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In recent years, micro-nano robots have found extensive applications in the field
of medicine. Among these, micro-nano robots demonstrate significant potential
for the treatment of eye diseases. Micro-nano robots can penetrate eye tissue
barriers to directly target the posterior segment of the eye for precise drug
delivery, enabling non-invasive or minimally invasive treatment. This review
explores the primary fabrication methods and propulsion mechanisms of
various micro-nano robots, and their applications in treating various eye
conditions, offering inspiration and guidance for advancing the use of micro-
nanorobots in ophthalmic therapies.
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1 Introduction

Micro-nano robot is a kind of robot with a scale between microns and nanometers,
which can complete a series of activities such as execution, perception and decision-making
at the micro-nano scale, and has been widely used in the medical field in recent years. Since
the father of micro-nano robotics Toshio Fukuda created the world’s first nanorobot at the
beginning of the twenty-first century (Fukuda et al., 2004), micro-nano robots have been
widely used in the field of biomedicine, more and more technologies and means can be
applied to micro-nano robot technology, the rapid development of micro-nano robot
research has also driven the continuous progress of other related disciplines.

Different from macroscopic robots, micro-nano robots have the advantages of high
precision, high flexibility and wide adaptability, and the application of micro-nano robots to
carry out targeted drug treatment and non-invasive surgery have shown important
application prospects in the field of life and health (Zhang et al., 2024). In ophthalmic
treatment, due to the complex structure of the eye and the high risk of surgery, there are
extremely high requirements for the accuracy of the doctor’s operation. The advantages of
micro-nano robots such as refined operation degree and precise treatment show their great
potential in ophthalmic treatment (Barbot et al., 2019). Due to the presence of multiple
barriers in the eye, traditional drug delivery methods are unable to effectively transport
medications to the posterior segment of the eye and may potentially cause side effects
(Baumal et al., 2020). With the advancement of nanotechnology, micro/nanorobots capable
of enhancing drug permeability, stability, and targeting specificity offer a new direction for
ocular drug delivery.
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2 Manufacturing and design of micro-
nano robots

Researchers have applied insights from the unique movement
patterns of organisms in nature to artificial micro-nano structures,
controlling them to execute precise movements in low Reynolds
number liquid environments for purposes such as non-invasive
surgery, targeted drug delivery, cell manipulation and separation,
and biological imaging. These micro-nano structures are referred to
as micro-nano robots (Xu et al., 2016). The manufacture of micro-
nano robots involves multiple disciplines, including materials
science, mechanical engineering, biology, etc. In ophthalmic
treatment, micro-nano robots need to be flexible and stable
enough to be able to perform precise operations inside or on the
surface of the eye. In addition, micro-nano robots also need to have
good biocompatibility to reduce damage to eye tissue.

2.1 Manufacturing process of micro-
nano robots

Most of the design inspiration of micro-nano robots comes from
organisms in nature, and the mechanical device is used to simulate

the morphological characteristics, structural characteristics,
functional properties, etc. Of microorganisms that already exist
in nature. As Figure 1A, common micro-nano robots are spiral,
linear, tubular, Janus granular, spherical, gear-shaped, capsule-
shaped (Dong et al., 2020) (Peng et al., 2020). At present, the
widely used synthetic micro-nano robot methods are: chemical
synthesis method (Hoop et al., 2018), deposition method (Wang,
2013), self-assembly method (Wu et al., 2015), curling method (Yin
et al., 2012), template method (Lyu et al., 2021), 3D printing
technology (Wang et al., 2018; Zhang et al., 2019).

Brownian motion and the Reynolds number are two crucial
factors that govern the motion of micro-nano robots in fluid
environments. The Reynolds coefficient is inversely proportional
to viscosity and proportional to inertia, so the Reynolds coefficient
has become a necessary consideration for the resistance of micro-
nano robots when developing. With the reduction of the size of
micro-nano robots, Brownian motion becomes another determining
factor, which affects the direction of motion of micro-nano robots.
Studies have shown that the microhelix structure is an ideal motion
model in a low Reynolds number environment, as Figures 1B–D, so
most micro-nano robots are designed as micro-helix (Wu et al.,
2020; Huang et al., 2019; Ceylan et al., 2019). In the rotating
magnetic field of electromagnetic propulsion, The micro-nano
robot also generates driving force in the forward direction with
rotation it is considered that the motion of the microhelix is affected
by the combination of viscous force and moment balance, and the
fast movement speed is at high magnetic frequencies. Therefore, this
microhelix structure can reduce the drag coefficient and achieve the
fastest motion speed in a low Reynolds number environment (Wang
et al., 2018). At the same time, this microhelix structure also has the
potential to be applied in other fields (Mourran et al., 2016).

FIGURE 1
Micro-nano robots with micro-helix structure. (A) Biodegradable soft helical microswimmers (Dong et al., 2020). Reproduced with permission,
Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Magnetic helical nanorobots (Wu et al., 2020). Reproduced with permission,
Copyright 2020, Royal Society of Chemistry, Copyright 2014, American Chemical Society. (C) Bioinspiredmicroswimmers inspired by bacteria (Huang
et al., 2019). Reproduced with permission, Copyright 2019, he American Association for the Advancement of Science. (D) Biodegradable hydrogel
microrobotic swimmers (Ceylan et al., 2019). Reproduced with permission, Copyright 2019, American Chemical Society.

Abbreviations: MCP-1, Monocyte chemotactic protein-1; MCF7, Michigan
Cancer Foundation7; PDA, Polydopamine; MSP, Magnetized Spirulina; DA,
Dopamine; MDR KP, Multi-drug-resistant Klebsiella pneumoniae; PI,
Propidium iodide; CLSM, Confocal Laser Scanning Microscopy; SEM,
Scanning electron microscopy; SRCNsSurface roughness-controlled ceria
nanocages; ACh, acetylcholine chloride.
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There are various synthesis methods for micro-nano robots. The
principle is as follows, chemical synthesis: This is a relatively simple
preparation method, by changing the conditions and synthesizing
robots with the help of chemical reactions. Deposition method: In the
field of micro-nano robots, the vapor deposition method and
electrodeposition method in the deposition method are mainly
used, and the principle is that the electric or vapor phase deposits
materials with specific functions on the template. Micro-nanorobots
prepared using this method exhibit diverse morphologies and low
production costs. Self-assembly method: based on the electrostatic
interaction, the polymer with positive and negative charged particles
interact with each other to spontaneously form an ordered and regular
structure. Micro-nanorobots prepared using this method possess self-
repair capabilities. Curling method: material is introduced on the
substrate deposited sacrificial layer, etching of the lower layer, the
sacrificial layer is etched so that the upper material is bent into a tube.
Micro-nanorobots prepared using this method exhibit high
controllability and reproducibility. Template method: Using
organisms or objects with good shape and performance as
templates, the template is removed by external stimulation or
sintering. Micro-nanorobots based on biological templates offer the
potential for high biocompatibility. 3D printing technology: A
technology that uses a printer to print objects layer by layer using
a specific material using collected data. Since laser 3D printing
technology can create various 3D micro-nanostructures solely
through clean photopolymerization effects, it holds broad
prospects for precise, high-resolution, and large-scale
manufacturing of micro-nanorobots.

2.2 Design of micro-nano robot for
ophthalmic treatment

Although the most commonly used administration method for
the treatment of eye diseases is topical administration, the

physiological obstacles of local absorption are large, the
absorption rate of drugs is low, only about 1%–10% of topical
drugs can penetrate the eyes, so it is necessary to administer
high-frequency and increase the dose (Ullrich et al., 2013), and
micro-nano robots that can enter the ocular administration have
become the new hope to give local administration of the eye. Some
studies have shown that micro-nano structures can effectively pass
through the vitreous (Wu et al., 2018; Liu et al., 2024). The first
micro-nano robot (Figure 2) to penetrate the vitreous to reach the
retina used a perfluorocarbon surface coating that reduce the
interaction of the propeller with biopolymers such as collagen
bundles present in the vitreous. They demonstrated that
propulsion in biological media should meet two main criteria: ①
particle size and shape could be effectively passed through the
macromolecular network; ② Reduce the interaction between
propellers and biopolymer networks.

Magnetic drive is currently the most widely used method
(Figure 3), it has the advantages of effectively penetrating
biological tissues and remote drive, and there are successful cases
using exogenous magnetic field drive (Chaluvadi et al., 2020),
rotating magnetic field drive (Feng et al., 2019) and magnetic
tweezers (Su et al., 2024) driving methods. By adjusting the
intensity and frequency of the magnetic field, it is possible to
manipulate micro-nanorobots to assemble, navigate, and
overcome obstacles in complex environments (Zhang et al., 2023;
Li et al., 2023; Yu et al., 2022; Ji et al., 2021; Zhang et al., 2025). The
optical drive has the advantages of remote control, low noise and
spatiotemporal selection ability, and the eye itself is a light-
transmitting tissue, which has an innate advantage in avoiding
the damage caused by the heat generated by the light to the
tissue (Chen et al., 2022). In the structure of the eye, the aqueous
humor circulation system and the vitreous body can both be
considered as low Reynolds number environments. Among them,
the vitreous body has a higher viscosity, making it more difficult for
micro-nanorobots to penetrate. Sonic propulsion can be driven in

FIGURE 2
Schematic of the three-step targeted delivery procedure used for the slippery micropropellers (Wu et al., 2018). Reproduced with permission,
Copyright 2018, The American Association for the Advancement of Science. ① Injection of the micropropellers into the vitreous humor of the eye. ②
Magnetically driven long-range propulsion of the micropropellers in the vitreous toward the retina. ③ Observation of the micropropellers at the target
region near the surface of the retina by OCT.
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such a way that greater propulsion can overcome the low Reynolds
number state dominated by viscosity, and low-frequency ultrasound
is less harmful to biological samples (Yang et al., 2018). In addition,

the effects of ultrasound on micro-nanoparticles are also widely
applied in environmental management, metallurgy, and other
industries (Yu et al., 2020; Yu et al., 2024).

FIGURE 3
Magnetically drivenmicromotor: (A) exogenousmagnetic field drive (Chaluvadi et al., 2020). Reproducedwith permission, Copyright 2020, IEEE. (B)
Rotating magnetic field drive (Feng et al., 2019). Reproduced with permission, Copyright 2019, IEEE. (C)Magnetic tweezers (Su et al., 2024). Reproduced
with permission, Copyright 2024, Wiley–VCH GmbH.
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In terms of energy supply, corrosive chemical fuels is one of the
typical energy supply methods (Yang et al., 2018), and some teams
have designed micro-nano robots that use their own glucose as
energy supply (Kutorglo et al., 2021). The introduction of
biomaterials make bio-driven method very biocompatible (Zheng
et al., 2023), but due to the presence of the blood-eye barrier,
bacteria-based micro-nanorobots may not be able to enter the
eye. The hybrid drive method can eliminate the above
shortcomings, so the driving method of the eye micro-nano
robot can use hybrid drive.

At present, most of the real-time feedback of micro-nano robots
is based on visual feedback systems (Figure 4) (Ahmed et al., 2013; Li
et al., 2017; Pappas and Codourey, 1996) and force feedback (Kim
et al., 2008), and for organs with fine structures such as eyes, precise
positioning is more important. How to make micro-nano robots
make flexible and accurate movements and intelligent three-
dimensional control of their movements is still a problem to be
solved (Yang et al., 2018).

2.3 Challenges faced by micro-nano robots
in the treatment of eye diseases

Although micro-nano robots are small in size and easy to pass
through the organizational structure, they can integrate signal
perception, collection and processing (Yang et al., 2018) but their
functional diversity and signal feedback system still have
shortcomings. As a medical tool, it is necessary to find
suitable materials for micro-nano robots that are both tissue-
compatible and highly safe, so that they are neither collectively
rejected nor adversely affected by the organism. In addition,
micro-nano robots should also pass through the biological
barriers present in the eyes, so that they can deliver drugs to
the corresponding target sites and perform therapeutic
operations on the targets. As a high viscosity environment of
intraocular vitreous the micro-nano robot completed by the task
should also have the ability of automatic degradation or be
equipped with a recycling structure, so that it will not cause

adverse effects or damage to the body after completing the task
(Yang et al., 2018). Animal experiments of retinal targeted
delivery have not yet entered clinical trials on a large scale,
and there is a lack of data on the long-term efficacy and safety
of micro nano robots in the treatment of eye diseases (Wu et al.,
2018). The complex internal environment in the human body will
also have an impact on the movement and operation of micro-
nano robots, such as difficulty in movement, operation obstacles,
and loss of direction.

Micro-nano robots require strong technical support, which
requires new energy conversion mechanisms, more powerful
wireless drive and control methods, and more reasonable
manufacturing technologies (Yang et al., 2018). There are still
several critical issues that need to be resolved before micro-nano
robots can be used clinically in the treatment of eye diseases.
Animal experiments targeting retinal delivery have not yet
progressed to large-scale clinical trials, and there is a lack of
data on the long-term efficacy and safety of micro- and
nanorobots in the treatment of ocular diseases. The
manufacturing of micro-nano robots requires more commercial
enterprises to participate in jointly completing the transition of
micro-nano robots from theory to practice, and solving the
problems of technology, materials and costs (Yang et al., 2018).

However, as a microstructure that can be finely operated, it has
high clinical application value and broad future development
prospects, and the above problems can be solved with the
development and further development of research.

3 Application of micro-nano robots in
the treatment of eye diseases

Micro-nano robots have a variety of applications in the
treatment of eye diseases. In the treatment of ocular tumors,
micro-nano robots can accurately locate tumors, perform
minimally invasive surgery, and reduce damage to surrounding
healthy tissues. In the treatment of ocular inflammation, micro-
nanorobots can release anti-inflammatory drugs to effectively

FIGURE 4
Feedback of micro-nano robots is based on visual feedback systems (Ahmed et al., 2013; Li et al., 2017; Pappas and Codourey, 1996). Reproduced
with permission, Copyright 2013, American Chemical Society, Copyright 2017, American Chemical Society, Copyright 1996, IEEE.

Frontiers in Chemistry frontiersin.org05

Wang et al. 10.3389/fchem.2025.1553461

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1553461


control inflammation. In eye injury repair, micro-nano robots can
perform fine sutures to promote wound healing. In addition, micro-
nano robots can also be used for the diagnosis of eye diseases and
improve the accuracy of diagnosis.

3.1 Application of micro-nano robots in the
treatment of ocular tumors

Eye cancer includes malignant tumors of the eyelids,
conjunctiva, various tissues of the eyeball, and ocular adnexa,
such as retinoblastoma, choroidal melanoma, and basal cell
carcinoma of the eyelid, posing significant harm. Due to the
uniqueness of the eye structure, traditional surgical removal is
challenging to achieve complete cure and can cause severe
physical and psychological harm to patients. Micro-nanorobots
offer a new therapeutic approach for the targeted drug delivery
to tumor tissues in the treatment of ocular cancer. Some scholars
proposed biomedical micro-nano robot example to use monocytes
(such as macrophages) as microdrivers and microsensors for solid
tumor active drug delivery systems (Dai et al., 2021). Monocytes
have a sensory receptor that recognizes foreign bodies and
inflammation in the living body, and are self-actuating, allowing
it to move from the bloodstream to the corresponding target site in
the tissue when it detects a signal of infection or inflammatory
response. And monocytes can phagocytose foreign bodies and
differentiate into macrophages or dendritic cells, and microrobots
with monocytes as the carrier will show powerful effects in tumor
treatment (Li et al., 2003; Liu et al., 2004).

Monocytes-based microrobots can show migration properties to
tumor cell lysates and tumor-containing tissues, such as MCP-1,
MCF7 cell lysates and MCF7 containing alginate spheroids (Park
et al., 2014). Therefore, if the phagocytosed droplets are replaced with
therapeutic drugs that target tumors, monocytes-based microrobots
can be used as important tools for biomedical therapy. In addition, in
order to overcome the rejection of foreign monocytes by the immune
system, monocytes isolated from individual living animals should be
used to develop a microrobot based on homogeneous monocytes
(Figure 5) (Park et al., 2014).

3.2 Application of micro-nano robots in the
treatment of ocular sterilization

There are complex inflammatory mechanisms involved in the
pathogenesis of eye diseases. Due to the complex ocular biological
barrier, targeted bactericidal therapy has become a more meaningful
treatment approach. A team has developed and tested a
multifunctional magnetic microswimmer that introduces a
polydopamine (PDA) coating (such as magnetized Spirulina 72 h
(MSP-72)h, dipping MSP for 72 h) on spirulina micro-nano robots
(Figure 6) (Xie et al., 2020). The coating process uses a simple but
versatile DA self-polymerization process with the advantages of low
cost and scalability. The microswimmers manufactured (such as
PDA-3h) successfully integrate many core functions and are
expected to solve the problems existing in medical micro-
nanorobots.

The study used photothermal antimicrobial therapy to observe
antimicrobial outcomes. After the detection of multi-drug resistant
Klebsiella Pneumonie (MDR KP), the photothermal effect enhanced
by PDA is used to kill it, and the killing or antibacterial effect at
different concentrations is evaluated by its corresponding bacterial
viability. Lower values indicate higher efficacy and vice versa. With
the increase of PDA-3h concentration, its survival rate gradually
decreased to less than 1% at 400 μg/mL. In contrast, in the absence of
NIR light irradiation, the corresponding activity value of all
concentrations of bacteria was above 90%, which means that the
antibacterial effect of PDA-3h itself is almost negligible. For effective
photothermal antimicrobial, the target favorable temperature
should be above 50°C (He et al., 2019; Ray et al., 2012). The
temperature of the 400 μg/mL sample did not reach 65°C until
4 min after irradiation, which has a very high antimicrobial effect
and kills almost all MDR KP. Such high temperatures may inhibit
bacterial metabolism and cause the death of MDR KP through
denaturing enzymes and destruction of membrane proteins/lipids,
but there are still great obstacles to the application of such high
temperatures to ophthalmic treatment.

In live/dead staining, green fluorescent SYTO nine and red
fluorescent propidium iodide (PI) dyes are used to label “live”
and “dead” MDR KP, respectively. PI dyes play a role in

FIGURE 5
Monocyte-based microrobot with tumor targeting property (Park et al., 2014). Reproduced with permission, Copyright 2014, Wiley Periodicals, Inc.
(A) Schematic representation of the fabrication of monocyte-based microrobot and (B) tumor targeting concept of monocyte-based microrobot
transmigrating over endothelial cells.
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determining membrane integrity by inserting nucleic acid sequences
within cells (Ray et al., 2012). Once the cells are stained red by the PI
dye, this indicates some damage on the cell membrane. Thus, in
Confocal Laser Scanning Microscopy (CLSM) images, the presence
of erythrocytes validates the mechanism of membrane damage
associated with MDR KP. Scanning electron microscopy (SEM)
images have also shown that the surface of the MDR KP, which
should be intact and smooth, is wrinkled, collapsed, and even lysed.

3.3 Application of micro-nano robots in the
treatment of eye injuries

The treatment of eye injuries requires the use of micro-
nanorobots with high targeting capability and biocompatibility.
Some researchers have designed a kind of nanoparticles, which
leveraged poly (l-histidine) surface and surface roughened ceria
nanocages (SRCNs) to address chemical corneal injuries effectively
(Yang et al., 2023). The SRCNs’ controlled roughness improved
cellular uptake and therapeutic efficiency while maintaining
optimal ocular biocompatibility. The poly (l-histidine) surface
enhanced corneal penetration and allows targeted drug release
in the acidic environment caused by tissue damage. SRCNs are
loaded with acetylcholine chloride (ACh) and SB431542, which
synergistically promote wound healing, inhibit fibrosis, and
suppress inflammation. In addition, hydrogel particles are often
used for drug delivery to facilitate tissue repair (Li et al., 2025).
Those provides a new material for micro-nano robot to treat
eye injury.

4 Conclusion

With their small size, micro-nano robots have the potential to
overcome the physiological barriers within the eye, such as the
blood-aqueous barrier and the blood-retinal barrier. Compared
with traditional treatment methods, micro-nano robots have made
more advances in the treatment of eye diseases. Non-invasive local
drug administration is the best choice for many eye diseases.
Although it is a challenging task to safely and effectively deliver
drugs to the diseased areas of the eye, researchers have been
continuously designing new micro-nano robots with the hope

of transitioning from laboratory to clinical use. In the future,
safe and effective nano-robots will revolutionize the treatment
of eye diseases.

Despite the advantages of micro-nanorobots in the treatment
of eye diseases, there are still challenges and issues that need to be
addressed. As a medical device, the safety of micro-nano robots
should also be used as the main influencing factor to affect the
development of micro-nano robots, such as tissue compatibility
problems, rejection problems, waste recycling problems, etc.
Considering the structural differences between the human eye
and animal eyes, conducting clinical trials poses a significant
challenge for the application of micro-nanorobots in treating
ocular diseases. Additionally, the manufacturing process for
micro-nanorobots is costly, and the yield rate remains limited.
Achieving scalable mass production of micro-nanorobots will be
a problem that needs to be resolved in the future. Despite these
challenges, with the advancement of technology, the application
of micro-nano robots in ophthalmic treatment will be more
extensive and more accurate, bringing better treatment results
to patients.
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