering Pa > 8, all investigational compounds, excluding
suberitenone F, are good antineoplastic agents.

3.5 Suberitenone targets and
antineoplastic targets

All investigated suberitenones were searched, and the target
gene names were based on the Swiss Target Prediction database

FIGURE 3
(a) Potential antineoplastic targets of suberitenones; (b) target
protein PPI network for the antineoplastic activity of suberitenones.
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platform. The predicted target gene names were confirmed and
collected using the UniProt database. A total of 330 target genes of
11 candidates were retrieved after deleting the duplicates or invalid
targets. The Genecards and OMIM databases were used to search and

screen antineoplastic-related targets, and a total of 10,661 targets were
obtained. The candidate compounds and disease targets were mapped
(Figure 3a), resulting in 285 intersecting potential antineoplastic
targets (Supplementary Table S1).

FIGURE 4
(a) Analysis of antineoplastic activity in investigational suberitenones by GO functional enrichment; (b) enrichment analysis of the antineoplastic
KEGG pathway in investigational suberitenones.
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3.6 Protein–protein interaction (PPI)
network construction for the potential
antineoplastic targets of suberitenones

The potential antineoplastic targets were uploaded to the
STRING database to construct a PPI network (Figure 3b). The
number of nodes and edges in the PPI were 285 and 3,183,
respectively, with two targets (TACR2 and ZAK) removed later
for not being involved in the protein interactions.

3.7 Enrichment of antineoplastic Gene
Ontology (GO) function and KEGG pathway
analysis in all investigational suberitenones

The GO functional enrichment analysis of the potential
antineoplastic targets was carried out using the DAVID database.
A total of 1,083 pathways were obtained, including 765 biological
processes (BP), 100 cellular components (CC), and 218 molecular
functions (MF). With p < 0.005 as the screening condition, the top
20 counts from the result were used for the GO functional
enrichment map (Figure 4a). Protein phosphorylation, positive
regulation of cytosolic calcium ion concentration, inflammatory
response, positive regulation of ERK1 and ERK2 cascade,
regulation of circadian rhythm, etc., are the main biological
processes that include the potential antineoplastic targets of the
investigational compounds. The plasma membrane, membrane raft,
cytosol, presynaptic membrane with its integral component, etc., are
the cellular components. Protein serine/threonine/tyrosine kinase
activity, ATP binding, RNA polymerase II transcription factor
activity, non-membrane spanning protein tyrosine kinase activity,

ligand-activated sequence-specific DNA binding, etc., are the
functions in the molecular level that involve the targets.

The KEGG pathway enrichment analysis of 285 potential
antineoplastic targets of the investigational compounds was
analyzed. The result indicated the involvement of different
pathways, such as pathways in cancer, inflammatory mediator
regulation of transient receptor potential (TRP) channels, and
sphingolipid signaling pathway. The KEGG pathway map was
constructed using the top 20 counts with p < 0.005 as the
screening condition (Figure 4b).

3.8 Molecular docking analysis

Using the Cytohubba plugin and the maximal clique centrality
(MCC) algorithm in Cytoscape_v3.10.0, the top five core targets
were selected from the PPI network that might play an essential role
in the antineoplastic ability of the investigational compounds
(Figure 5). According to the molecular docking analysis
(Figure 6) of the investigational suberitenones against the top five
core targets, all suberitenones showed good combination ability only
with CASP3 (PDB ID: 3KJF), MAPK3 (PDB ID: 6GES), and EGFR
(PDB ID: 6JXT) based on the binding energy (Table 5).

Caspases are cysteine proteases essential in controlling cell death
mediated by apoptosis, pyroptosis, necroptosis, and autophagy
(Shalini et al., 2015). Among them, caspase 3, upon activation by
initiator caspase 8 or caspase 9, leads to apoptosis of many critical
proteins within the cell (Zhou et al., 2018). Caspase 3 provides a
proangiogenic microenvironment for tumor growth and promotes
tumor repopulation through the pancreatic signaling pathway after
radiotherapy (Huang et al., 2011; Feng et al., 2017). Mitogen-

FIGURE 5
Top five core target maps.
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activated protein kinase 3 (MAPK3) is a critical signaling molecule in
the ERK/MAPK pathway. MAPK3 participates in cell proliferation
and apoptosis through the phosphorylation of cytoplasmic proteins
and activating several nuclear transcription factors such as c-Jun and
c-fos (McGinnis et al., 2015; Taherkhani et al., 2023). Overexpression
of MAPK3 has been associated with initiation, development, cancer
cell migration, and drug resistance in different carcinogenic cells (Cao
et al., 2019). EGFR is a crucial oncogene that can initiate the cascade of
downstream signaling and is altered most frequently in carcinogenesis
(Santarius et al., 2010; Yarden and Pines, 2012). Mutations in EGFR
have been found often in non-small cell lung cancer (NSCLCs) and
glioblastoma cells and have shown resistance to anti-EGFR therapies
(Thomas and Weihua, 2019). The caspase 3 inhibitor B92, an
MAPK3 substrate (PDB ligand code 6H3), and an FDA-approved
third-generation epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor (TKI) drug osimertinib were docked against 3KJF,
6GES, and 6JXT, respectively, to consider as control before proceeding
of molecular docking simulation of all suberitenones (Wang et al.,
2010; Greig, 2016). The RMSDs between the experimental poses and
the predicted poses were 0.91 Å, 2.36 Å, and 1.87 Å for CASP3,
MAPK3, and EGFR, respectively. As an RMSD value ≥3.0 Å is
considered unacceptable, the protocol used in this investigation for
the reproduction of native structure was good (Ramírez andCaballero,
2018). In the case of 3KJF, suberitenone I showed a similar binding
affinity as the control ligand B92 (−8.9 kcal/mol), which is given in
Table 5. Secosuberitenone A showed higher binding affinity against

6GES than 6H3 (−9.2 kcal/mol). The most significant finding of this
investigation is that suberitenone E and suberitenone J are bound to
6JXT with higher energy than osimertinib, which showed a binding
affinity of −8.5 kcal/mol.

As illustrated in Figure 6a, suberitenone I formed one
conventional hydrogen bond and one carbon–hydrogen bond
(Table 6) with the PHE250 residue in the active site of 3KJF.
Although control B92 could form several hydrogen and
hydrophobic bonds with different residues (Supplementary Figure
S1a), a greater number of bonds does not always give the best net
binding affinity. In the case of 6GES, secosuberitenone A could form
more hydrogen as well as hydrophobic bonds than the control
6H3 against 6GES, which can account for the higher binding score
of secosuberitenone A (Figure 6b; Supplementary Figure S1b). Both
suberitenone E and suberitenone J bind to 6JXT by forming different
types of hydrophobic bonds (Figures 6c,d). In addition, suberitenone E
could form conventional and carbon–hydrogen bonds, followed by
one unfavorable acceptor–acceptor interaction (Table 6).

3.9 MD simulation analysis

3.9.1 RMSD analysis
RMSD is widely used to analyze macromolecular structures by

comparing the estimated degree of three-dimensional structural
similarity between two or more proteins after optimal

FIGURE 6
3D structures of (a) suberitenone I against the catalytic site of CASP3 (PDB: 3KJF); (b) secosuberitenone A against the catalytic site of MAPK3 (PDB:
6GES); (c) suberitenone E, and (d) suberitenone J bound to the catalytic site of EGFR (PDB: 6JXT).
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superposition. In addition to the total number of atoms included in the
structural alignment, dimensions of structures and conformational
differences are the key features for measuring RMSD (Carugo and
Pongor, 2001; Carugo, 2003). The acceptable RMSD range for the
protein–ligand complex is 1–3 Å. An RMSD above 3 Å resonates for
the significant conformational changes of the protein during
simulation. A 100-ns MD simulation was performed to evaluate
the changes in the conformation of 3KJF-suberitenone I, 3 kJ F-
Control B92, 6GES-suberitenone A, 6GES-Control 6H3, 6JXT-
suberitenone E, 6JXT-suberitenone J, and 6JXT-Control YY3.
Initially, the RMSD of suberitenone I showed fluctuation between
2.5 Å and 3.5 Å (Figure 7a). Later, from 40 ns to 100 ns, suberitenone I
showed almost no deviation from 3 Å as well as overlapping with the
RMSD of 3KJF, which is in apo form. In contrast, control B92 showed
a high RMSD of 4.5 Å with several fluctuations from the beginning to
95 ns followed by a decrease in RMSD to 3 Å.

In Figure 7b, the RMSD of the second wild-type apo protein
(PDB ID: 6GES) remained stable at 1.8 Å for the entire simulation

period. The control 6H3, when bound to 6GES, showed a very stable
RMSD of 2.5 Å as well. Although the investigational compound
secosuberitenone A completely overlapped with the control
6H3 from the beginning to 70 ns, later, the RMSD went higher
to 3 Å and became stable at the end of the simulation period.

In the case of suberitenone E and control YY3 bound to 6JXT,
the RMSD gradually increased from 2 Å to 2.5 Å and became stable
after 50 ns (Figure 7c). The RMSD of suberitenone J overlapped with
suberitenone E and the control YY3 from 50 ns to the end of the
simulation period; however, suberitenone J also showed a significant
fluctuation from 80 ns to 90 ns.

According to the RMSD analysis, it can be considered that all
suberitenones showed very stable and, in some cases, similar or
better RMSD values than the control compounds when bound to
their respective proteins.

3.9.2 RMSF analysis
RMSF analysis is used to check the residual fluctuations over the

simulation period in protein with or without any ligand and whether
the flexible residues are from the active site (Adelusi et al., 2022). The
RMSF values of the wild-type protein (PDB ID: 3KJF) were assessed
in the presence or absence of suberitenone I and control B92 and
demonstrated that the RMSF values of the residues between
THR140 to ARG149 were very high not only in the ligand-
bound state but also in the case of apo wild-type protein
(Figure 8a). In the case of wild-type protein PDB ID: 6GES, no
major oscillation was observed due to the binding of either
secosuberitenone A or the control 6H3 (Figure 8b).

The RMSF of wild-type protein PDB ID: 6JXT was observed
mainly for residues including GLU749, GLY863 to ALA871, and
LEU927 (Figure 8c). The fluctuation at residue GLU749 was highly
reduced with the addition of suberitenone E to 6JXT. Major
fluctuations of RMSF were observed at the region of GLY863 to
ALA871 for suberitenone E and suberitenone J when bound to 6JXT.
Finally, minor oscillations of residue LEU927 were observed for the
control YY3, but the RMSF remained low after the addition of
suberitenone E and suberitenone J to 6JXT. As these regions of 6JXT
are very far from the catalytic site, no deviation in the binding
affinity is expected due to the binding of any of the suberitenones.

3.9.3 Radius of gyration (Rg)
The radius of gyration (Rg) is a parameter that indicates the

compactness of amino acid residues in proteins (Lobanov et al.,
2008; Adelusi et al., 2022). The Rg values of 3KJF-suberitenone I and
3KJF–Control B92 complexes varied in the range between 4.039 Å to
4.366 Å and 4.581 Å to 5.604 Å with an average of 4.16 ± 0.04 Å and
4.90 ± 0.20 Å, respectively (Figure 9a). According to Rg data,
suberitenone I showed compact and stable binding with 3 kJ F
compared to the control B92. In the case of 6GES-secosuberitenone
A and 6GES-Control 6H3 complexes, the Rg values fluctuated in a
range between 3.814 Å to 4.862 Å and 4.590 Å to 5.674 Å with an
average of 4.49 ± 0.16 Å, and 5.18 ± 0.14 Å, respectively (Figure 9b).
Although the average Rg value of the 6GES-secosuberitenone A
complex is lower than that of 6GES-Control 6H3, greater fluctuation
makes the investigational compound secosuberitenone A less
suitable for binding with 6GES than the control 6H3. The Rg

values of 6JXT-suberitenone E and 6JXT-suberitenone J
overlapped with those of the 6JXT-Control YY3 complex from

TABLE 5 Binding energy of all suberitenones against different target
proteins.

Targets with binding energy (kcal/mol)

Compound CASP3 JUN HIF1A

Neosuberitenone A −7.6 −6 −6.1

Norsuberitenone A −6.8 −5 −5.1

Secosuberitenone A −6.7 −5.9 −6.1

Suberitenone A −7.5 −6 −6.3

Suberitenone B −7.6 −6.1 −5.6

Suberitenone E −8.1 −5.6 −5

Suberitenone F −8.0 −5.5 −5.7

Suberitenone G −8.0 −6 −5.5

Suberitenone H −7.5 −5.3 −5.4

Suberitenone I −8.9 −5.8 −5.7

Suberitenone J −7.9 −6.3 −5.7

Compound MAPK3 EGFR

Neosuberitenone A −7.7 −8.4

Norsuberitenone A −7.5 −7.6

Secosuberitenone A −9.4 −8.4

Suberitenone A −8.5 −7.9

Suberitenone B −8 −7.9

Suberitenone E −8.6 −8.8

Suberitenone F −8.4 −8

Suberitenone G −7.9 −7.7

Suberitenone H −7.3 −7.2

Suberitenone I −7.4 −8

Suberitenone J −7.6 −8.8
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TABLE 6 Molecular docking study of different investigational compounds against PDB IDs: 3KJF, 6GES, and 6JXT.

Investigational compounds Residues in contact Bond category/type Distance (Å)

Target (3KJF)

Suberitenone I PHE250 Conventional H bond 2.3058

PHE250 Carbon H bond 3.42109

B92 ARG207 Conventional H bond 1.9761

SER205 Conventional H bond 2.68364

SER205 Carbon H Bond 3.35613

SER209 Conventional H bond 1.93883

ARG207 Electrostatic/pi-cation 4.38085

PHE250 Hydrogen Bond/pi-donor H bond 3.23337

ARG207 Hydrophobic/amide-pi stacked 4.43648

PHE256 Hydrophobic/pi-alkyl 4.71292

TYR204 Hydrophobic/pi-alkyl 5.0633

Target (6GES)

Secocuberitenone A ALA52 Conventional H bond 2.55989

TYR53 Conventional H bond 1.73315

CYS183 Conventional H bond 2.98031

ALA52 Hydrophobic/alkyl 4.14299

LYS71 Hydrophobic/alkyl 4.70555

CYS183 Hydrophobic/alkyl 4.92947

LEU173 Hydrophobic/alkyl 5.40996

ILE48 Hydrophobic/alkyl 3.86573

VAL56 Hydrophobic/alkyl 3.64821

CYS183 Hydrophobic/alkyl 3.88515

TYR53 Hydrophobic/pi-alkyl 4.65127

6H3 MET125 Conventional H bond 2.74744

ASP184 Carbon H bond 3.49354

GLU50, GLY51 Hydrophobic/amide-pi stacked 4.11341

TYR53 Hydrophobic/pi-alkyl 4.6239

LYS71 Hydrophobic/pi-alkyl 5.40093

VAL56 Hydrophobic/pi-alkyl 4.37612

ALA69 Hydrophobic/pi-alkyl 5.03039

LEU173 Hydrophobic/pi-alkyl 4.84719

CYS183 Hydrophobic/pi-alkyl 5.13799

Target (6JXT)

Suberitenone E ALA743 Hydrophobic/alkyl 4.17862

LEU844 Hydrophobic/alkyl 4.22475

Suberitenone J SER720 Conventional H bond 2.89436

CYS797 Conventional H bond 2.76418

(Continued on following page)
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75 ns and 15 ns to the end of the simulation, respectively. The
6JXT–Control YY3 complex showed an Rg between 4.292 Å and
4.907 Å with an average of 4.59 ± 0.09 Å (Figure 9c). All three
complexes showed low fluctuation of Rg, which confirms the stable
binding of those complexes.

3.9.4 Solvent accessible surface area (SASA)
SASA analysis is crucial for checking the surface area susceptible

to the solvent, as the increase in the protein–ligand complex’s
surface area can lead to the unfolding of the protein (Lobanov
et al., 2008). In the case of 3KJF–suberitenone I and 3KJF–Control
B92 complexes, the SASA values fluctuated in a range between
201.51 Å2 to 680.03 Å2 and 153.96 Å2 to 349.05 Å2 with an average of
443.94 ± 75.45 Å2 and 237.05 ± 31.72 Å2, respectively (Figure 10a).

Although the 3KJF–Control B92 complex showed very low
oscillation, the SASA of the 3KJF–Suberitenone I complex was
also stable from 20 ns to the end of the simulation period. SASA
values for the 6GES–secosuberitenone A and 6GES–Control
6H3 complexes varied in the range of 73.27 Å2 to 399.66 Å2 and
86.82 Å2 to 639.76 Å2 with an average of 232.23 ± 51.31 Å2 and
350.78 ± 80.23 Å2, respectively (Figure 10b). The SASA value of
6GES-secosuberitenone A fluctuated for a small period
(30 ns–40 ns) and later became stable for the remaining
simulation period. Finally, the SASA plot of 6JXT-suberitenone J
completely overlaps with 6JXT-Control YY3, which shows SASA
values between 135.23 Å2 and 331.05 Å2 with an average of 218.92 ±
31.66 Å2 (Figure 10c). For 6JXT–suberitenone E, not only the SASA
value was higher with an average of 350.78 ± 80.23 Å2, but also the

FIGURE 7
The rootmeans square deviations (RMSDs) of protein–ligand docked complexes. (a) The RMSDs of the native protein 3KJF in the absence of a ligand
(black) and in the presence of suberitenone I (red) and the RMSD of control ligand B92 (blue). (b) The RMSDs of the native protein 6GES in the absence of a
ligand (magenta) and in the presence of secosuberitenone A (olive) and the RMSD of the control ligand 6H3 (violet). (c) The RMSDs of the native protein
6JXT in the absence of a ligand (navy) and in the presence of suberitenone E (purple) and suberitenone J (dark yellow) and the RMSDof control ligand
YY3 (wine).

TABLE 6 (Continued) Molecular docking study of different investigational compounds against PDB IDs: 3KJF, 6GES, and 6JXT.

Investigational compounds Residues in contact Bond category/type Distance (Å)

Target (6JXT)

GLY796 Carbon H bond 3.21557

LEU718 Hydrophobic/alkyl 5.16139

ALA743 Hydrophobic/alkyl 4.41549

LEU844 Hydrophobic/alkyl 4.79319

Osimertinib CYS797 Conventional H bond 2.52145

MET793 Conventional H bond 2.78451

GLN791 Carbon H bond 3.48641

PRO794 Carbon H bond 3.7597

GLU804 Carbon H bond 3.69414

LEU718 Hydrophobic/pi-sigma 3.46085

VAL726 Hydrophobic/pi-sigma 3.96557

LEU718 Hydrophobic/alkyl 5.16341

LEU792 Hydrophobic/alkyl 4.58291

VAL726 Hydrophobic/pi-alkyl 4.36024

LYS120 Hydrophobic/pi-alkyl 5.23876

Frontiers in Chemistry frontiersin.org19

Bhowmik et al. 10.3389/fchem.2025.1545834

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1545834


overall SASA values ranged between 119.50 Å2 and 478.99 Å2 with
significant fluctuations from 65 ns to 95 ns.

3.9.5 Protein–ligand contact analysis
Suberitenone I formed considerable hydrophobic interactions

with VAL69, ALA72, and ILE187, followed by forming a hydrogen

bond with PHE250 with 3KJF (Figure 11a). Suberitenone A bound
to 6GES forming hydrophobic interactions with ILE48, TYR53,
VAL56, ALA69, LEU124, and LEU173 (Figure 11b).
Secosuberitenone A also formed hydrogen bonds with residues
SER58 and ARG67 of 6GES. In the case of the
6JXT–suberitenone E complex, LEU718, PHE723, VAL726, and

FIGURE 10
The solvent accessible surface area (SASA) values of different proteins and ligand complexes were calculated from the 100-ns simulation. (a) The
SASA values of the selected ligands suberitenone I (red) and control B92 (blue) in complex with 3KJF. (b) The SASA values of the selected ligands
secosuberitenone A (olive) and control 6H3 (violet) in complex with 6GES. (c) The SASA values of the selected ligands suberitenone E (purple),
suberitenone J (dark yellow), and control YY3 (wine) in complex with 6JXT.

FIGURE 9
The radius of gyration (Rg) values of different proteins and ligand complexes were calculated from the 100-ns simulation. (a) The Rg values of the
selected ligands suberitenone I (red) and control B92 (blue) in complex with 3KJF. (b) The Rg values of the selected ligands secosuberitenone A (olive) and
control 6H3 (violet)in complex with 6GES. (c) The Rg values of the selected ligands suberitenone E (purple), suberitenone (dark yellow), and control YY3
(wine) in complex with 6JXT.

FIGURE 8
Variation in the root means square fluctuation (RMSF) of protein–ligand docked complexes. (a) The RMSFs of the native protein 3KJF in the absence
of a ligand (black) and in the presence of suberitenone I (red) and the RMSF of control ligand B92 (blue). (b) The RMSF of the native protein 6GES in the
absence of a ligand (magenta) and in the presence of secosuberitenone A (olive) and the RMSF of control ligand 6H3 (violet). (c) The RMSF of the native
protein 6JXT in the absence of a ligand (navy) and in the presence of suberitenone E (purple) and suberitenone J (dark yellow) and the RMSF of
control ligand YY3 (wine).
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TRP880 were observed to form hydrophobic bonds, and
ARG841 was observed to form hydrogen bonds (Figure 11c).
Instead of TRP880, suberitenone J formed hydrophobic bonds
with the LEU844, and the remaining residues formed the same
hydrophobic bonds as suberitenone E (Figure 11d). Suberitenone J
formed hydrogen bonds with LEU718, SER720, ALA722, PRO794,
ARG841, and ASP855 and formed one ionic bond with ALA722.
These results suggest better binding of suberitenone J than
suberitenone E with 6JXT.

4 Conclusion

Secosuberitenone A, suberitenone E, suberitenone I, and
suberitenone J are good drug candidates with CNS penetration
ability and BBB, according to the QSAR and ADMET study.
CYP3A4 can metabolize these four suberitenones as well. Of
them, suberitenone I had the highest affinity for CAP3 (PDB ID:
3KJF), at −8.9 kcal/mol. Two factors that are considered very
important when selecting good drug-like candidates are the
criteria of Lipinski’s “Rule of Five” and the analysis of toxicity.
Suberitenone I not only fulfilled Lipinski’s “Rule of Five” criteria but
also exhibited good toxicity properties. Secosuberitenone A attached
to MAPK3 (PDB ID: 6GES) with −9.4 kcal/mol binding energy and
did not show any types of drawbacks in all the structural analyses
performed. Suberitenone E and suberitenone J exhibited a higher

binding affinity of −8.8 kcal/mol against one of the five core target
EGFRs (PDB ID: 6JXT). These two showed low toxicity properties
and met the Lipinski “Rule of Five” criteria. However, the low
LD50 values of suberitenone I, suberitenone E, and suberitenone J
must be investigated using wet lab analysis. Additionally, both
secosuberitenone A and suberitenone J might exhibit low
carcinogenicity even if they are found to be antineoplastic,
according to PASS prediction. Two distinct web servers were the
sources of both traits, which is one of the two explanations for this
contradiction. Second, a recent study suggested that antineoplastic
drugs (ANDs) may cause secondary cancers in chemotherapy
patients, which might also help to explain this effect (Müller-
Ramírez et al., 2023). Secosuberitenone A is the safest
suberitenone, while suberitenone E was found to be more toxic
than the others in the cardiac safety assessment.

The RMSD values indicate that the investigational suberitenones
can form stable bonds with their respective proteins. According to
the RMSF data, the residues that experienced fluctuations during the
simulation were located outside of the catalytic site. Therefore, these
fluctuations are unlikely to affect the binding affinities of the
protein–ligand complexes. According to Rg, SASA, and
protein–ligand contact analysis, suberitenone I and
secosuberitenone A could be considered valid as a novel small
molecule that could bind with similar or more stability than the
control B92 and control 6H3 with their respective proteins.
However, compared to suberitenone J and the control YY3, these

FIGURE 11
The stacked bar charts represent the protein–ligands interactions found during the 100 ns simulation. Herein, showing the interaction of selected
compounds (a) suberitenone I in complex with 3KJF; (b) secosuberitenone A in complex with 6GES; (c) suberitenone E; (d) suberitenone J in complex
with 6JXT.
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analyses also showed that suberitenone E is less suitable for forming
a complex with 6JXT. Finally, among all the investigational
suberitenones, suberitenone I, secosuberitone A, and suberitenon
J have the best drug-like qualities and can become potent inhibitors
of CASP3, MAPK3, and EGFR, respectively, based on the results of
this in silico study. Even though secosuberitenone A, suberitenone E
(observed to be a cardiac failure from toxicity studies), suberitenone
I, and suberitenone J were good drug candidates according to QSAR,
their LD50 values are concerning issues that require additional study
and attention before proceeding toward in vitro and in vivo
investigations.
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