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Background: Alzheimer’s disease (AD) and glioblastoma (GBM) are complex
neurological disorders with distinct pathologies but overlapping molecular
mechanisms, including neuroinflammation, oxidative stress, and dysregulated
signaling pathways. Despite significant advancements in research, effective
therapies targeting both conditions remain elusive. Identifying shared
molecular targets and potential therapeutic agents could offer novel
treatment strategies for these disorders.

Methodology: The study employs an integrative network pharmacology
approach to explore the therapeutic potential of bioactive compounds from
Eclipta alba, a medicinal herb known for its neuroprotective and anti-
inflammatory properties. A systematic methodology was adopted, starting
with network pharmacology analysis using STRING and DisGeNET databases,
which identified 617 common genes associated with AD and GBM. Among these,
key hub genes—TP53, STAT3, AKT1, and IL6—were prioritized using Cytoscape
for network visualization and analysis.

Results: Molecular docking studies were conducted using PyRx software to
assess the binding interactions of 26 phytochemicals from Eclipta alba against
the identified target genes. Luteolin exhibited the highest binding affinity to IL6
(−7.8 kcal/mol), forming stable hydrogen bonds and hydrophobic interactions. To
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further validate this interaction, molecular dynamics simulations (MDS) were
performed using GROMACS, confirming the stability of the Luteolin-IL6
complex. Additionally, MM-PBSA binding energy calculations using AmberTools
(−145.44 kJ/mol) provided further evidence of a strong and stable interaction.
Pharmacokinetic and toxicity evaluations, conducted using SwissADME and
pkCSM, highlighted luteolin’s favorable drug-like properties, including good
bioavailability and low toxicity. These findings suggest that luteolin may serve as
a promising multi-target therapeutic agent for AD and GBM by modulating key
pathological pathways.

Conclusion: The present study provides a strong computational foundation for
further in vitro and in vivo validation. The results highlight the potential of luteolin in
developing dual-target treatment strategies for neurodegenerative and
oncological disorders, offering new avenues for therapeutic advancements.

KEYWORDS

Alzheimer’s disease, glioblastoma, brain cancer, network pharmacology, protein-protein
interaction, Eclipta alba, molecular docking, and molecular docking simulation

1 Introduction

Alzheimer’s Disease (AD) and glioblastoma (GBM) represent
two of the most challenging health conditions, each associated with
significant morbidity and mortality. AD is a progressive
neurodegenerative disorder that primarily affects cognitive and
memory functions, resulting from the accumulation of abnormal
amyloid-beta plaques and tau neurofibrillary tangles in the brain
(Pradeep S et al., 2020). It is the most common cause of dementia
globally, with cases projected to rise dramatically in the coming
decades. GBM, on the other hand, is the most aggressive and lethal
form of brain cancer, characterized by rapid growth, high
invasiveness, and poor prognosis despite advanced therapeutic
interventions (Figure 1). While these diseases appear distinct in
etiology and pathology, recent studies have highlighted overlapping
molecular and pathological mechanisms, offering new insights into
their potential interconnection. AD and GBM both involve intricate
interactions of genetic, molecular, and cellular factors. Common
features such as chronic inflammation, oxidative stress, aberrant
signaling pathways, and disruptions in the cellular
microenvironment have been implicated in both conditions. Key
molecular players, including tumor protein p53 (TP53), signal
transducer and activator of transcription 3 (STAT3), AKT serine/
threonine kinase 1 (AKT1), and interleukin-6 (IL6), are known to
contribute to neurodegeneration in AD and tumorigenesis in GBM.
Understanding the shared pathways and identifying therapeutic

targets that modulate these processes could lead to innovative
strategies to treat or manage both diseases (Burhan et al., 2016).

Computational methodologies have emerged as powerful tools
in of discovering and developing therapeutic agents. Network
pharmacology, an approach that integrates systems biology with
drug design, provides a framework to analyze the complex
interactions between genes, proteins, and small molecules
(Lenderking et al., 2014) Protein-protein interaction (PPI)
network analysis further enables the identification of critical hubs
or nodes that play central roles in disease progression. By applying
these methods, researchers can prioritize key targets for
experimental validation and drug development. The convergence
of AD and GBM pathologies provides a unique opportunity to
explore multi-target therapeutic strategies. Traditional single-target
drug development approaches often fail to address the multifactorial
nature of these diseases. Thus, the study aims to identify common
genetic and molecular targets that can be modulated to
simultaneously mitigate the effects of AD and GBM. Natural
products, particularly phytocompounds from medicinal plants
like Eclipta alba, have shown promise in addressing complex
diseases due to their multi-target properties, low toxicity, and
bioavailability (Pradeep et al., 2021).

Eclipta alba, commonly known as false daisy or bhringraj, is a
herb widely used in traditional medicine for its neuroprotective,
anti-inflammatory, and antioxidant properties. This plant is rich
in phytochemicals, including flavonoids, alkaloids, terpenoids,
coumestans, and polyphenols, which have demonstrated
significant pharmacological effects in various preclinical
studies. It has been traditionally used in Ayurvedic and
Chinese medicine to treat a wide range of conditions,
including liver disorders, hair loss, skin diseases, and immune-
related conditions. Eclipta alba is also known for its
hepatoprotective, antimicrobial, antiulcer, and anti-aging
effects, making it a versatile medicinal plant (Pradeep et al.,
2020). The plant’s bioactive compounds also possess properties
that facilitate blood-brain barrier (BBB) permeability, a critical
factor for treating central nervous system (CNS) disorders like
AD and GBM. Preclinical studies have demonstrated that E. alba
extracts can enhance cognitive function, reduce

Abbreviations: AD, Alzheimer’s Disease; GBM, Glioblastoma; TP53, Tumor
protein p53; STAT3, Signal Transducer and Activator of Transcription 3; AKT1,
AKT serine/threonine kinase 1; IL6, Interleukin-6; ADMET, Absorption,
Distribution, Metabolism, Excretion, and Toxicity; PPI, Protein-Protein
Interaction; CNS, Central Nervous System; BBB, Blood-Brain Barrier; MD,
Molecular Docking; MDS, Molecular Dynamic Simulations; RMSD, Root Mean
Square Deviation; RMSF, Root Mean Square Fluctuation; SASA, solvent-
accessible surface area; PDB, Protein Data Bank; CASTp, Computed Atlas
of Surface Topography of Proteins; MM-PBSA, Molecular Mechanics/Poisson-
Boltzmann Surface Area; DC, Degree centrality; CC, Closeness Centrality; BC,
Betweenness Centrality; NPs, Nanoparticles; LNPs, Lipid-based nanoparticles;
PNPs, Polymeric nanoparticles; LDL, Low-density lipoprotein; SLNs, Solid lipid
nanoparticles.
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neurodegeneration, and exhibit cytotoxic effects on cancer cells,
further supporting its utility in addressing these diseases (Uppar
et al., 2021). Ubiquitous in plants, flavonoids and related
polyphenolic compounds have garnered significant attention
for their diverse biological activities, including antioxidant,
anti-inflammatory, and anti-cancer properties. These effects
stem from their ability to modulate various cellular signaling
pathways and interact with multiple molecular targets. This study
leverages network pharmacology to identify shared therapeutic
targets between AD and GBM, two conditions sharing
overlapping pathological mechanisms such as
neuroinflammation, oxidative stress, and dysregulated
signaling, including disruptions in amyloid-beta processing
(Ramanan et al., 2016). Luteolin, a naturally occurring
flavonoid within this class, and its isomers, including
apigenin, chrysin, diosmetin, and luteolinidin, are of particular
interest due to their diverse biological activities and potential for
therapeutic intervention. By identifying these common
vulnerabilities, we aim to uncover potential therapeutic
strategies that could be effective in treating both devastating
diseases, potentially leading to the development of novel multi-
target drugs (Sudarshan et al., 2019).

The study employed an integrated computational approach to
identify and evaluate therapeutic targets and candidate compounds.
Databases such as DisGeNET and STRING were used to identify
genes common to AD and GBM.PPI network analysis was
conducted using Cytoscape, a platform for visualizing molecular
interaction networks. Key targets were prioritized based on
topological parameters such as degree centrality, closeness
centrality, and betweenness centrality. To further validate the
identified targets, molecular docking (MD), ADMET (absorption,
distribution, metabolism, excretion, and toxicity) analysis,
molecular dynamic simulations (MDS) andbinding energy
calculations, studies were conducted (Pradeep et al., 2022). These
computational techniques provided insights into the binding

affinity, stability, and interaction profiles of selected
phytocompounds with the target proteins.

Unlike previous research that focused on either AD or GBM
separately, this study explores their shared pathological
mechanisms—inflammation, oxidative stress, and dysregulated
signaling pathways—to identify common molecular targets that
can be modulated for a multi-target treatment strategy through
network pharmacological studies. the present study bridges
traditional medicine with modern drug discovery by scientifically
validating the neuroprotective and anticancer properties of E. alba
using computational biology. It represents a paradigm shift in drug
discovery by demonstrating how network pharmacology, molecular
docking, molecular dynamics, and machine learning-based ADMET
predictions can efficiently prioritize multi-target natural compounds
for treating complex diseases. By uncovering the dual therapeutic
potential of luteolin, this study provides a novel framework for
repurposing medicinal plants in neurodegeneration and oncology,
paving the way for future experimental validation and clinical
translation. The integration of systems biology with advanced
computational techniques represents a paradigm shift in drug
discovery, particularly for diseases like AD and GBM that have
historically been challenging to treat. Ultimately, the study aims to
elucidate the therapeutic potential of E. alba phytochemicals in
addressing the shared molecular mechanisms of AD and GBM.

2 Materials and methods

2.1 Prediction of targeted genes and
selection of common genes

The study used the DisGeNET database (https://www.disgenet.
org/search) to identify genes associated with AD and GBM. The
search used the keywords “AD” and “Brain Cancer” and applied the
filter for “Homo sapiens” (human). The results showed a total of

FIGURE 1
The schematic representation illustrates themultifactorial pathology of AD and GBM, highlighting keymolecular and cellular mechanisms. For AD, it
depicts amyloid-beta plaque accumulation, tau hyperphosphorylation, neuroinflammation, oxidative stress, and mitochondrial dysfunction, leading to
neurodegeneration. For GBM, it showcases uncontrolled proliferation, angiogenesis, immune evasion, and resistance mechanisms driven by EGFR
overactivation, PI3K/Akt/mTOR signaling, and tumor microenvironment interactions.
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3,398 genes linked to AD and 1,422 genes associated with brain
cancer. After identifying genes associated with AD and GBM using
the DisGeNET database, the relevant genes were extracted from
Microsoft Excel. Subsequently, the focus was narrowed down to
617 genes that were commonly involved in both diseases (Prasad
et al., 2020c) (Figure 2).

2.2 Construction of PPI and C-T network

The STRING web tool (https://string-db.org) was utilized to
construct a protein-protein interaction network for the genes that
were found to be common to both AD and GBM. The network
obtained from the STRING database was imported into Cytoscape 3.
8.2. This allowed for the identification of the most relevant gene
among the 617 genes common to both AD and GBM. Firstly,
ensuring that the STRING data had been successfully retrieved in
Cytoscape 3.8.2 was necessary. Next, the network constructed using
the STRING database was imported. Subsequently, individual
networks were created based on the p-values of the genes using
MCODE, a plugin installed in Cytoscape (Chen et al., 2012).

2.3 Computer aided drug discovery

The objective of protein-ligand interaction analysis is to identify
the most favorable binding interactions between a small molecule
(ligand) and a protein. RMSD values are calculated for all
computationally generated poses of potential protein-ligand
bindings (Khandagale et al., 2022).

2.3.1 Protein preparation and validation
Among the top 15 genes, only four are being finalized. The

proteins encoded by each gene are being selected, considering only
those that play a role in AD and GBM pathology. The considered
genes are TP53, STAT3, AKT1, and IL6. Following the network
analysis, the most significant gene, TP53 was selected, for docking
investigation, followed by Signal Transducer and Activator of
STAT3, AKT1, and IL6. The structural features of the chosen

protein molecules were obtained from RCSB PDB (Protein Data
Bank) (https://www.rcsb.org/) (Majd et al., 2019) (Figure 3).

The proteins 1IL6, 1TUP (Tumor suppressor P53 complexed
with DNA), 6TLC (Unphosphorylated human STAT3), 6S9X, and
1IL6 are primarily involved in AD and brain tumors. Neuro-
inflammation is another biological process associated with AD
etiology, often characterized by activated microglia cells and
increased expression of cell-surface proteins and cytokines like
interleukin-6 in response to Aβ deposition (IL-6). Systemic
inflammation has been linked to neurodegeneration, with
elevated interleukin-6 levels associated with an increased risk of
dementia. Endothelial cells of the blood-brain barrier (BBB) are
expected to play a role in neuropathology associated with systemic
inflammation. Protein toxicity is a fundamental feature of most
types of dementia, including AD with Lewy bodies and
frontotemporal dementia (Prasad et al., 2020b). These clumps are
formed when proteins misfold and aggregate, causing harm to brain
cells. The protein 1TUP can contribute to various malignancies,
including brain tumors, as it encodes TP53 genes, frequently altered
in human astrocytoma and glioblastoma samples. The protein 6TLC
is encoded by the STAT3 gene, which belongs to the STAT protein
family and has been linked to the regulation of synaptic plasticity,
cognition, and cognitive deficiencies caused by hTau accumulation
(Lenderking et al., 2014).

The 3-dimensional structures of each protein were retrieved
from the RCSB PDB database (https://www.rcsb.org) using their
protein IDs. PDB is a database that contains three-dimensional
structural data for large molecules such as proteins and nucleic acids
(Kollur et al., 2021). The proteins downloaded from the PDB
database needed to be cleaned for the docking method.
Specifically, the proteins 1TUP, 6TLC, 6S9X, 1IL6, and 6ZFL
were downloaded in the PDB format. If a protein contained
repeated chains, the extra chains were deleted. Additionally,
water molecules present in the protein structures were removed.
To confirm the quality of the protein structure, the protein file was
uploaded to PROCHECK RAMPAGE, and the program was run
(Sharma et al., 2021).

2.3.2 Protein active site prediction
The subsequent step involves selecting the active site or active

amino acids within the protein. The active site of a specific protein
can be determined using CASTp (Computed Atlas of Surface
Topography of Proteins) (http://sts.bioe.uic.edu). The cleaned
protein can be uploaded as a file to CASTp, and results can be
obtained after a few minutes. The specific active sites within the
amino acids of the given protein can be readily identified (Sajal et al.,
2022) (Figure 4).

2.3.3 Construction of ligand library preparation and
optimization

The phytocompounds of E. alba, were retrieved from the IMPPAT
(Indian Medicinal Plants, Phytochemistry, and Therapeutics) database
(https://cb.imsc.res.in/imppat/basicsearchauth). This comprehensive
database contains information on over 1700 Indian medicinal plants,
each associated with 1100 different therapeutic applications. The
Phytocompound which passed Lipinski’s rule of 5 was considered
and its.pdb files were downloaded from the IMPPAT database and
they are represented in the below Table 1 (Pushpa et al., 2022).

FIGURE 2
Representing the number of common genes from AD and Brain
Cancer through a Venn diagram. The two circles represent the distinct
gene sets associated with AD and brain cancer, with the overlapping
region indicating the number of common genes involved in both
conditions.
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2.3.4 Molecular docking simulation
PyRx (https://pyrx.sourceforge.io) is a computational drug

discovery software that enables the screening of chemical libraries
against potential therapeutic targets. To initiate the molecular
docking process with PyRx, the first step is to load the protein,
subsequently, all 26 ligands that have been cleaned and prepared
using the ArgusLab tool should be imported using the “clean
geometry” option (Jain et al., 2021). This is the procedure for
performing molecular docking with PyRx, as previously
described. Initially, one by one the cleaned protein is imported,
followed by the importation of all 26 ligands from the E. alba plant.
Later in the process, the protein will be transformed into a
macromolecule, and the phytochemical substances will be
converted into ligands. All the active sites within the imported
protein need to be selected in PyRx. Then, the AutoDock Vina
wizard should be set up and initiated again, with all 26 ligands and
their respective molecules selected. The process proceeds with the
“forward” option, and results are obtained in the form of a table.
Each ligand will have a total of 8 conformations with the respective
protein molecule. Consequently, the results will include binding

affinity (kcal/mol), mode, RMSD lower bound, and RMSD upper
bound for all 26 ligands with respect to the protein. The selection of
ligands should be based on their binding affinity (Aisen et al., 2022).
Typically, binding affinity results are expressed as negative values. A
least binding affinity indicates strong and favorable binding of that
ligand with the respective protein molecule. Additionally, among the
8 conformations, the top 2 confirmations can be considered further
as they exhibit the least binding energy and RMSD (Pradeep et al.
, 2022).

The results of the molecular docking protocol indicated its
suitability for screening phytocompounds. Active compounds
were subsequently selected for further investigation based on the
C-T network. The virtual screening results for a total of
26 ligands (compounds) evaluated for investigation are
presented in the table below, which displays their binding
affinity (kcal/mol), the number of hydrogen bonds, and non-
binding interactions with the protein molecule (Behl et al., 2022).
These compounds were visualized and analyzed using Discovery
Studio, a software package for simulating small molecule and
macromolecule systems.

FIGURE 3
The three-dimensional representation of Four Protein structures selected for molecular interaction studies (A) 1TUP, (B) 6TLC, (C) 6S9X, and
(D) 1IL6.
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2.4 Pharmacokinetic properties

The ADMET analysis of Luteolin and Wedelolactone was
conducted using the pkCSM tool (https://biosig.lab.uq.edu.au/
pkcsm/) a computational platform designed for predicting
pharmacokinetic and toxicity properties of compounds based on
their molecular structure. The study assessed absorption,
distribution, metabolism, excretion, and toxicity profiles to
understand the drug-likeness and safety of these compounds
(Berte et al., 2018).

2.5 Molecular dynamic simulation

Molecular dynamics simulations were performed using the
GROMACS simulation software. The simulations involved
running MD simulations for the complexes with the highest
affinities in water using the CHARMM36 force field (Ankegowda
et al., 2020). CHARMM36 typically uses an all-atom model,
meaning that each atom in the molecule (including hydrogens) is
explicitly represented in the simulation. This level of detail provides
a more accurate description of the interactions within the system.
These simulations were carried out for a duration of 50 ns, with
trajectory and energy files recorded every 10 ps. To solvate the
system, a truncated octahedral box containing TIP3P water
molecules was employed. The protein was centered in the
simulation box, maintaining a minimum distance of 1 nm from
the box edge to satisfy the minimum image convention. To
neutralize the entire system, 4 potassium ions were added to the
protein complexes (Bogdan et al., 2020; Reddy et al., 2023). To
prevent steric collisions, a minimization step was performed using

the steepest descent method, running for 5000 steps until
convergence was achieved within a maximum force of 1000 (KJ
mol−1 nm−1). To ensure a properly converged system for the
production run, all three systems underwent equilibration at
NVT (constant number of particles, volume, and temperature)
and NPT (constant number of particles, pressure, and
temperature) ensembles for 100 ps (50,000 steps) and 1000 ps
(1,000,000 steps), respectively, utilizing time steps of 0.2 and
0.1 fs at 300 K. The production run of the simulation was
conducted at a constant temperature of 300 K and pressure of
1atm (NPT) using the Parrinello-Rahman and weak coupling
velocity-rescaling methods (Cheng et al., 2010). Before analyzing
the results of MD simulation, it’s essential to ensure that the system
has reached equilibrium, which means system’s properties
(temperature, pressure, energy) are stable and no longer changing
significantly over time. In this study, 50 ns provided sufficient time
for the system to equilibrate, especially after the initial minimization
and equilibration steps.

2.6 Binding energy calculations

With the help of the Molecular Mechanics/Poisson-Boltzmann
Surface Area (MM-PBSA) method, binding free energy calculations
were performed on the results of the MDS run for luteolin of the
target protein 1IL6. To ascertain the degree of ligand interaction
with protein, molecular dynamics simulations and thermodynamics
are once again used (Prasad et al., 2021). The binding free energy for
each ligand-protein combination was calculated using the gmmpbsa
software and MmPbStat.py script, which takes the GROMACS
2018.1 trajectories as input (Prasad et al., 2021). The binding free

FIGURE 4
The binding site residues details of four selected proteins and the respective amino acid residues are highlighted in grey. These residues play a crucial
role in facilitating ligand-protein interactions, contributing to the overall binding stability and specificity.

Frontiers in Chemistry frontiersin.org06

Pradeep et al. 10.3389/fchem.2025.1549186

https://biosig.lab.uq.edu.au/pkcsm/
https://biosig.lab.uq.edu.au/pkcsm/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1549186


TABLE 1 ligand table which has screened in all the parameters of Eclipta alba which is taken by using IMPPAT database.

Sl. No Phytocompound name Molecular weight (g/mol) Lipinski’s rule of 5 Structure

1 4beta-Hydroxyverazine 413.65 Passed

2 25beta-Hydroxyverazine 413.65 Passed

3 Veramiline 399.66 passed

4 Linoleic acid 280.45 passed

5 Palmitic acid 256.43 passed

6 Ricinoleic acid 298.47 passed

7 Nicotine 162.24 passed

8 Wedellactone 314.25 Passed

9 beta-Amyrin 426.73 Passed

10 beta-Sitosterol 414.72 Passed

(Continued on following page)
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TABLE 1 (Continued) ligand table which has screened in all the parameters of Eclipta alba which is taken by using IMPPAT database.

Sl. No Phytocompound name Molecular weight (g/mol) Lipinski’s rule of 5 Structure

11 2-Formyl-terthienyl 278.42 Passed

12 alpha-Terthienylmethanol 278.42 Passed

13 Oleic acid 282.47 Passed

14 Demethylwedelolactone 300.22 Passed

15 Ecliptalbine 409.61 Passed

16 Pratensein 300.27 Passed

17 Stigmasterol 412.7 Passed

18 beta-Sitosterol 414.72 Passed

19 beta-Amyrin 426.73 Passed

20 Ursolic acid 456.71 Passed

21 Oleanolic acid 456.71 Passed

(Continued on following page)
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energy is determined by the gmmpbsa program using three different
factors: molecular mechanical energy, polar and a polar solvation
energies, and molecular mechanical energy. Using MDS, the
calculation is completed. To compute ΔG with dt 1000 frames,
the latest 100 ns of trajectory were taken into consideration. It is
assessed using polar and a polar solvation energies, as well as
molecular mechanical energy (Chandrashekar et al., 2022). Below
are the Formulas 1, 2 that are used to determine the free
binding energy.

ΔGBinding � GComplex − GProtein + GLigand( ) (1)
ΔG � ΔEMM + ΔGSolvation − TΔS

� ΔE Bonded+nonbonded( ) + ΔG Polar+nonpolar( ) − TΔS (2)

GBinding: binding free energy, GComplex: total free energy of
the protein-ligand complex, GProtein and GLigand: total free
energies of the isolated protein and ligand in solvent,
respectively, ΔG: standard free energy, ΔEMM: average molecular
mechanics potential energy in vacuum, ΔGSolvation: solvation
energy, ΔE: total energy of bonded as well as non-bonded
interactions, ΔS: change in entropy of the system upon ligand
binding, T: temperature in Kelvin.

3 Results

3.1 Construction and analysis of PPI and
C-T network

The identification and refinement of common genes between
AD and GBM followed a systematic computational approach.
Initially, gene datasets were retrieved from the DisGeNET

database, this resulted in a total of 3,398 genes associated with
AD and 1,422 genes linked to GBM. To determine the common
genes between these two diseases, a comparative analysis was
performed using Microsoft Excel to filter shared genes and Venn
diagram-based intersection analysis leading to the identification of
617 common genes (Figure 5).

Once the 617 overlapping genes were identified, further
screening was carried out to remove redundant or non-relevant
genes through a network pharmacology approach. The list of
common genes was input into the tool, and the network was
generated. Interactions were established using a confidence level
of 0.09, and the organism filter was set to H. sapiens, ensuring that
dissociation targets were excluded from the target genes. In
summary, the interaction network was constructed using the
STRING database.

The Cytocluster plugin offers various algorithms that can be
utilized to determine the p-value of each cluster. The analysis
employed the CLUSTER-ONE algorithm, which involves
clustering with overlapping neighborhoods. CLUSTER-ONE is a
graph clustering algorithm specifically designed to handle weighted
graphs and generate overlapping clusters (Shivalingaiah et al.,
2022a). In total, 13 clusters were obtained from the entire
network based on their p-values, but only 8 clusters with a
p-value less than 0.05 were considered for subsequent analysis
(Figure 6).

3.2 Gene prediction

The selection of core targets was based on the network’s
topological features, including degree centrality (DC), which
measures the number of connections associated with a node,

TABLE 1 (Continued) ligand table which has screened in all the parameters of Eclipta alba which is taken by using IMPPAT database.

Sl. No Phytocompound name Molecular weight (g/mol) Lipinski’s rule of 5 Structure

22 beta-Farnesene 204.36 Passed

23 Pratensein 300.27 Passed

24 Diosmetin 300.27 Passed

25 4-Hydroxybenzoic acid 138.12 Passed

26 Luteoline 286.24 Passed
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FIGURE 5
PPI network of common genes of both AD and GBM was built by using STRING database. The network visualization reveals key hub genes and
interaction clusters, highlighting potential functional links between neurodegeneration and tumorigenesis. Identifying highly connected nodes in the PPI
network helps in prioritizing therapeutic targets for drug repurposing and combination therapies.

FIGURE 6
Result of Cytocluster representing the clusters which contain p-value less than 0.05 from the whole network.
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closeness centrality (CC), which calculates the sum of distances
from one node to all other nodes, and betweenness centrality
(BC), which assesses the importance of a node in terms of
shortest paths within the network. These evaluations were
performed using the Cyto-NCA plugin. To construct the
essential sub-network, the Degree, Closeness, and Betweenness
measures of the created networks were further filtered using the
CYTOHUBBA plugin and the maximum clique centrality (MCC)
scoring technique. In the network target workspace of
CYTOHUBBA, computations based on the degree were
performed to identify the top 15 significant genes in the
network, considering genes with a p-value below a certain
threshold. Furthermore, the proteins TP53, STAT3, AKT1,
and IL6 were prioritized for molecular docking studies due to
their high centrality scores. These high scores across
betweenness, closeness, and degree measures indicate their
importance within the protein-protein interaction network
and suggest their potential as key therapeutic targets (Tables
2, 3; Figure 7).

3.3 Molecular docking simulation

Based on Molecular docking studies, a list of ligand binding
conformations was obtained. The compound’s binding
conformation to the selected proteins was found, and the
conformation with the lowest binding energy was determined
(Table 4). The top 2 compounds Luteolin and Wedelactone with
the lowest binding energy and maximum binding affinity, are
displayed in the Figures 8, 9, and their respective bonded and
non-bonded interaction data are presented in Table 5. Lower
binding energy scores indicate stronger protein-ligand binding
affinity when compared to higher binding energy values (Foudah
et al., 2023). Comparing all three scores and aspects, which

FIGURE 7
Top 15 significant genes which has been performed by using Cytohubba.

TABLE 2 Top 15 significant genes based on their betweenness, closeness
and degrees.

Gene name Betweeness Closeness Degree

TP53 1807.0201493682775 0.9264069264069265 197.0

STAT3 957.8503527532259 0.9184549356223176 195.0

AKTl 905.3734446392816 0.9145299145299145 194.0

IL6 712.842607990732 0.8879668049792531 187.0

VEGFA 697.2263526976875 0.8770491803278688 184.0

TNF 676.0164936870538 0.8734693877551021 183.0

ALB 696.3884688783338 0.8699186991869918 182.0

MYC 826.0072804023529 0.8663967611336032 181.0

JUN 670.0529092860817 0.852589641434263 177.0

EGFR 662.9138584704793 0.8458498023715415 175.0

CTNNBl 683.645313099326 0.84251968503937 174.0

CASP3 529.8929020329398 0.8294573643410853 170.0

HIFlA 509.47708195337566 0.8262548262548263 169.0

ILlB 519.4686905135328 0.8199233716475096 167.0

MAPK3 451.58200981266066 0.8045112781954887 162.0

TABLE 3 List of the genes and the proteins encoded.

Sl. NO Genes PDB ID of proteins encoded

1 TP53 1TUP

2 STAT3 6TLC

3 AKT1 6S9X

4 IL6 1IL6
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includes binding affinity, the number of hydrogen bonds present,
and non-bonded interactions, Luteolin ranks first with the lowest
scores, followed by Wedelactone.

3.3.1 Hydrogen bond interactions
A comprehensive analysis of the binding affinity of Luteoline

and Wedelactone to proteins was conducted. According to the

FIGURE 8
Molecular docking interactions of ligand Luteoline (conformation = −7.8) with 1IL6 protein in 2D and 3D representation.

TABLE 4 Table of binding affinity, non-binding interactions, and number of hydrogen bonds of the compounds with the target protein.

Sl. No Compound
name

Protein
name

Binding affinity
(kcal/mol)

Number of hydrogen
bonds

Number of pocket
atoms

1 4beta-Hydroxyverazine 1IL6 −7.9 1 12

2 25beta-Hydroxyverazine −8.0 2 11

3 Linoleic acid −4.1 1 9

4 Palmitic acid −4.0 2 8

5 Ricinoleic acid −4.4 1 5

6 Nicotine −4.1 1 3

7 Wedellactone −6.7 4 7

8 beta-Sitosterol −7.1 2 7

12 2-Formyl-terthienyl −5.0 1 4

13 alpha-Terthienyl
methanol

−5.4 2 7

14 Oleic acid −3.8 3 8

15 Demethyl wedelolactone −6.8 2 6

16 Ecliptalbine −8.0 2 9

17 Pratensein −8.3 2 7

18 Ursolic acid −7.8 2 10

19 Pratensein −7.1 4 2

20 Diosmetin −7.1 4 2

21 4-Hydroxybenzoic acid −5.1 2 7

22 Luteolin −7.8 7 5
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research on the luteoline-binding mechanism to 1IL6’s catalytic
region, residues LYS-239, THR-319, GLU-320, TYR-322, and GLN-
237 are in hydrogen bond contact with the ligand and contribute
seven hydrogen bonds. In terms of the Wedelactone-1IL6 binding,
LEU-312, ASP-245, LYS-364, and LEU-254 were observed to be
involved in hydrogen bond interactions, providing four hydrogen
bonds (Shivalingaiah et al., 2022b). The interactions between
Luteoline and Wedelactone and 1IL6 demonstrate that both polar
and aromatic amino acids are essential for ligand-binding.

3.3.2 Hydrophobic interactions
The influence of hydrophobic interactions on ligand-enzyme

interactions is significant. To study the residues of 1IL6 that are
engaged in hydrophobic interactions with the ligand, the Discovery
Studio visualization program was used. In the Luteoline-1IL6
complex analysis, five hydrophobic bonds were formed with the
ligand by LYS-241, ILE-240, VAL-321, LEU-238, and LEU-234. In
the Wedelactone-1IL6 complex study, seven hydrophobic bonds
were created between the ligand and GLU-311, HIS-313, SER-248,
LYS-246, ASP-247, ALA-252, and VAL-251. It is observed that
1IL6 has more residues associated with it compared to other ligands.

The strong hydrogen bonding and hydrophobic interactions of
Luteolin suggest a potentially higher inhibitory effect on IL6, which
could contribute to anti-inflammatory properties by modulating
IL6-mediated signaling pathways. Given IL6’s role in chronic
inflammation, autoimmune diseases, and cancer progression,
Luteolin’s strong interaction profile may indicate therapeutic
potential in these conditions. While Wedelactone exhibits

substantial hydrophobic interactions, its lower number of
hydrogen bonds suggests a relatively stable but less potent
binding with IL6. Nevertheless, its binding affinity still suggests a
possible role in IL6 inhibition, albeit to a lesser extent compared to
Luteolin. The observed interactions indicate that Luteolin may serve
as a stronger lead compound for targeting IL6, with promising
implications in diseases where IL6 overexpression plays a role.

3.4 Pharmacokinetic properties

In terms of absorption, both compounds showed moderate water
solubility, with Luteolin (−3.094) being slightly more soluble than
Wedellactone (−3.277). Luteolin demonstrated better intestinal
permeability (Caco-2 permeability of 0.096 compared to −0.23 for
Wedelolactone). However, Wedelolactone had higher human intestinal
absorption (93.753%) than Luteolin (81.13%). Both compounds
exhibited low skin permeability (−2.735) and were identified as
substrates of P-glycoprotein, which may influence their
bioavailability. Neither compound inhibited P-glycoprotein I or II,
suggesting minimal risk of efflux-related drug interactions.

For distribution, Luteolin had a higher volume of distribution
(VDss of 1.153) thanWedellactone (0.129), indicating broader tissue
distribution. The fraction of unbound drug in plasma was higher for
Luteolin (0.168) than Wedellactone (0.03), suggesting greater
availability of the free drug. Both compounds showed poor BBB
permeability, with Wedellactone (−1.353) being slightly less
permeable than Luteolin (−0.907). Similarly, CNS permeability

FIGURE 9
Molecular docking interactions of ligand wedelactone (conformation = −6.7) with 1IL6 protein in 2D and 3Drepresentation.

TABLE 5 Molecular docking interaction details of Luteoline and Wedelactone ligands against 1IL6 protein.

Sl. No Molecular/compound
name

Bonded interactions Non- bonded interactions

1 Luteolin LYS:239, THR:319, GLU:320, TYR:322,
GLN:237

LYS:241, ILE:240, VAL:321, LEU:238, LEU:234

2 Wedelactone LEU:312, ASP:245, LYS:364, LEU:254 GLU:311, HIS:313, SER:248, LYS:246, ASP:247, ALA:252,
VAL:251
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was low for both, with values of −2.251 for Luteolin and −2.322 for
Wedellactone.

In the metabolism analysis, neither compound was a substrate
for CYP2D6. However, Wedellactone was a substrate for CYP3A4,
while Luteolin was not. Both compounds inhibited CYP1A2 and
CYP2C9 enzymes, indicating potential drug-drug interactions
involving these pathways. Neither compound inhibited
CYP3A4 or CYP2D6, reducing the likelihood of interactions with
these isoforms. The excretion properties showed that Wedellactone
had higher predicted total clearance (0.641) compared to Luteolin
(0.495), indicating faster elimination. Neither compound was

identified as a renal organic cation transporter (OCT2) substrate,
suggesting minimal renal transporter-mediated clearance. In terms
of toxicity, Luteolin was predicted to be non-mutagenic (negative for
AMES toxicity), while Wedellactone was mutagenic (positive for
AMES toxicity). Both compounds had comparable maximum
tolerated doses (0.499 for Luteolin and 0.546 for Wedelolactone)
and were non-hepatotoxic and non-sensitizing to the skin. Luteolin
exhibited higher minnow toxicity (3.169) compared toWedellactone
(0.655), indicating potential environmental concerns.

Luteolin is the more promising candidate for drug development
due to its balanced absorption, favorable distribution, safer

TABLE 6 Assessing absorption, distribution, metabolism, excretion, and toxicity profiles of Luteolin and Wedelolactone’s drug-likeness and safety
properties.

Property Model name Predicted value for luteolin Predicted value for Wedellactone

Absorption Water solubility −3.094 −3.277

Caco2 permeability 0.096 −0.23

Intestinal absorption (human) 81.13 93.753

Skin Permeability −2.735 −2.735

P-glycoprotein substrate Yes Yes

P-glycoprotein I inhibitor No No

P-glycoprotein II inhibitor No No

Distribution VDss (human) 1.153 0.129

Fraction unbound (human) 0.168 0.03

BBB permeability −0.907 −1.353

CNS permeability −2.251 −2.322

Metabolism CYP2D6 substrate No No

CYP3A4 substrate No Yes

CYP1A2 inhibitior Yes Yes

CYP2C19 inhibitior No No

CYP2C9 inhibitior Yes Yes

CYP2D6 inhibitior No No

CYP3A4 inhibitior No No

Excretion Total Clearance 0.495 0.641

Renal OCT2 substrate No No

Toxicity AMES toxicity No Yes

Max. tolerated dose (human) 0.499 0.546

hERG I inhibitor No No

hERG II inhibitor No No

Oral Rat Acute Toxicity (LD50) 2.455 2.415

Oral Rat Chronic Toxicity (LOAEL) 2.409 2.263

Hepatotoxicity No No

Skin Sensitisation No No

T.Pyriformis toxicity 0.326 0.303

Minnow toxicity 3.169 0.655
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metabolic profile, and lower toxicity. Wedellactone’s mutagenicity
and reliance on CYP3A4 metabolism make it less favorable despite
its excellent intestinal absorption and clearance (Table 6).

3.5 Molecular dynamics simulation studies

The RMSD of the protein-ligand complex illustrates its stability
throughout the simulation by identifying whether the ligand
remains in the binding pocket. When calculating root mean
square distances, the Rg (radius of gyration) considers the
rotational axis along with the various masses. It considers the
conformation, shape, and folding at each time step throughout
the entire trajectory. MSF (mean square fluctuation) focuses on
the protein structural areas that deviate the most or least from the
mean. SASA (solvent-accessible surface area) assesses the
hydrophobic core created when protein-ligand complexes
interact. The stability of the ligand during the simulation
procedure is also indicated by the ligand RMSD. Moreover,
H-bonds are visible during the entire simulation period of the
MD study under examination. All intermolecular H-bonds
between the ligands and the protein were considered and
appropriately displayed during the analysis.

The stability of the 1IL6 and Luteolin was assessed through 50 ns
MDS. These simulations provided detailed information on the
binding interaction of the docking complex with a system
containing water molecules, as well as information on
temperature and pressure. In all appropriate binding postures,
the complex exhibited an acceptable RMSD value of 3. According
to the RMSD plots, the protein and ligand appeared to be more
stable in the 50 ns simulation study. During the simulation
procedure, the RMSD value for the ligand appears to
proportionally increase in the first 25 ns and then mostly

fluctuates between 0.7 and 1.3 nm. After 25 ns and up to 50 ns,
a slight fluctuation is observed in the ligand. The protein RMSD
trajectory initially fluctuated between 0–10 ns, with a slight
fluctuation between 10–20 ns. After 20 ns, the protein RMSD
trajectory slowly rises until the end of the simulation. There were
no unusual swings in the RMSD for the protein during the
simulation (Figure 10A).

The counterplots of RMSF indicate significant variations
throughout the simulation, in contrast to RMSD trajectories. A
description of macromolecule stead y-state and heterogeneity is
provided by RMSF. The ubiquitous intermolecular hydrogen bonds
are essential for protein folding and interactions with ligands. It was
determined throughout the 50 ns simulation period how stable the
hydrogen bond network created in the protein-ligand complex was.
complexes’ overall hydrogen bond count over time at 500 K. The
1IL6-Luteoline complex displayed the necessary number of
hydrogen bonds throughout the simulation, demonstrating its
strong and stable hydrogen bonding (Figures 10B, 11A, B).

3.6 Binding free energy calculations

Various energy metrics such as Van der Waal’s, electrostatic,
polar solvation, SASA, and binding energies are utilized to measure
the extent of ligand-target protein binding interactions during
molecular dynamics simulations. In this study, the electrostatic
energy was primarily used to construct the protein-ligand
combination. Van der Waal’s energy, SASA energy, and binding
energy came next. Polar solvation energy was predicted with no
contribution to the protein-ligand complex formation, as the values
appeared positive. The 1IL6 complexed with Luteolin was predicted
with the highest binding affinity and hence was considered for
binding energy calculation studies. In addition, the protein-ligand

FIGURE 10
(A) RMSD graphs of 1IL6 and its complex with Luteoline for time trajectory from0 ns to 50 ns. (B) RMSF. (A) RMSD graphs of 1IL6 and its complex with
Luteolin over a 50 ns simulation trajectory, indicating the stability of the protein-ligand interaction. A steady RMSD value suggests a stable binding
interaction, whereas large fluctuations indicate conformational changes. (B) RMSF plot, highlighting structural flexibility and dynamic regions of the
protein. Higher RMSF values correspond to more flexible regions, while lower values indicate structurally stable regions, crucial for ligand binding
and overall protein stability.
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complex standard deviations were calculated. A lower standard
deviation means the data values are closer to the mean (or
expected value), whereas a high standard deviation means the
data values are spread out over a wider range. However, in the
complex, there were no high standard deviations. This indicates that
Luteolin binds to the protein with high binding affinity and stable
interaction. The binding free energy calculations of the protein-
ligand complex have been given in Table 7.

4 Discussion

In the current study, a comprehensive approach was taken to
investigate the network of PPI and C-T relationships. The list of
common genes identified for AD and GBM was input into the
STRING database to establish an interaction network. The network
was constructed using a confidence level of 0.09 and filtered for H.

sapiens, specifically excluding dissociation targets from the list of
target genes. The resultant PPI network was analyzed using the
STRING database, which offers a reliable way to visualize molecular
networks and understand the relationships between genes involved
in disease mechanisms. A total of 13 clusters were obtained using the
CLUSTER-ONE algorithm from the Cytocluster plugin, which
employs overlapping neighborhoods for clustering weighted
graphs. Among these clusters, only 8 clusters with p-values less
than 0.05 were considered for further analysis, indicating significant
interactions that may play a crucial role in the pathophysiology of
both AD and brain cancer (Tohma et al., 2019).

Gene prediction involved the selection of core targets based on
topological features within the constructed PPI network. The key
features considered for predicting core genes were DC, CC, and BC.
The degree, closeness, and betweenness measures were subsequently
used to filter the top 15 significant genes from the network using the
CYTOHUBBA plugin. For instance, TP53, a well-known tumor

FIGURE 11
(A) Hydrogen bond plot depicting the number of hydrogen bonds formed between 1IL6 and Luteolin throughout the 50 ns simulation,
demonstrating the persistence and strength of ligand binding. A stable hydrogen bond network suggests a strong interaction with the target protein. (B)
SASA plot of the protein-ligand complex, illustrating changes in the hydrophobic core exposure upon ligand binding. A consistent SASA range
(90–95.5 nm2) indicates regular complex formation and minimal structural disruption, reinforcing the potential of Luteolin as a stable IL6 inhibitor.
The estimated range for protein and protein-ligand complex SASA plots was 90–95.5 nm2, demonstrating regularity in complex formation. Further
demonstrating the long-term viability of Luteoline was the ligand RMSD, which leveled after 20 nanoseconds and approached equilibrium at 0.5 nm. In
Addition, the maximum number of ligand hydrogen bonds of seven had been expected.

TABLE 7 Binding free energy calculations of 1IL6 target protein complexed with Luteolin.

Categories 1IL6 - Luteolin complex

Values (kj/mol) Standard deviation (kj/mol)

Van der Waal’s energy −179.746 +/− 131.137

Electrostatic energy −25.672 +/− 39.198

Polar solvation energy 57.164 +/− 43.852

SASA energy −11.120 +/− 10.227

Binding energy −197.440 +/− 145.163
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suppressor, exhibits the highest betweenness centrality, indicating its
critical role in mediating interactions between other genes in the
network. Similarly, STAT3 and AKT1, both involved in cell
signaling and survival pathways, show high centrality scores
across all three measures. This suggests that these genes not only
interact with numerous other genes but also play a crucial role in
information flow and overall network influence. Other notable genes
in the top 15 include IL6, a pro-inflammatory cytokine; VEGFA, a
key regulator of angiogenesis; and TNF, another pro-inflammatory
cytokine, all of which have established roles in the pathogenesis of
both AD and GBM. The top four genes were further analyzed for
their associated proteins and interactions, and their complex
analysis provided valuable insights into the molecular pathways
that might be targeted in the treatment of both AD and GBM.

Molecular docking simulations were employed to assess the
binding affinity of selected ligands with proteins involved in AD and
GBM. Among the tested compounds, Luteolin and Wedelactone
emerged as the top two ligands, exhibiting the lowest binding
energies and maximum binding affinities. The hydrogen bond
interactions between the ligands Luteolin and Wedelactone and
their target protein, 1IL6, were critically analyzed to understand the
nature of these interactions. Luteolin formed seven hydrogen bonds
with key residues of 1IL6. These interactions are vital for the ligand-
protein stability, suggesting a high degree of specificity in binding.
On the other hand, Wedelactone formed four hydrogen bonds with
residues which, though fewer in number, still contribute
significantly to the protein-ligand binding. The analysis revealed
that both ligands formed strong interactions with polar and
aromatic amino acids, highlighting the importance of these
residues in stabilizing the ligand binding, which could be pivotal
for therapeutic efficacy. Hydrophobic interactions are essential in
stabilizing ligand-protein complexes. The study focused on the
hydrophobic interactions between the ligands and the protein
1IL6. Luteolin formed five hydrophobic interactions with key
protein residues. These interactions are crucial for the overall
binding stability, providing additional non-polar interaction
forces that contribute to the stability of the protein-ligand
complex. Similarly, Wedelactone exhibited seven hydrophobic
interactions with residues. The comparison of the two ligands
indicated that Luteolin exhibited slightly fewer hydrophobic
interactions but still maintained a strong binding profile
(Vinusha et al., 2022). The importance of hydrophobic
interactions in drug binding underscores their role in drug
efficacy and stability.

Both compounds showed moderate water solubility, with
Luteolin slightly outperforming Wedelactone in this regard.
Luteolin also exhibited better intestinal permeability, suggesting
that it may be absorbed more efficiently in the human
gastrointestinal tract. Based on all the pharmacokinetic
properties, Luteolin appeared to be the more promising candidate
for drug development, offering a safer metabolic profile and more
favorable drug-likeness. Despite their strong molecular docking
interactions with IL6, a key mediator of neuroinflammation,
Luteolin and Wedelolactone’s low permeability suggests that
systemic administration may not achieve therapeutically relevant
concentrations in the CNS. This limitation presents a challenge for
their direct use in brain-related disorders, necessitating innovative
strategies to enhance their bioavailability and efficacy.

To overcome these challenges, nanotechnology-based drug
delivery systems offer a promising solution. Encapsulation of
Luteolin and Wedelolactone in nanoparticles (NPs) can
significantly improve their stability, solubility, and targeted
delivery to the brain, allowing them to cross the BBB more
effectively. Nanoparticles provide multiple advantages in drug
delivery, particularly for brain-targeted therapy. Enhanced BBB
penetration ensures efficient drug transport. Controlled and
sustained drug release extends the half-life of encapsulated
compounds, allowing for prolonged therapeutic effects. Improved
bioavailability protects Luteolin and Wedelolactone from metabolic
degradation, increasing drug stability and solubility. Targeted drug
delivery using ligand-functionalized nanoparticles ensures that
drugs are directed precisely to affected brain regions. Reduced
systemic toxicity minimizes off-target effects, decreasing toxicity
risks associated with high systemic drug concentrations. Several
nanoparticle-based approaches can be employed to enhance CNS
drug delivery. Lipid-based nanoparticles (LNPs) and polymeric
nanoparticles (PNPs) improve the solubility and metabolic
stability of phytocompounds. Functionalizing nanoparticles with
low-density lipoprotein (LDL) receptors or transferrin receptors can
facilitate receptor-mediated transcytosis across the BBB. Solid lipid
nanoparticles (SLNs) serve as carriers that protect Luteolin and
Wedelolactone from metabolic degradation and allow sustained
release, increasing their availability in the brain. Liposomes and
nanoemulsions encapsulate phytochemicals and facilitate passive
diffusion across the BBB, improving their therapeutic concentration
in the brain. Modifying Luteolin’s hydroxyl (-OH) groups by
methylation or acetylation can reduce hydrogen bonding and
increase lipophilicity, facilitating passive diffusion across the BBB.
Additionally, prodrug strategies, where Luteolin is esterified or
conjugated with lipid carriers, could enhance CNS penetration
and undergo enzymatic conversion into the active form upon
reaching the brain. Another promising strategy involves
glycosylation and nanoformulation, which have been shown to
enhance flavonoid stability, solubility, and targeted delivery.
Luteolin derivatives, such as Luteolin-7-O-glucoside, have
demonstrated improved bioavailability while retaining
neuroprotective and anti-tumor effects.MD simulations were
employed to assess the stability and behavior of the 1IL6-
Luteolin complex over time.,with the ligand showing minor
fluctuations after 25 ns, indicating that it had reached an
equilibrium conformation. and thus confirmed that the 1IL6-
Luteolin complex is stable, with minimal structural deviations,
reinforcing Luteolin’s potential as a strong ligand for therapeutic
applications.

Binding free energy calculations were performed to evaluate the
strength of the interaction between Luteolin and the target protein
1IL6. The negative values of Van der Waals and electrostatic
energies indicate favorable binding interactions, while the positive
polar solvation energy suggests that solvation effects may not
significantly contribute to the binding. The overall binding
energy calculation, along with stable interactions, further
supports the suitability of Luteolin as a potential therapeutic
agent for AD and GBM.

While Luteolin exhibits anti-inflammatory, antioxidant, and
neuroprotective properties, its therapeutic potential can be
further enhanced by combination therapies with other
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compounds. A multi-target approach can improve treatment
outcomes for complex neurodegenerative and oncological
disorders. Luteolin and curcumin can be combined to
synergistically inhibit IL6-related neuroinflammation, enhancing
therapeutic efficacy in AD and GBM. Luteolin and resveratrol
can work together to reduce oxidative stress and neuronal
damage. Luteolin and quercetin may provide a more
comprehensive neuroprotective strategy by targeting amyloid-beta
aggregation. Luteolin and EGCG (Epigallocatechin Gallate), found
in green tea, could enhance Luteolin’s anti-neuroinflammatory and
anti-cancer effects. In brain cancer treatment, Luteolin and
doxorubicin could be combined to enhance cytotoxic effects
while reducing the toxicity associated with high chemotherapy
doses. Combination therapies involving Luteolin with other
neuroprotective or anticancer compounds may enhance
therapeutic efficacy through synergistic effects on multiple
pathological pathways. By integrating nanotechnology and
combination strategies, Luteolin-based therapies could be more
effectively translated into clinical applications for treating
neurodegenerative diseases and brain cancer.

Kollur et al. (2021) explained luteolin’s established cytotoxic
mechanisms in breast cancer, involving ROS generation, DNA
damage signaling, NF-κB inhibition, p38 activation, and
apoptosis induction, offer a starting point for exploring its
potential in AD and GBM, although the specific pathophysiology
of each disease suggests distinct avenues for its action. In AD,
luteolin’s ROS generation, while potentially cytotoxic, might also
stimulate autophagy, aiding in Aβ aggregate removal. Its NF-κB
inhibition could dampen neuroinflammation, a key driver of AD
progression. Furthermore, luteolin’s impact on mitochondrial
membrane potential and cytochrome C release could induce
apoptosis in dysfunctional neurons, while its potential
antioxidant properties might offer neuroprotection. In GBM,
luteolin’s cytotoxic effects, particularly apoptosis induction
through multiple pathways, are directly relevant to treatment.
NF-κB inhibition could suppress glioblastoma growth, while
p38 activation might sensitize cells to chemotherapy. It’s also
crucial to investigate potential anti-angiogenic properties of
luteolin, given the importance of angiogenesis in glioblastoma. A
comprehensive evaluation of Luteolin’s potential off-target effects is
crucial for understanding its safety and therapeutic potential,
especially as a dual-target treatment for AD and GBM. While
Luteolin demonstrates promising binding affinity to IL6, it may
also interact with other proteins, leading to unintended effects. To
assess this, a detailed analysis of Luteolin’s binding profiles with
additional proteins could be conducted using molecular docking,
network pharmacology, and protein-ligand interaction prediction
tools. Screening against a broader protein database can reveal
possible off-target interactions with enzymes, receptors, or
signaling molecules that might cause adverse effects such as
toxicity, immune modulation, or altered pharmacokinetics.

These are speculative hypotheses, and further research tailored
to AD and glioblastoma is essential to validate them. Studies should
examine luteolin’s effects on relevant models, investigating
endpoints like Aβ aggregation, tau phosphorylation,
neuroinflammation, tumor growth, and angiogenesis to
understand its precise interactions with disease-specific molecular
pathways and determine its therapeutic potential. Luteolin has

shown low toxicity in short-term studies, but its long-term effects
remain unclear, especially when used as a treatment for chronic,
progressive diseases. Evaluating potential cumulative toxicity,
including organ-specific toxicity, and assessing its interaction
with other drugs commonly used in AD or GBM (such as anti-
inflammatory agents, antipsychotics, or chemotherapy drugs) is
critical. In vivo studies focused on chronic administration could
shed light on any long-term risks, such as cumulative oxidative stress
or immune system suppression. Moreover, tolerability studies
should explore whether Luteolin’s bioavailability and efficacy
change over prolonged use and whether its therapeutic windows
remain safe.

5 Conclusion and future prospects

The present study offers a robust multi-faceted approach to
exploring the therapeutic potential of Luteolin for AD and GBM,
demonstrating its strong promise as a dual-target therapeutic agent.
Through the integration of network pharmacology, molecular
docking, pharmacokinetic analysis, and molecular dynamics
simulations, we have gathered compelling evidence supporting
Luteolin’s efficacy in modulating key molecular pathways
involved in both diseases. The identification of 13 clusters in the
PPI network and the subsequent focus on the top 15 central genes
highlight the interconnected molecular mechanisms driving the
pathophysiology of AD and brain cancer.

Luteolin, identified as the top ligand through molecular docking
simulations, exhibited strong binding affinity with target proteins,
particularly 1IL6, forming stable interactions through hydrogen
bonds and hydrophobic forces. These interactions, combined
with favorable pharmacokinetic properties, such as better
intestinal permeability and a favorable metabolic profile, position
Luteolin as a promising candidate for further drug development.
The results from molecular dynamics simulations further confirmed
the stability of the Luteolin-protein complex, reinforcing its
potential therapeutic applications. The binding free energy
calculations, indicating a high binding affinity, further support
Luteolin’s viability as a candidate for targeting both Alzheimer’s
and brain cancer. Despite challenges such as limited BBB
permeability, Luteolin’s multifaceted mechanism of action,
favorable toxicity profile, and promising pharmacokinetic
characteristics make it an attractive lead compound for the
development of novel therapeutic strategies in treating
neurodegenerative diseases and brain cancers. Future clinical
studies and optimization of Luteolin’s bioavailability could pave
the way for its translation into a viable treatment for these
challenging conditions.

The promising findings from this study pave the way for several
future research directions and clinical applications. First, further
refinement of Luteolin’s pharmacokinetic profile is essential to
enhance its bioavailability, particularly in overcoming the
challenges associated with BBB penetration. Additionally, while
this study identified Luteolin as a promising therapeutic
candidate, further preclinical and clinical investigations are
needed to evaluate its efficacy and safety in vivo. Animal model
studies will be crucial to assess the real-world applicability of
Luteolin, particularly in terms of long-term treatment outcomes
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and potential side effects, the C57BL/6 mouse model provides a
versatile and well-established system for evaluating Luteolin’s
therapeutic potential in both neurodegenerative and oncological
application.Comprehensive clinical trials are also necessary to
confirm its therapeutic benefits in human populations, focusing
on optimal dosages, administration routes, and potential
combination therapies with other anticancer or neuroprotective
agents. The use of network pharmacology and systems biology in
this study has underscored the complex molecular networks
involved in both Alzheimer’s and brain cancer, opening up
avenues for exploring additional polypharmacological approaches.
Future research could aim to identify additional bioactive
compounds that may synergize with Luteolin, providing a more
comprehensive treatment strategy. Combining multiple therapeutic
agents targeting different aspects of disease pathophysiology could
enhance treatment efficacy and reduce the potential for resistance
or relapse.
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