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Kallikrein-related peptidase 2 (KLK2) is a serine protease exhibiting antiangiogenic
properties through proteolytic activity. KLK2 is overexpressed in prostate cancer
and plays a pivotal role in cancer progression, establishing it as a potential
therapeutic target. Despite the promising results of small molecule inhibitors
targeting KLK2 in prostate cancer treatment, there are still many challenges in the
development and application of these inhibitors. As a consequence, very few
KLK2 inhibitors have advanced to clinical trials because of issues with specificity
and selectivity. Moreover, the precise mechanisms underlying KLK2’s interactions
with small molecule inhibitors remain inadequately understood. This study used
structure-based virtual screening of a phytochemical library and found three
compounds, Phaseolin, Withaphysalin D, and Nicandrenone, as potential
KLK2 inhibitors. These compounds exhibited high binding affinities
(−8.9 to −8.8 kcal/mol), favorable pharmacokinetic profiles, and stable
interactions with KLK2’s catalytic residues (including His65) in docking studies.
Their binding was further validated through MM-PBSA free energy calculations,
which confirmed energetically favorable interactions with KLK2. The findings
suggest that these phytochemicals have a high potential to be exploited as novel
KLK2 inhibitors with improved efficacy. While experimental validation of
enzymatic inhibition and antitumor efficacy is required, this study provides a
structural and mechanistic foundation for advancing these candidates into
preclinical testing. These results also highlight the use of phytochemical
libraries and dynamics-driven virtual screening in developing targeted
therapies for prostate cancer.
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1 Introduction

Human kallikrein 2, also known as kallikrein-related peptidase 2
(KLK2), is a serine protease with trypsin-like activity predominantly
expressed in the prostate, making it a compelling target for prostate
cancer therapy (Mohammadi et al., 2024). KLK2 is co-expressed with
kallikrein 3 (KLK3), commonly known as prostate-specific antigen
(PSA), within the same tissues (Shang et al., 2014). The concentration of
KLK2 in seminal plasma is about 1% of PSA. Androgens and androgen
receptor (AR) signaling regulate the overall expression of the KLK2
gene. Hence, KLK2, like PSA, can also be a biomarker for various
cancers, especially prostate cancer (Motta et al., 2023). Apart from PSA
inhibitors, KLK2 inhibitors have also been developed as small-molecule
therapeutics for multiple malignancies, including prostate cancer,
(Lövgren et al., 1999). Prostate cancer has emerged as a significant
health threat, ranking as the second most diagnosed cancer and the
sixth leading cause of tumor-related deaths in men worldwide
(Schröder, 2010; Sharma et al., 2024). It predominantly affects
middle-aged men between 45 and 60 years of age and represents
the highest cause of cancer-related mortality in Western countries.
Diagnostic methods for prostate cancer include the PSA test, magnetic
resonance imaging (MRI), prostate biopsy, and digital rectal
examination (Hannu et al., 2014).

The disease is influenced by several risk factors, including family
history, ethnicity, age, obesity, and environmental factors, and it
exhibits considerable heterogeneity based on genetic and lifestyle
variations (Hoffman, 2011). Prostate cancer remains the second
leading cause of cancer-related deaths in men globally, with over
1.4 million new cases annually. Current therapies, including
androgen deprivation and chemotherapy, often fail due to drug
resistance and systemic toxicity. Targeting KLK2 offers a promising
strategy to circumvent these limitations by inhibiting tumor-specific
pathways critical for metastasis and angiogenesis. The critical role of
KLK2 in tumor development, metastasis, and angiogenesis
inhibition, along with its selective expression in prostate tissue,
highlights its potential as a therapeutic target in prostate cancer. The
identification and evaluation of novel KLK2 inhibitors have
garnered substantial pharmacological interest. These inhibitors
hold promise for developing targeted therapies for prostate
cancer and other malignancies associated with heightened
protease activity (Geary and Salem, 2013).

Recent efforts have identified a limited number of KLK2-
mediated prostate cancer therapeutics, including the JNJ-
78278343 (Janssen Pharmaceuticals) and AC0176 (Zhang and
Chadha, 2024). Small molecules such as PPACK (H-D-Phe-Pro-
Arg chloromethyl ketone) and Benzamidine have been co-
crystallized and evaluated with KLK2, demonstrating promising
inhibitory potential (Skala et al., 2014). Preclinical studies of
these agents have shown encouraging antitumor activity, though
challenges such as off-target effects, variable specificity, and
pharmacokinetic limitations persist (Martin et al., 2023). While
these candidates represent significant strides in KLK2-targeted
therapy, no inhibitors have yet achieved FDA approval. The field
remains nascent, with research constrained to a small pipeline of
experimental agents, underscoring the need for further mechanistic
exploration and clinical validation. Therefore, it is essential to
develop safe and selective KLK2 inhibitors for treating prostate
cancer and related conditions (Joniau et al., 2012).

Computational drug discovery has brought about a new
dimension in discovering novel therapeutic agents because the
approach is fast and less expensive compared to experimental
high-throughput screening (Naithani and Guleria, 2024). Among
the fundamental methods in this field, virtual screening allows the
recognition of potential bioactive compounds based on their
interaction with target proteins (Naqvi et al., 2018). This method
has received significant interest in drug discovery because it can rank
compounds for experimental testing. Plant-derived secondary
metabolites known as phytochemicals are gaining popularity in
treating diseases, especially cancer (Swetha et al., 2022). As
phytochemicals exhibit various biological activities, these
compounds are an attractive source for new drug leads (Bharate
and Lindsley, 2024). Thus, it has become possible to use virtual
screening of phytochemicals to identify bioactive compounds with
specific targeting capabilities like the ability to inhibit KLK2.

This study employed a structure-guided virtual screening
approach to identify potent inhibitors of KLK2. The binding
dynamics of the discovered phytochemicals and KLK2 were
analyzed using all-atom molecular dynamics (MD) simulations.
A total of 11,699 phytochemicals from the IMPPAT 2.0 database
were screened. IMPPAT 2.0 is a wide-ranging database curated from
over 100 traditional Indian medicine books, more than
7,000 research papers, and additional sources, providing an
extensive repository of phytochemical data (Vivek-Ananth et al.,
2023). This structure-based screening approach utilized plant-
derived compounds from the IMPPAT 2.0 database to evaluate
the structural stability of the docked complexes, offering a promising
pathway for discovering safe and effective KLK2 inhibitors.

2 Material and methods

2.1 Computational resources

Bioinformatics tools like InstaDock (Mohammad et al., 2021),
Discovery Studio Visualizer (Visualizer, 2005), GROMACS (Van
Der Spoel et al., 2005), PyMOL (DeLano, 2002), and others were
used for molecular docking, visualization, and simulation studies.
For data evaluation and retrieval, numerous resources were used,
such as RCSB-Protein Data Bank (PDB) (Berman et al., 2000),
SwissADME (Daina et al., 2017a), pkCSM (Pires et al., 2015),
Way2drug for PASS analysis (Druzhilovskiy et al., 2017), etc. The
three-dimensional structure of the KLK2 protein was downloaded
from the RCSB Protein Data Bank (ID: 4NFF). All water molecules,
co-crystallized heteroatoms, and ligands were deleted from the
original structure. The KLK2 structure was remodeled using
PyMod 3.0 (Janson et al., 2017) to enhance its suitability for
docking studies. The PDB structure 4NFF was used for docking
and molecular simulations. Variations in KLK2 residue numbering
across different PDB entries arise due to construct-specific
differences, such as truncations or expression tags. To ensure
consistency, we aligned the active-site residues in 4NFF with the
UniProt sequence (P20151). A library of 11,699 phytochemical
compounds, adhering to Lipinski’s rule of five (RO5), was
obtained from the IMPPAT 2.0 database and subsequently
docked with the remodeled KLK2 structure (Vivek-Ananth
et al., 2023).
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2.2 Molecular docking-based screening

Molecular docking is a common approach in drug discovery for
evaluating the binding affinity, selectivity, and specificity of small-
molecule candidates toward their target proteins (Muhammed and
Aki-Yalcin, 2024). Docking simulations were performed using
InstaDock v1.2, a free and efficient platform for virtual screening
of potential drug candidates. The blind search grid was configured
with dimensions of 50 Å × 53 Å × 51Å, centered at X: 29.432Å, Y:
11.13Å, and Z: 10.963Å, to encompass the KLK2 binding site. This
docking grid was large enough to accommodate the entire protein
and cover all heavy atoms, ensuring that each ligand could explore
the most favorable binding pocket(s). This search space was
optimized to provide comprehensive coverage while maintaining
computational efficiency, preventing excessive search times without
compromising accuracy. Docking results were filtered based on
affinity scores to identify suitable conformers for interaction
analysis. PyMOL and Discovery Studio Visualizer analyzed the
interactions within the KLK2 binding pocket.

2.3 ADMET evaluation

SwissADME (Daina et al., 2017b) and pkCSM (Pires et al.,
2015) servers were utilized to evaluate the pharmacokinetic
properties of the filtered compounds identified as high-affinity
binding partners of KLK2 through molecular docking. These
tools predict critical physicochemical and pharmacokinetic
characteristics of the compounds, adhering to Lipinski’s rules.
Additionally, the PAINS filter was applied to exclude compounds
that might produce false-positive results in bioassays (Lipinski,
2004). Compounds that exhibited significant ADMET properties
and did not display PAINS patterns were selected for further
analysis, ensuring a robust pharmacokinetic profile for potential
drug candidates.

2.4 Biological activity prediction

PASS analysis is a highly valuable tool for assessing chemical
compounds’ biological activities and interactions (Filimonov et al.,
2014). Following ADMET analysis, PASS was employed further to
evaluate the biological potential of the screened phytochemicals. The
PASS server provides results in terms of “Probability to be active
(Pa)” and “Probability to be inactive (Pi),” where a higher Pa value
indicates an increased likelihood of a compound exhibiting the
associated biological activity.

2.5 Interaction analysis

After PASS and ADMET evaluations, the two-dimensional polar
interactions between the compounds and KLK2 were analyzed using
PyMOL, recording interactions within a distance of 3.5 Å. Discovery
Studio Visualizer confirmed the interactions between the
phytochemicals and the KLK2 binding pocket. The numbering in
PDB ID: 4NFF differs from UniProt due to sequence offsets, and the
structure was renumbered accordingly (UniProt ID: P20151) to

maintain consistency with the reference annotation. Only
compounds interacting with critical residues within the
KLK2 binding site and demonstrating strong binding were
selected for further analysis. The binding site and docking
positions of KLK2 (PDB ID: 4NFF) were used as references to
validate the docking outcomes. Multiple binding conformations of
ligands were generated using InstaDock, and the most effective
conformation for each ligand was identified through docking and
interaction analysis. Additionally, the three-dimensional binding
patterns of each ligand with KLK2 were visualized using PyMOL,
providing insights into their binding modes.

2.6 MD simulations

The application of MD simulations has significantly advanced
drug development in recent years (Hassan et al., 2023). MD
simulations provide detailed insights into the activity of
biomolecules, such as proteins, with high temporal resolution
and atomic precision (Hollingsworth and Dror, 2018). In this
study, the selected phytochemicals were subjected to MD
simulation studies using the GROMACS suite for 300 ns
following docking and evaluation steps. At a constant
temperature of 300K, the Chemistry at Harvard Macromolecular
Mechanics (CHARMM) force field was used in the simulation. The
CGenFF (Vanommeslaeghe and MacKerell, 2012) webserver
produced the force field parameters and ligand topology for each
small molecule. Protein-ligand complexes were solvated with the
TIP3P water model in a 10 Å cubic box of water using the gmx
solvate module. Energy minimization was performed using the
steepest descent algorithm, followed by charge neutralization.
Each system underwent a 1,000 ps equilibration phase at
constant volume, during which the temperature was gradually
increased from 0 to 300 K under periodic boundary conditions.
Quality control metrics such as density, enthalpy, kinetic energy,
and volume were monitored to ensure simulation accuracy.
Trajectories were evaluated for various conformational
parameters further to analyze the dynamics of KLK2 and its
ligand complexes. Graphs and figures depicting
KLK2 interactions and stability were generated using QtGrace
(Turner, 2005).

2.7 Essential dynamics

Essential dynamics aims to find large-scale motions in
biomolecules, and it targets the motions that govern the
dynamics of the system (Papaleo et al., 2009). Principal
component analysis (PCA) simplifies the data and retains
essential variations, best illustrating the primary conformational
changes in protein-ligand interactions. This approach helps reduce
the data andmakes it easier to visualize the various dynamics. This is
supported by free energy landscape (FEL) analysis, which gives the
energy map of the system the most stable conformations. In
combination with PCA and FEL, the present study provides a
clear picture of the stability and flexibility of the protein-ligand
complexes. It will facilitate the design of particular therapeutic
interventions.

Frontiers in Chemistry frontiersin.org03

Jairajpuri et al. 10.3389/fchem.2025.1553987

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1553987


2.8 MM/PBSA calculations

Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/
PBSA) is a widely applied method for estimating the binding free
energy between a protein and a ligand (Genheden and Ryde, 2015).
It combines molecular mechanics calculations with solvation energy
estimations to provide insights into the stability and affinity of
molecular interactions. For this study, MM/PBSA calculations were
performed to evaluate the binding affinities of the ligand-bound
KLK2 complexes. A 10 ns segment was extracted from the stable
region of each MD simulation to ensure an accurate representation
of the binding interactions. Binding free energy components were
computed using the gmx_mmpbsa package, which applies the MM/
PBSA approach based on the following equation:

ΔGBinding � GComplex - GProtein + GLigand( )

whereGComplex signifies the total free energy of the binding complex,
and GProtein and GLigand are the measure of total free energies of
KLK2 and the bound ligands, respectively.

3 Result and discussion

3.1 Molecular docking screening

A library of 11,699 phytochemicals from the IMPPAT
2.0 database was utilized to conduct a structure-guided virtual
screening strategy to identify potential KLK2 inhibitors. After the
docking process, the docking software generated log and output files
for each compound, including affinity scores and docked poses. This
step facilitated the elimination of phytochemicals based on
unsuitable binding affinities and binding poses. The screening
process identified many promising hits with high binding affinity
towards the KLK2 binding cavity, making them viable candidates for
further evaluation as potential KLK2 inhibitors. Following a detailed
analysis of the docked output, 15 hits were selected from the initial
11,699 compounds based on their significant binding affinities
(computational ΔG scores), which ranged from −9.6 to −8.7 kcal/
mol (Table 1).

To benchmark these values, docking was performed under
identical conditions for known KLK2 inhibitors PPACK and
Benzamidine, which showed lower binding affinities of −6.3 kcal/
mol and −5.8 kcal/mol, respectively. To assess ligand specificity,
negative control, Valeronitrile, with weak binding affinity (−2.8 kcal/
mol) was included in the docking study. Unlike the top-ranked
inhibitors, this compound exhibited poor interactions with KLK2’s
active site, confirming the specificity of the identified
phytochemicals. Since more negative binding energy values (e.g.,
ΔG) indicate a more stable receptor-ligand complex, as seen in
molecular docking studies, these compounds are anticipated to form
highly stable complexes with KLK2. While this suggests that our
phytochemicals may form more stable interactions with KLK2, it is
essential to recognize that PPACK and Benzamidine have been
experimentally validated. Therefore, further in vitro validation is
required to confirm whether the computationally predicted higher
binding affinity translates into stronger inhibitory activity in
biological assays.

3.2 Physicochemical and pharmacokinetic
properties

In computer-aided drug discovery, predicting ADMET
properties is critical in screening compounds. To assess the
ADMET profiles of the top fifteen hit compounds, we employed
the pkCSM online server. SMILES representations of the
compounds, obtained using Discovery Studio Visualizer, were
used as input for ADMET prediction (Jain et al., 2022).
Evaluating a compound’s physicochemical and pharmacokinetic
characteristics is essential to determine its potential as a drug
candidate and its likelihood of clinical success (Lagorce et al.,
2017). The ADMET properties and PAINS filter assessments
were conducted using pkCSM and SwissADME tools (Parmar
et al., 2022). These evaluations focused on the top 15 compounds
with the highest binding affinity towards the KLK2 active site.
Initially prioritized based on their docking scores, the
compounds underwent ADMET analysis to identify the most
promising hits (Bhakhar et al., 2021). Here, the screened
compounds were eliminated based on parameters such as PAINS
alerts, hepatotoxicity, AMES toxicity, solubility, and carcinogenicity.
The ADMET results highlight Phaseolin, Withaphysalin D, and
Nicandrenone as the most viable inhibitor compounds with
appropriate pharmacokinetic properties (Table 2). The selection
of these compounds was based on multiple parameters beyond
binding affinity. Compounds with PAINS alerts, hepatotoxicity,
AMES toxicity, poor solubility, or carcinogenicity were excluded.
These compounds demonstrated favorable pharmacokinetic profiles
and low toxicity predictions, supporting their potential for safe
systemic administration. Furthermore, their properties indicate
suitability for development as oral therapeutics for prostate
cancer treatment.

3.3 PASS analysis

PASS analysis suggests that compounds with a higher Pa
(probability of being “Active”) than Pi (probability of being
“Inactive”) are likely to show the desired biological activity. Pa
represents the chance that the compound will have a specific
biological effect, while Pi represents the chance that it will not
show any particular activity (Filimonov et al., 2014). PASS evaluates
chemical compound structures to predict diverse biological activities
simultaneously. This computational tool is a valuable resource for
estimating molecules’ potential biological activity profiles prior to
their chemical synthesis and laboratory testing. Using the
Way2Drug web-based platform, researchers conducted PASS
analyses on the selected compounds to identify anti-cancer
activities, aiming to uncover promising therapeutic candidates for
cancers linked to KLK2 dysregulation (Druzhilovskiy et al., 2017).
Low Pa values (≤0.3) in PASS predictions indicate a low probability
of actual biological efficacy. In our study, the PASS analysis revealed
that the screened compounds, Phaseolin, Withaphysalin D, and
Nicandrenone, exhibited promising biological activities, including
antineoplastic and apoptosis-agonist properties with Pa values
ranging from 0.404 to 0.892. These findings suggest that the
identified compounds might hold significant potential for
anticancer applications through KLK2 inhibition. From an initial
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TABLE 1 Top 15 phytochemicals with their binding affinity with KLK2. Ligand efficiency values are in kcal/mol/non-H atom.

S. No. IMPPAT ID Phytochemical 2D structure Binding affinity
(Kcal/mol)

Ligand
efficiency

1 IMPHY009090 Ugonin A −9.6 0.3097

2 IMPHY007679 Bismurrayaquinone A −9.2 0.2875

3 IMPHY012556 Argentine −9.1 0.3033

4 IMPHY002553 Parvisoflavone B −9.1 0.35

5 IMPHY003078 Kuwanon D −9.1 0.2935

6 IMPHY014146 Bianthraquinone −9 0.2812

7 IMPHY007730 Californine −8.9 0.3708

8 IMPHY008900 Withaphysalin D −8.9 0.2618

9 IMPHY010989 Nicandrenone −8.9 0.2618

10 IMPHY000058 Ovalichromene B −8.8 0.3385

11 IMPHY007336 Phaseolin −8.8 0.3667

12 IMPHY002700 Withaphysalin A −8.8 0.2588

13 IMPHY009050 Picrasidine T −8.8 0.2444

14 IMPHY003705 (−)-Ephedradine A −8.7 0.2417

(Continued on following page)
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pool of 15 compounds, these three were selected for further
evaluation based on multiple criteria, including compliance with
RO5, absence of PAINS alerts, and their predicted biological
activities. A summary of the PASS analysis results is provided in
Table 3. The PASS analysis highlighted favorable biological activity
profiles for Phaseolin, Withaphysalin D, and Nicandrenone,
especially regarding apoptosis induction and antineoplastic effects.

3.4 Interaction analysis

Interaction analysis is a pivotal technique in drug discovery,
offering critical insights into the nature of bonds and residual
interactions between a receptor and its ligand. In this study, the
selected compounds, Phaseolin, Withaphysalin D, and
Nicandrenone, exhibited strong interactions with key residues
within the KLK2 binding site (Figure 1). Specifically, these
compounds formed interactions with His65, Asp120, and Ser213,
the active site residues essential for KLK2 activity (Figures 1B–D). A
detailed depiction of their binding patterns is provided in Figure 1A,
while the structural representations in Figures 1E–G highlight the
compounds bound within the deep binding pocket of KLK2. The
binding interactions observed suggest a significant potential for
Phaseolin, Withaphysalin D, and Nicandrenone to inhibit
KLK2 activity. The ability of these compounds to occupy the
deep binding pocket and establish stabilizing interactions with
His65, Asp120, and Ser213 is particularly notable, as these
residues play a crucial role in KLK2’s enzymatic activity. Further
studies should focus on refining the structural attributes of these
compounds to enhance specificity and potency.

All the three compounds demonstrated robust binding
interactions with KLK2’s active site, particularly engaging critical
residues such as His65, Asp120, and Ser213. These residues are
integral to the enzymatic activity of the peptidase S1 domain, as they
participate directly in the catalytic mechanism of the protease. The
S1 domain itself plays a crucial role in enzymatic functions,
particularly proteolysis, which governs substrate recognition and
cleavage. Computational analyses (Figure 2) revealed consistent
interaction patterns across all compounds with KLK2’s binding
site. The analysis showed that Phaseolin, Withaphysalin D, and

Nicandrenone formed stable binding conformations with KLK2,
(Figures 2A–C). Notably, these ligands exhibited deep penetration
and complementary shape matching within the binding pocket,
suggesting high target specificity and inhibitory potential. Such
precise and energetically favorable interactions underscore the
compounds’ suitability as candidates for disrupting KLK2-
mediated pathways, which may translate to therapeutic
applications. KLK2 functions in a prostate-specific biochemical
environment, where pH (7.2–8.2) and zinc concentrations
(1–3 mM) are critical in its enzymatic activity (Oliveira et al.,
2024). Since KLK2 is a zinc-dependent protease, variations in
zinc levels may influence inhibitor binding by altering protein
conformation (Goettig et al., 2010). Additionally, the slightly
alkaline pH of seminal fluid could affect the protonation state of
ligands, potentially modifying their binding affinities (Pakkala,
2012). Future in vitro and in vivo studies should incorporate
these physiological factors better to evaluate the efficacy and
selectivity of KLK2 inhibitors.

3.5 MD simulation analysis

MD simulations utilize detailed models of the physics governing
interatomic interactions to predict the movements of individual
atoms within a protein or other molecular systems over time
(Karplus and McCammon, 2002). MD simulations were
conducted following virtual screening to evaluate the structural
dynamics and conformational stability of KLK2-ligand
complexes. The top candidates identified from the IMPPAT
2.0 library were simulated under physiologically relevant solvent
conditions. Starting with their docked conformations, each system
underwent a 300-ns simulation to assess structural and energetic
parameters. Various structural and dynamic parameters were
analyzed to monitor protein-ligand behavior. These simulations
provided insights into the temporal evolution of KLK2’s
structure, both in its unbound state and during ligand
interactions. The data revealed how ligand binding induced
conformational shifts and influenced the protein’s
thermodynamic stability, offering mechanistic explanations for
the observed inhibitory effects.

TABLE 1 (Continued) Top 15 phytochemicals with their binding affinity with KLK2. Ligand efficiency values are in kcal/mol/non-H atom.

S. No. IMPPAT ID Phytochemical 2D structure Binding affinity
(Kcal/mol)

Ligand
efficiency

15 IMPHY003706 Aphelandrine −8.7 0.2417

16 IMPHY017760 Valeronitrile −2.9 0.4833

17 PPACK (PDB ID: OG6) H-D-Phe-Pro-Arg chloromethyl
ketone

−6.3 0.21

18 Benzamidine (PDB
ID: BEN)

Benzamidine −5.8 0.6444
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TABLE 2 Pharmacokinetic properties of the screened phytochemicals showing different properties of ADMET parameters. BBB, blood-brain barrier; PPB, plasma protein binding, Proper Value: therapeutic index <90%;
Poor Value value >90%.

S.
No.

Phytochemical Absorption
(GI

absorption)

Absorption
P-glycoprotein

substrate

Distribution
(BBB

permeability)

Distribution
PPB

Metabolism
(CYP2D6 inhibitor)

Excretion
(OCT2 Substrate)

Toxicity
(AMES)

Elimination
criterion

1 Ugonin A 97.16 Inhibitor −0.802 71.44 No No No PAINS

2 Bismurrayaquinone A 100.0 Inhibitor −0.29 53.1 No No No PAINS

3 Argentine 97.15 Non-Inhibitor −0.02 57.64 No No No Hepatotoxic

4 Parvisoflavone B 88.31 Non-Inhibitor −1.03 74.91 No No No Hepatotoxic

5 Kuwanon D 100.0 Non-Inhibitor −0.93 31.12 No No No Poorly soluble

6 Bianthraquinone 100.0 Inhibitor −0.10 98.29 No No No PAINS

7 Californine 96.67 Non-Inhibitor 0.44 36.39 Yes No Yes Toxicity

8 Withaphysalin D 97.53 Non-Inhibitor −0.25 72.33 No No No None

9 Nicandrenone 90.60 Inhibitor 0.10 53.77 No No No None

10 Ovalichromene B 96.17 Inhibitor 0.16 66.28 No No No Carcinogenicity

11 Phaseolin 95.01 Non-Inhibitor 0.14 80.34 No No No None

12 Withaphysalin A 97.77 Non-Inhibitor −0.26 71.65 No No No Carcinogenicity

13 Picrasidine T 100.0 Non-Inhibitor −1.42 74.79 No No No Hepatotoxic

14 (−)-Ephedradine A 78.12 Non-Inhibitor −0.36 75.74 No No Yes Toxicity

15 Aphelandrine 78.12 Non-Inhibitor −0.36 76.01 No No Yes Toxicity
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3.5.1 Structural deviation
In MD simulation, the root mean square deviation (RMSD) is a

metric that quantifies the difference between two molecular
structures, usually protein conformations. RMSD is frequently
employed in drug discovery methods to monitor changes in

molecular conformation over time in simulations and gain an
understanding of the stability and dynamics of the system. A
lower RMSD indicates more similarity, while a greater RMSD
suggests significant structural variations. During MD simulation,
we analyzed the RMSD pattern’s time evolution for KLK2 and its

FIGURE 1
Binding prototype of Phaseolin (magenta), Withaphysalin D (orange), and Nicandrenone (blue) with KLK2. (A) Cartoon representation of KLK2 bound
with the elucidated compounds. (B) Magnified view of KLK2 binding pocket interacting with Phaseolin, (C) Withaphysalin D, and (D) Nicandrenone. (E)
Surface potential representation of the KLK2 binding pocket occupied by Phaseolin, (F)Withaphysalin D, and (G) Nicandrenone. Hydrogen bonds with a
distance shorter than 3.5 Å are shown as black dotted lines and relevant residues are labelled with bold numbers. These representations were
generated through PyMOL using the protein-ligand docked complexes from the docking study.

TABLE 3 Biological activities of the screened phytochemicals predicted via PASS Server.

S. No. Phytochemical Pa value Pi value Biological activity

1 Phaseolin 0.822 0.007 Apoptosis agonist

0.819 0.009 Antineoplastic

0.404 0.021 Prostate cancer treatment

2 Withaphysalin D 0.892 0.005 Antineoplastic

0.543 0.033 Apoptosis agonist

0.499 0.014 Antineoplastic (lung cancer)

3 Nicandrenone 0.885 0.005 Antineoplastic

0.557 0.014 Antineoplastic (breast cancer)

0.430 0.060 Apoptosis agonist
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ligand-bound complexes with Phaseolin, Withaphysalin D, and
Nicandrenone. The average RMSD values were calculated as
0.19 ± 0.02 nm, 0.31 ± 0.03 nm, 0.20 ± 0.04 nm, and 0.21 ±
0.04 nm for KLK2, KLK2-Phaseolin, KLK2-Withaphysalin D, and
KLK2-Nicandrenone, respectively (Table 4). Figure 3A illustrates
the structural behavior of KLK2 in complex with Phaseolin,
Withaphysalin D, and Nicandrenone, revealing minor but
consistent deviations. The KLK2-Withaphysalin D complex
exhibited greater stability, as indicated by its lower RMSD values
after binding. The RMSD plot in Figure 3A further supports this
observation, showing fewer structural fluctuations in the KLK2-
Withaphysalin D complex than the other two complexes. The
relatively low RMSD values observed in KLK2-Withaphysalin D
imply increased structural stability, a favorable property for
maintaining inhibitory effects.

Root mean square fluctuation (RMSF) analysis was
conducted to evaluate the flexibility and motion of individual
residues in KLK2 before and after binding with the selected
molecules. RMSF calculates the average fluctuation of residues,
providing an understanding of their local flexibility and deviation

from the mean positional coordinates. The distinctive protein
backbone in all four systems, KLK2, KLK2-Phaseolin, KLK2-
Withaphysalin D, and KLK2-Nicandrenone, showed RMSF
values with noticeable peaks in the profiles. The average
RMSF values observed were 0.10 ± 0.10 nm, 0.09 ± 0.08 nm,
0.09 ± 0.08 nm, and 0.10 ± 0.07 nm for KLK2, KLK2-Phaseolin,
KLK2-Withaphysalin D, and KLK2-Nicandrenone, respectively.
These results highlight the comparable stability and flexibility of
the KLK2 protein across these interactions. Figure 3B presents
the RMSF analysis, indicating that the KLK2-Withaphysalin D
complex maintained greater stability with lower RMSF values
compared to the other two complexes. However, all three
complexes displayed a consistent and stable RMSF pattern
throughout the simulation. The RMSF analysis revealed minor
fluctuations in KLK2-ligand complexes, with lower flexibility at
critical residues (His65, Asp120, and Ser213), suggesting that
these compounds stabilize the active site effectively.
Withaphysalin D showed particularly low RMSF values,
indicating increased rigidity around the binding site, which is
favorable for stable inhibition.

FIGURE 2
Depiction of molecular interactions and 2D plots illustrating detailed interactions for (A) Phaseolin, (B) Withaphysalin D, and (C) Nicandrenone.

TABLE 4 The average values of different parameters determined following 300 ns simulations. All MD simulation values are reported with standard
deviations calculated using block averaging (mean ± SD).

Protein/protein-ligand RMSD (nm) RMSF (nm) Rg (nm) SASA (nm2) #H−Bonds

KLK2 0.19 ± 0.02 0.10 ± 0.10 1.71 ± 0.01 119.00 ± 2.84 144 ± 7

KLK2-Phaseolin 0.31 ± 0.03 0.09 ± 0.08 1.75 ± 0.01 121.21 ± 2.39 144 ± 7

KLK2-Withaphysalin D 0.20 ± 0.04 0.09 ± 0.08 1.71 ± 0.01 118.52 ± 2.28 144 ± 6

KLK2-Nicandrenone 0.21 ± 0.04 0.10 ± 0.07 1.71 ± 0.02 119.36 ± 3.07 142 ± 5
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3.5.2 Structural compactness
The radius of gyration (Rg) is a valuable parameter for evaluating

the folding of a protein’s secondary structure into its tertiary
structure, offering insights into its stability within a biological
system. Rg measures the compactness of the protein by
calculating the root mean square (RMS) distance of atoms from
their collective center of mass. A reduction in the Rg value typically
signifies a more compact and stable conformation during the
formation of the protein-ligand complex (Lobanov et al., 2008).
The average Rg values for KLK2, KLK2-Phaseolin, KLK2-
Withaphysalin D, and KLK2-Nicandrenone were found to be
1.71 ± 0.01 nm, 1.75 ± 0.01 nm, 1.71 ± 0.01 nm and 1.71 ±
0.02 nm respectively. Figure 4A illustrates the time evolution of
the Rg, showing that all complexes maintained structural stability
with consistent folding dynamics. Among them, the KLK2-

Withaphysalin D complex exhibited greater compactness,
indicated by its relatively lower Rg value, suggesting enhanced
stability compared to the other complexes and the unbound
state. The consistent Rg values across the simulation period
suggest that binding does not induce significant unfolding, which
is desirable for drug stability.

SASA is a critical parameter in molecular simulations that
quantifies the extent of the protein surface accessible to solvent
molecules. This measure reflects the interaction of the protein with
its surrounding solvent, encompassing hydrophobic and
hydrophilic residue (Dehdasht-Heidari et al., 2021). Figure 4B
presents the SASA plot, where the average SASA values for free-
state KLK2, KLK2-Phaseolin, KLK2-Withaphysalin D, and KLK2-
Nicandrenone complexes were calculated. The analysis indicates
that SASA remained unchanged throughout the simulation,

FIGURE 3
Structural dynamics of KLK2 upon binding with Phaseolin, Withaphysalin D, and Nicandrenone. (A) RMSD plot of KLK2 complex with Phaseolin,
Withaphysalin D, and Nicandrenone. (B) RMSF plot of the KLK2 and its complex with Phaseolin, Withaphysalin D, and Nicandrenone. The lower panels
depict the probability distribution function (PDF) of the values, with the position of the residues indicated by the symbol “#”.

FIGURE 4
Time-evolution of the structural compactness and folding of KLK2 and its ligand-bound systems. (A) Rg plot and (B) SASA plot of KLK2 with
Phaseolin, Withaphysalin D, and Nicandrenone. Lower panels show the probability distribution function as PDF.
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suggesting consistent solvent exposure across all states. The average
SASA values were calculated as 119 ± 2.84 nm2, 121 ± 2.39 nm2,
118 ± 2.28 nm2, and 119 ± 3.07 nm2 for KLK2, KLK2-Phaseolin,
KLK2-Withaphysalin D, KLK2-Nicandrenone, respectively
(Table 4). The SASA analysis demonstrated consistent values
across all KLK2-ligand complexes, indicating that ligand binding
does not compromise KLK2 compactness. Withaphysalin D showed
the lowest SASA values, which, combined with its low RMSD and
RMSF, further supports its suitability as a stable KLK2 inhibitor.
Among the three compounds, Withaphysalin D showed the lowest
RMSD and RMSF values, suggesting stronger and more stable
binding to KLK2.

3.5.3 Dynamics of hydrogen bonds
Hydrogen bonds play a vital role in regulating the conformational

dynamics of proteins (Kumar and Ojha, 2023). The intramolecular
hydrogen bonding patterns were analyzed for unbound KLK2 structure
and the KLK2 complexes bound to Phaseolin, Withaphysalin D, and
Nicandrenone. The number of hydrogen bonds was monitored
throughout the 300 ns simulation to assess the folding dynamics of
KLK2 and its complexes (Figure 5A). The results revealed only slight
variations in the number of intramolecular hydrogen bonds between
the unbound protein and the three complexes. On average, the number
of hydrogen bonds for the free KLK2 and its complexes with Phaseolin,
WithaphysalinD, andNicandrenonewere 144 ± 7, 144 ± 7, 144 ± 6, and
142 ± 5, respectively (Table 4). The PDF of the intramolecular hydrogen
bonds also demonstrated consistency and reliability across the systems
(Figure 5B). The plots indicated that the hydrogen bonds in
KLK2 remained stable throughout the simulation across all systems,
with the complexes involving Phaseolin, Withaphysalin D, and
Nicandrenone displaying consistent hydrogen bonding patterns
comparable to the unbound KLK2. This stability underscores the
structural integrity of KLK2 upon ligand binding and supports the
notion that the binding of these compounds does not significantly
disrupt the protein’s internal hydrogen-bonding network.

Intermolecular hydrogen bonds formed between the selected
compounds and KLK2 were analyzed to assess binding stability. All
complexes exhibited stable hydrogen bonding interactions
throughout the simulation (Figure 6). The KLK2-Phaseolin and
KLK2-Withaphysalin D complexes had more hydrogen bonds than
KLK2-Nicandrenone, and 2–4 hydrogen bonds persist throughout
the 300 ns period in each complex (Figures 6A–C). The KLK2-
Nicandrenone complex maintained 1–3 persistent hydrogen bonds
throughout the simulation (Figure 6C). These results indicate

minimal structural changes in the protein-ligand complexes over
time. The stability of intermolecular hydrogen bonds contributed to
preserving the initial docking conformation during the simulation.
Stable hydrogen bonding was observed within the KLK2-ligand
complexes, with KLK2-Withaphysalin D and KLK2-Phaseolin
forming the most persistent hydrogen bonds. This suggests that
these compounds establish strong, stable interactions with KLK2,
critical for their efficacy as inhibitors.

3.5.4 Evaluation of secondary structure
Studying how a protein’s secondary structure changes can help

us understand how it behaves and how it folds (Cino et al., 2012).
We studied how the structure of KLK2 changes when it binds to
three different compounds: Phaseolin, Withaphysalin D, and
Nicandrenone. The structure of KLK2 stays mostly the same and
stable during the 300 ns simulation (Figure 7A). However, there is a
slight change in the α-helix and β-sheets of KLK2 when the
compound binds (Table 5). The KLK2-Phaseolin complex
exhibited slight variations in the average number of residues
involved in secondary structure formation (Figure 7B), KLK2-
Withaphysalin D (Figure 7C), and KLK2-Nicandrenone
(Figure 7D) complexes as compared to the KLK2. No significant
alterations were observed in the secondary structure of KLK2 upon
binding with Phaseolin, Withaphysalin D, and Nicandrenone,
indicating strong structural stability of the corresponding
complexes. This preservation of the secondary structure
highlights the compatibility of the selected compounds with
KLK2, suggesting that their binding does not compromise the
protein’s native structural integrity and may contribute to
maintaining its functional conformation. Table 5 illustrates the
number of residues involved in secondary structure elements of
KLK2 before and after ligand binding. The analysis suggests that
ligand binding had minimal impact on KLK2’s secondary structure,
indicating a stable and non-disruptive interaction. This stability
across α-helices and β-sheets supports the hypothesis that the
identified compounds can inhibit KLK2 effectively without
compromising its structural integrity.

3.6 Principal component analysis

A widely used statistical approach in drug discovery, PCA,
simplifies complex datasets by emphasizing the most significant
variations. It is particularly effective in identifying conformational

FIGURE 5
Hydrogen bond dynamics in KLK2. (A) Time evolution of intramolecular hydrogen bonds in KLK2 before and after the binding of Phaseolin,
Withaphysalin D, and Nicandrenone. (B) The PDF of the hydrogen bond distribution in KLK2 systems. # represents a number.
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changes in biomolecules like proteins by transforming atomic
motion data into principal components representing dominant
motions. This approach helps analyze structural shifts and
dynamic movements in protein-ligand complexes, offering
valuable insights into their stability and interactions. This study
utilized PCA to explore the conformational dynamics of KLK2 and
its complexes with Phaseolin, Withaphysalin D, and Nicandrenone.
Conformational sampling was performed by projecting the Cα

atoms, as shown in Figure 8. Notably, the essential subspaces
occupied by native KLK2 closely aligned with those of the
protein-ligand complexes (Figures 8A–D), with none of the

complexes exceeding the eigenvectors (EVs) observed in KLK2.
The restricted conformational changes observed in PCA indicate
that the ligand-bound KLK2 maintains its structural integrity,
supporting the potential for stable and effective inhibition by
these compounds.

3.7 Free energy landscape analysis

FEL analysis was conducted to explore further the folding
mechanisms and energetic landscape of the protein-ligand

FIGURE 6
The dynamics of intermolecular hydrogen bonds formed between KLK2-ligand complexes. (A) Intermolecular hydrogen bonds between KLK2 and
Phaseolin, (B) KLK2 and Withaphysalin D, and (C) KLK2 and Nicandrenone. The lower panel shows the probability distribution function plot.

FIGURE 7
The secondary structure content of (A) KLK2 (B) KLK2-Phaseolin (C) KLK2-Withaphysalin D, and (D) KLK2-Nicandrenone.
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complexes under solvent conditions (Krivov, 2011). This method
provides valuable information about the global and local energy
minima that the complexes attain during simulations. Figure 9
illustrates the FELs of KLK2 in native form and the KLK2-
Phaseolin, KLK2-Withaphysalin D, and KLK2-Nicandrenone
complexes (Moritsugu et al., 2017). In FEL analysis, Gibbs free
energy (G) is depicted through color gradients, where blue regions
indicate low-energy, stable states and red regions represent high-

energy, less favorable conformations. The native KLK2 structure
exhibited fewer basins, corresponding to a global minimum
(Figure 9A). Upon binding with Phaseolin and Nicandrenone,
multiple basins appeared (Figures 9B–D), whereas Withaphysalin
D binding resulted in a single, extensive basin (Figure 9C). These
findings suggest that ligand binding subtly influenced the global
minimum of KLK2. However, the FEL analysis confirmed that
interactions with Phaseolin, Withaphysalin D, and Nicandrenone

TABLE 5 The average number of residues involved in KLK2’s secondary structure elements analyzed before and after ligand binding.

Element KLK2 KLK2-Phaseolin KLK2-Withaphysalin D KLK2-Nicandrenone

Coil 61 69 68 68

β-sheet 71 73 72 73

β-bridge 5 4 4 5

Bend 37 36 39 38

Turn 32 32 29 27

α-helix 16 17 18 20

Π-helix 0 0 0 0

310-helix 5 5 6 5

PPII-Helix 9 0 0 0

FIGURE 8
Conformational projections of (A) KLK2, (B) KLK2-Phaseolin, (C) KLK2-Withaphysalin D, (D) KLK2-Nicandrenone. The projection were generated
through principal component analysis of the MD trajectories.
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did not disrupt KLK2’s structural integrity, as the protein remained
stable throughout the 300 ns simulation. The FEL analysis
underscores the stability of KLK2 complexes with Phaseolin,
Withaphysalin D, and Nicandrenone. The presence of distinct
energy minima suggests these compounds stabilize
KLK2 effectively, maintaining the low-energy conformations
crucial for stable inhibition.

3.8 MM/PBSA analysis

MM/PBSA analysis was conducted to estimate the binding free
energy of KLK2 protein-ligand complexes using the gmx_MMPBSA
module in GROMACS. This method provides a thermodynamic
measure of the energy change associated with ligand binding,
offering insights into the strength and stability of protein-ligand
interactions (Genheden and Ryde, 2015). Binding free energy
components, including van der Waals forces and their
corresponding standard deviations, were computed and
summarized in Table 6. The results indicated that all KLK2-
ligand complexes exhibited strong binding affinities, contributing
to stable interactions. Among them, the KLK2-Phaseolin complex
demonstrated the highest binding affinity (−14.34 kJ/mol),
suggesting a particularly stable interaction. Conversely, the
KLK2-Nicandrenone complex displayed the lowest binding free
energy, indicating weaker binding stability. Overall, the analysis
highlighted Phaseolin and Withaphysalin D as the most promising
binders of KLK2, with superior binding affinities. These findings
suggest that both compounds could be potential candidates for
therapeutic development targeting KLK2.

Collectively, this study identifies Phaseolin, Withaphysalin D,
and Nicandrenone as structurally distinct phytochemicals with
robust KLK2 inhibitory potential, evidenced by their high
binding affinities, stable molecular dynamics profiles, and
complementary interactions with KLK2’s active site. Beyond its
role in tumor progression, KLK2 is implicated in critical
oncogenic processes, including epithelial-to-mesenchymal
transition, angiogenesis, and extracellular matrix remodeling
(Srinivasan et al., 2022). Inhibiting KLK2 may reduce metastatic
potential by interfering with the proteolytic pathways required for
cancer cell invasion and dissemination (Kryza et al., 2016). By
attenuating KLK2’s proteolytic activity, these compounds may
synergize with androgen deprivation therapies, counteracting
resistance mechanisms in advanced prostate cancer. Recent
advancements in ligand-directed delivery systems, such as those
used for chemically modified miR-34a, offer promising strategies for
enhancing the targeted delivery of KLK2 inhibitors (Abdelaal et al.,
2024). These approaches could improve bioavailability, tumor
selectivity, and therapeutic efficacy while minimizing systemic
toxicity (Li et al., 2024). Integrating phytochemical-based
KLK2 inhibitors with nanoparticle-based or ligand-mediated
delivery systems could provide a more effective therapeutic
strategy for prostate cancer treatment.

3.9 Limitations and future recommendations

This study, while comprehensive in its computational
approach, has certain limitations. The absence of experimental
validation remains a critical gap, as in silico predictions require

FIGURE 9
The Gibbs free energy landscapes of (A) KLK2 (B) KLK2-Phaseolin (C) KLK2-Withaphysalin D, and (D) KLK2-Nicandrenone.
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empirical confirmation to establish therapeutic relevance.
Additionally, the phytochemical library sourced from IMPPAT
2.0, though extensive, may not encompass all bioactive natural
compounds, potentially overlooking candidates with unique
binding mechanisms. To enhance structural diversity, future
work should incorporate databases like ZINC Natural
Products (https://zinc12.docking.org/), TCM Database (https://
tcm.cmu.edu.tw/), and AfroDB (https://zinc12.docking.org/
pbcs/afronp), which contain a broader range of bioactive
compounds, including alkaloids and terpenoids. Another
constraint is the reliance on static docking because dynamic
protein ligand interactions in physiological conditions may be
different (Olaoye et al., 2024). Future studies should, therefore,
focus on the following recommendations: In vitro enzymatic
assays using fluorogenic substrates to quantitate
KLK2 inhibition and calculate IC50 values. Antiproliferative
effects and apoptosis induction should be evaluated in cell-
based assays in prostate cancer models; in vivo experiments
could validate tumor suppression and pharmacokinetic
profiles. Selectivity profiling against off-target proteases (e.g.,
KLK3, trypsin) is required for specificity, and co-
crystallization studies of KLK2 ligand binding modes would
provide structural insights for lead optimization. Finally,
integrating ligand-directed delivery strategies, such as
nanoparticle encapsulation inspired by recent advances in
miR-34a therapeutics (Li et al., 2022), could enhance
bioavailability and tumor targeting. These recommendations
aim to bridge computational predictions with translational
impact, advancing phytochemical leads toward preclinical
development as targeted KLK2 inhibitors for prostate cancer.

4 Conclusion

KLK2 plays a crucial role in the progression of several cancer
types, particularly prostate cancer, and represents a promising
target for therapeutic intervention. Although some
KLK2 inhibitors have been reported in the previous
literatures, more potent and selective KLK2 inhibitors are still
required. In order to fill this gap, we used a high-throughput
virtual screening method in combination with MD simulations to
identify new KLK2 inhibitors. From the phytochemical library of
IMPPAT 2.0, we selected three lead compounds which are
Phaseolin, Withaphysalin D, and Nicandrenone. These
compounds showed good binding and proper orientation
within the KLK2 binding site, especially with important active
site residues. MM/PBSA analysis and MD simulations also
supported the structural and dynamic stability of these
complexes, and no drastic changes were observed in any of

the four systems. The results presented in this work indicate
that these compounds can be used to design effective
KLK2 inhibitors. Future studies should include enzymatic
inhibition assays (e.g., fluorogenic substrate cleavage assays) to
validate the computational findings to determine IC50 values for
Phaseolin, Withaphysalin D, and Nicandrenone against KLK2.
Such efforts will help establish their efficacy and selectivity,
paving the way for potential clinical development of natural
compound-based KLK2 inhibitors.
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