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Microplastics are a pervasive pollutant in aquatic ecosystems, raising critical
environmental and public health concerns and driving the need for advanced
detection technologies. Microscopic hyperspectral imaging (micro-HSI), known
for its ability to simultaneously capture spatial and spectral information, has
shown promise in microplastic analysis. However, its widespread application is
hindered by limitations such as low signal-to-noise ratios (SNR) and reduced
sensitivity to smaller microplastic particles. To address these challenges, this
study investigates the use of Ag nanoarrays as reflective substrates for micro-HSI.
The localized surface plasmon resonance (LSPR) effect of Ag nanoarrays
enhances spectral resolution by suppressing background reflections and
isolating microplastic reflection bands from interference. This improvement
results in significantly increased SNR and more distinct spectral features.
When analyzed using a 3D-2D convolutional neural network (3D-2D CNN),
the integration of Ag nanoarrays improved classification accuracy from 90.17%
to 98.98%. These enhancements were further validated through Support Vector
Machine (SVM) analyses, demonstrating the robustness and reliability of the
proposed approach. This study demonstrates the potential of combining Ag
nanoarrays with 3D-2D CNN models to enhance micro-HSI performance,
offering a novel and effective solution for precise microplastics detection and
advancing chemical analysis, environmental monitoring, and related fields.
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1 Introduction

One of the most crucial environmental issues currently is the ubiquitous presence of
microplastics in aquatic ecosystems (Koelmans et al., 2022; Vethaak and Legler, 2021; Zhao
et al., 2024; Li et al., 2023). Their persistence in the environment and the harmful impacts on
organisms, including circulation throughout the body, penetration of vital barriers, and the
potential to cause oxidative damage and immunological stress (Vethaak and Legler, 2021; Li
et al., 2024; Kadac-Czapska et al., 2024). TheWorldWide Fund for Nature has reported that
an average individual may ingest up to 5 g of microplastics each week (Nor et al., 2021).
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Despite the growing concern, accurately detecting and quantifying
microplastics remains a formidable challenge (Yang et al., 2024;
Rafiq and Xu, 2023). Traditional methods, such as Fourier-
transform infrared spectroscopy (FTIR) (Campanale et al., 2023;
Andoh et al., 2024), Raman spectroscopy (Fang et al., 2023; Sunil
et al., 2024), and scanning electron microscopy (SEM) (Wang et al.,
2017), rely on expensive equipment and time-consuming
procedures that require skilled operators. Additionally, FTIR and
Raman spectroscopy lack spatial resolution, while SEM lacks
spectral information. These limitations hinder their scalability for
high-throughput microplastic detection (Singh and Kumar, 2024).
These limitations hinder the scalability of high-throughput
microplastic detection, highlighting the urgent need for
innovative and more efficient methodologies to address this
critical issue.

Hyperspectral imaging (HSI), which captures both spatial and
spectral information for each pixel (Bian et al., 2024), offers a
promising solution for the rapid and accurate detection of
microplastics in environmental samples (Ali et al., 2024; Serranti
et al., 2024). Unlike traditional techniques, HSI can simultaneously
deliver high-dimensional spatial and spectral data, making it highly
advantageous for microplastic characterization and quantification
(Yang et al., 2023a; Qu et al., 2022). This dual capability allows HSI
to overcome the inherent limitations of conventional spectroscopic
methods. However, the complexity and redundancy of HSI data
have historically posed challenges for effective interpretation
(Jaiswal et al., 2023). Fortunately, recent advancements in
artificial neural network (ANN) algorithms have enabled the
extraction of meaningful information from complex HSI datasets
(Wambugu et al., 2021), making the combination of HSI and ANN
highly effective for precise and accurate environmental monitoring
(Jin et al., 2024; Hu et al., 2024).

Standard HSI techniques have a detection limit of around
200 μm, limiting their effectiveness for smaller microplastics
(Peters et al., 2025; Sun et al., 2021; Padervand et al., 2020).
Microscopic Hyperspectral Imaging (micro-HSI) offers the ability
to detect microplastics smaller than 200 μm, providing high-
resolution spatial and spectral information critical for
environmental monitoring (Banu et al., 2023). However, under
microscopic conditions, challenges such as strong background
spectral reflections and localized optical effects, including
enhanced scattering, absorption, and resonance phenomena,
significantly hinder the quality of spectral signals (Rees et al.,
2013; Bertani et al., 2013). These effects increase the complexity
of light pathways, introduce additional noise, and obscure
characteristic spectral features, thereby reducing the signal-to-
noise ratio (SNR) (Paterova et al., 2020). Such challenges are
especially pronounced in optically dense or heterogeneous
samples, where scattering dominates the signal collection process.
Addressing these limitations requires the development of advanced
methodologies to improve spectral clarity and enhance detection
accuracy, ensuring precise identification and characterization of
microplastics at smaller scales (Yang et al., 2023b; Patil et al., 2022).

Silver (Ag) nanostructures exhibit an exceptional optical cross-
section, resulting in a pronounced localized surface plasmon
resonance (LSPR) effect in the visible light region (Mahmudin
et al., 2024; Philip and Kumar, 2022; Liu and Huang, 2013). This
unique property makes Ag nanoparticles widely utilized in surface-

enhanced Raman spectroscopy (SERS), a technique renowned for its
high sensitivity and selectivity in trace-level detection (Wu et al.,
2021). The LSPR effect of Ag nanostructures is highly responsive to
environmental changes, with shifts in resonance wavelength
occurring due to variations in the refractive index of the
surrounding medium (Montes-García et al., 2021). This
sensitivity establishes Ag nanostructures as effective optical
sensors capable of detecting subtle environmental changes (Kim
et al., 2021; Xu and Geng, 2021). More importantly, the LSPR effect
significantly enhances the scattering and absorption of visible light
(Lv et al., 2022). In our experiments, When Ag nanostructures are
used as substrates for reflection-mode micro-HSI, we observed a
notable suppression of background reflection. This suppression
appears to enhance spectral contrast, potentially aiding in the
improved identification of chemical components. Such an
enhancement is particularly valuable in micro-HSI applications,
where precise spectral differentiation underpins effective material
characterization.

Building on the unique optical properties of Ag nanostructures,
this study explores their potential as substrate for micro-HSI to
enhance spectral clarity and improve detection accuracy at smaller
scales. To the best of our knowledge, the application of substrates
with LSPR effects in reflection-mode micro-HSI for microplastic
detection has not been systematically investigated. In this context,
integrating Ag nanoarrays substrate with micro-HSI offers a
promising strategy to address current detection limitations.
Therefore, the objective of this study is to investigate the
effectiveness of Ag nanoarrays substrates in enhancing the
performance of reflection-mode micro-HSI for microplastic
detection. Specifically, we seek to assess the influence of Ag
nanoarrays on reducing background spectral reflections,
enhancing the signal-to-noise ratio (SNR), and improving the
precision of microplastic classification through the application of
convolutional neural networks (CNN) and Support Vector
Machines (SVM). This work aims to lay the foundation for a
novel technological strategy that could advance microscopic
hyperspectral detection applications.

2 Materials and methods

2.1 Chemicals and materials

Ultrapure silver (Ag, 99.999% purity) was kindly provided by
Zhongnuo New Material (Beijing) Technology Co., Ltd. (Beijing,
China). Microplastics with varying compositions, including
polystyrene (PS), polyethylene terephthalate (PET), and
polymethyl methacrylate (PMMA), were supplied by Polymer
Plastic Co., Ltd., (Dongguan, China). The microplastic particles
had an average diameter of approximately 1 μm, ensuring
consistency in particle size for experimental analysis. High-
quality silicon wafers (Si) were sourced from Jinan Huayao
Optical Technology Co., Ltd., (Jinan, China). All chemical
reagents used in the experiments were of analytical grade to
ensure reliability and reproducibility of results. Solutions were
prepared exclusively with deionized and decarbonated water to
eliminate potential impurities that could interfere with the
experiments.
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2.2 Preparation of Ag nanoarrays

The preparation of silicon (Si) wafers began with a rigorous
cleaning process to ensure a pristine surface. The wafers were
immersed in a freshly prepared piranha solution, composed of
concentrated sulfuric acid (98% H2SO4) and hydrogen peroxide
(30% H2O2) in a 7:3 volume ratio. This highly oxidative solution
was used to remove organic contaminants and increase the
hydrophilicity of the wafer surface. The wafers were treated in the
solution for 10 min, ensuring thorough cleaning. Following this step,
the wafers underwent sequential rinsing with deionized water and
ethanol, repeated three times to eliminate any residual chemicals.

Once the cleaning process was completed, the wafers were dried
under a steady stream of nitrogen gas to prevent contamination
from ambient particles. The cleaned and dried Si wafers were then
carefully mounted in a thermal evaporation system for the
deposition of Ag. Ultrapure silver target material (99.999%) was
placed in an evaporation boat within the system. Using thermal
evaporation, a uniform silver film with a thickness of approximately
15 nm was deposited onto the wafer surfaces. Subsequently, the
deposited silver films underwent annealing in a muffle furnace at a
temperature of 310°C for 47 min. Annealing significantly altered the
surface energy of the Ag film, reorganizing atoms and transforming
the uniform film into a well-ordered Ag nanoarrays.

2.3 Morphology characterization and Raman
measurements

The surface morphology of the Ag nanoarrays was analyzed
using a Hitachi S-4800 field emission (SEM), providing high-
resolution imaging to assess the structural details of the
nanostructures. For Raman spectroscopy analysis, a confocal
micro-Raman system (Zolix, Beijing) was employed, utilizing a
532 nm excitation laser for spectral measurements. To ensure
precise focus and high signal sensitivity, a 100× objective lens
was used, paired with a diffraction grating of 1,800 lines/mm to
achieve optimal spectral resolution. The laser power was carefully
maintained at 0.5 mW to prevent any potential thermal damage to
the sample, and the integration time for each Raman measurement
was set to 1 s to balance signal clarity and efficiency.

2.4 Prepare datasets of microscopic
hyperspectral imaging (micro-HSI)

Microplastic aqueous solutions were prepared at a concentration
of 500 μg/mL using water as the solvent, reflecting the common
practice of extracting microplastics from aquatic environments. To
ensure uniform particle distribution, the solutions were subjected to
ultrasonic dispersion using an ultrasonic bath operating at 40 kHz
for 10 min. No additional dispersants were employed, as the study
aimed to maintain consistency with the natural water-based
conditions of microplastic samples. Following dispersion, 5 µL of
the solution was carefully transferred onto the preprepared
substrates using a micropipette for sample preparation. The
samples were dried under an infrared lamp before undergoing
microscopic hyperspectral imaging (micro-HSI) analysis.

To analyze the spectral and spatial properties of microplastic
particles, hyperspectral imaging was employed using a benchtop
hyperspectral imaging system (SM320, 3nh Inc., China) integrated
with a CX40M microscope (Sunny Ltd., China). The microscope,
equippedwith a 500×magnification lens, enabled precise visualization
of themicroplastic samples. The HSI system operated across a spectral
range of 400–1,000 nm with a high spectral resolution of 2 nm,
ensuring the collection of detailed spectral profiles. Hyperspectral data
were captured at a spatial resolution of 660 × 360 pixels, with spectral
information recorded across 300 discrete wavelengths.

To evaluate the performance of the Ag nanoarrays substrates in
hyperspectral analysis, micro-HSI data were collected for all
microplastic samples on both Ag nanoarrays and Si substrates.
The microplastic samples were classified into six distinct categories
based on composition: pure PS, PET, PMMA, and three mixed groups
(PS+PET, PS+PMMA, and PS+PET+PMMA). For each category,
three hyperspectral images were acquired to ensure dataset
consistency. Hyperspectral data from these images were segmented
into 15 × 15 pixel regions, resulting in a total of 19,008 data samples
for analysis, split equally between the two substrate types. For the river
water samples, we replaced the deionized water with turbid river water
as the solvent, while keeping all other procedures unchanged. This
allowed us to obtain the microplastic hyperspectral dataset for the
river water samples.

Data preprocessing involved two key steps: Savitzky-Golay (SG)
smoothing to reduce noise and Z-score normalization to standardize
the spectral data, ensuring consistency and comparability across all
samples. The SG smoothing technique was applied to mitigate high-
frequency noise inherent in hyperspectral measurements, which is
particularly critical when characterizing subtle optical
enhancements induced by Ag nanoarrays. The processed datasets
were evenly split into two subsets, with 50% allocated for training the
model and the remaining 50% reserved for testing. These
preprocessed datasets were then used to train and validate
classification models, including a convolutional neural network
(CNN) and a support vector machine (SVM).

2.5 Introduction to the hybrid 3D-2D CNN
model architecture

To address the spectral-spatial complexity of hyperspectral
imaging (HSI) data in microplastic characterization, a hybrid 3D-
2D convolutional neural network (CNN) was developed. This
architecture synergizes the strengths of 3D convolutions for joint
spectral-spatial feature extraction and 2D convolutions for efficient
spatial representation learning, making it particularly suitable for
analyzing microplastic HSI datasets acquired from Ag nanoarrays
substrates.

The proposed model architecture, illustrated in Figure 1, begins
with 3D convolutional layers that process the input hyperspectral
data, characterized by dimensions 1@H × W × C. Here, 1 denotes
the number of input channels, H and W represent the spatial
dimensions (height and width), and C signifies the spectral
dimension. This initial stage facilitates the concurrent extraction
of spatial-spectral features (Li et al., 2017). Following the 3D
convolutional layers, 3D pooling is applied, reducing the
dimensions to H/2 × W/2 × C/2 while retaining essential spatial-
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spectral information. After an additional 3D convolutional layer, the
3D feature tensor is reshaped into a 2D representation (K@H′ ×W′)
through depth-to-space transformation, where K denotes the
synthesized feature channels. Then the 2D convolutions are
applied to enhance the extraction of deeper spatial features while
reducing computational complexity (Fırat et al., 2022). Progressive
pooling layers continue to downsample the data, culminating in fully
connected layers that perform the final classification. The network
utilizes cross-entropy loss as the objective function to accomplish a
six-class classification task. The 3D-2D CNN model was
implemented using the PyTorch framework and simulated on a

high-performance computer equipped with a GTX
4090 graphics card.

3 Results and discussion

3.1 Materials characterization and spectral
comparative analysis

Figure 2A illustrates the experimental workflow for acquiring
micro-HSI data. The process begins with the deposition of Ag film

FIGURE 1
Overall architecture of the hybrid 3D-2D CNN model.

FIGURE 2
(A) Schematically illustrates the complete experimental workflow for acquiring micro-HSI data of microplastics; (B) High-magnification SEM image
of the Ag nanoarray substrates; (C) Raman spectra of PS microplastic samples on Ag nanoarray substrates were compared with those on Si substrates.
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onto Si substrates via thermal evaporation. The deposited film is
subsequently subjected to thermal annealing, resulting in the
formation of well-ordered Ag nanoarrays. A microplastic solution

is then applied to the nanoarrays substrates and allowed to dry.
Micro-HSI data are collected using a hyperspectral imaging system
integrated with an optical microscope, enabling high-resolution

FIGURE 3
(a) A comparative analysis of the spectrum of the Micro-HSI system’s original light source, the average reflection spectra of Ag nanoarray substrate
and Si substrate; The average reflectance spectra obtained frommicro-HSI at three representative locations on dried PSmicroplastic particles, alongwith
the reflectance spectra of their respective substrates: (b) Si substrate and (c) Ag nanoarray substrate. The insets in (b, c) provide 500× morphological
images of the dried PS particles on Si and Ag nanoarray substrates. Points 1, 2, and 3 correspond to regions with low, moderate, and high particle
densities, respectively.
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spatial and spectral analysis of the samples. Figure 2B shows a high-
magnification scanning electron microscopy (SEM) image of the
fabricated Ag nanoarrays, revealing that the nanoarrays is composed
of nanocolumns with diameters ranging from 30 to 100 nm. A low-
magnification SEM image (Supplementary Figure S1) further
confirms that the Ag nanoarrays substrate features a relatively
smooth and uniform surface. To further illustrate the formation
of the Ag nanoarrays, we have included two additional SEM images
(Supplementary Figure S2) comparing the morphology before and
after annealing at the same magnification in the revised
Supplementary Material. After annealing, the Ag nanostructure
clearly transitions from a film with numerous channels to a well-
ordered nanoarray morphology. This controlled morphology and
consistent size distribution are critical for generating LSPR effect,
which plays a key role in enhancing optical signals for micro-HSI.

Figure 2C presents the Raman spectra of polystyrene (PS)
microplastic samples deposited on Ag nanoarrays substrates
compared to those on Si substrates. The PS samples on Ag
nanoarrays exhibit sharp and well-defined characteristic peaks,
such as the symmetric ring breathing mode at 997 cm−1 and the
CH in-plane deformation mode at 1,028 cm−1 (Zhou et al., 2021;
Mikac et al., 2023). In contrast, PS samples on Si substrates display
negligible Raman signals, highlighting the superior signal
enhancement provided by the Ag nanoarrays. This remarkable
enhancement in Raman intensity is attributed to the LSPR effect
induced by the Ag nanoarrays (Li et al., 2020). The LSPR amplifies
the local electromagnetic field at the substrate surface, significantly
boosting the Raman scattering efficiency of the PS molecules (Li
et al., 2020). These findings provide strong preliminary evidence of
the robust LSPR effect generated by the fabricated Ag nanoarrays,
underscoring its potential to enhance spectroscopic techniques for
micro-HSI.

Reflection-mode micro-HSI spectral data often suffer from
strong background reflection (Durkan and Shvets, 1998),
prompting this study to investigate the influence of Ag
nanoarrays as micro-HSI substrates on reflection spectra.
Figure 3a compares the raw spectrum of the hyperspectral light
source with the reflection spectra of Si and Ag nanoarrays substrates.
The reflection spectrum of the Si substrate closely resembles the light
source spectrum, with a broad reflection band spanning 400–900 nm
and a peak around 620 nm. In contrast, the Ag nanoarrays reflection
spectrum exhibits a much narrower reflection band, primarily
concentrated in the 400–580 nm range, with a peak at
approximately 490 nm. The inset in Figure 3a visually highlights
the differences between the two substrates under micro-HSI,
displaying pseudo-three-channel color images (at wavelengths of
490 nm for blue, 590 nm for green, and 660 nm for red). The Si
substrate appears warm yellow, resembling the halogen light source,
while the Ag nanoarrays substrate shows a distinct deep blue color.
The Ag nanoarrays reflection spectrum demonstrates a significant
reduction in reflected light intensity for wavelengths above 580 nm
compared to the light source spectrum. This reduction is likely
attributed to the LSPR effect of the Ag nanoarrays, which enhances
scattering and absorption in the 500–900 nm range, thereby greatly
diminishing the reflection intensity. Compared to the Si substrate,
the weak background reflection above 580 nm provided by the Ag
nanoarrays substantially reduces the overall background noise,
leading to a significant improvement in the SNR of the sample’s

reflection spectra. To evaluate the long-term stability of the Ag
nanoarrays, we examined their micromorphology and optical
properties after a 4-month interval. The results (Supplementary
Figure S3A) reveal no significant changes in the morphology of the
Ag nanoarrays. Furthermore, their performance (Supplementary
Figure S3B) as substrates for micro-HSI remains stable, consistently
reducing reflection intensity in the 500–900 nm range.

To further investigate the impact of Ag nanoarrays substrate on
microplastic sample imaging using micro-HSI, six distinct categories
of microplastics based on their composition were experimentally
analyzed: pure polystyrene (PS), polyethylene terephthalate (PET),
polymethyl methacrylate (PMMA), and three mixed groups (PS and
PET, PS and PMMA, and PS, PET, and PMMA). Supplementary
Figure S4 shows high-magnification SEM images of all the
microplastics, with the majority of their morphologies being
spherical or ellipsoidal, and sizes ranging from 0.5 to 1 μm.
Figures 3b, c present high-magnification micro-HSI reflection
spectra of dried PS microplastic samples on Si substrates and Ag
nanoarrays substrates, respectively. The insets in Figures 3b, c
display morphological photographs (500×) of the dried PS
particles on Si and Ag nanoarrays substrates. The approximately
1 μm-sized particles are relatively dispersed, forming regions with
varying densities. The spectral curves of Points 1, 2, and 3 in the
figure represent the averaged curves taken from three different
points, corresponding to areas with low, moderate, and high
particle density of the sample, respectively.

On the Si substrate (inset in Figure 3b), the colors of these three
points transition from yellow-green to orange as the particle density
increases. In contrast, on the Ag nanoarrays substrate (inset in
Figure 3c), the colors shift from deep blue to green and then to deep
red with increasing particle density, demonstrating a significantly
stronger color contrast. Comparative analysis of the reflection
spectra for these three points reveals that on the Si substrate
(Figure 3b), the reflection bands across all points closely resemble
the Si substrate’s reflection spectra, spanning the entire 400–900 nm
range. Consequently, the microplastic reflection bands overlap with
the background, making the spectral information of the
microplastics difficult to discern. Conversely, on the Ag
nanoarrays substrate (Figure 3c), the reflection spectra of the PS
microplastic samples exhibit a distinct separation, with reflection
band primarily concentrated between 580 and 750 nm. The peak of
the reflection band occurs around 670 nm, clearly distinct from the
background reflection band of the Ag nanoarrays substrate. For the
highest particle density point (Point 3), the reflection spectrum
distinctly shows the substrate’s background reflection band in the
400–580 nm range and the PS sample’s reflection band in the
580–750 nm range. This separation significantly reduces the
interference from background reflections, thereby enhancing the
SNR of the microplastic spectral information. As a result, the
imaging effect achieved with Ag nanoarrays substrate resembles
dark-field imaging but offers greater signal clarity (Zheng et al.,
2022; Liu et al., 2021). Supplementary Figures S5–S9 demonstrate
similar spectral enhancements for the other five microplastic
categories, further validating the superiority of Ag nanoarrays
substrates. These findings highlight the effectiveness of Ag
nanoarrays in enhancing spectral clarity and detection accuracy
in micro-HSI, providing a promising approach for precise
microplastic identification and characterization.
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To compare the reflection spectra of six distinct microplastic
categories on Si substrate and Ag nanoarrays substrate, Figures 4A, B
present the respective averaged spectral curves. On the Si substrate
(Figure 4A), the reflection bands of all six microplastic categories
span the entire 400–900 nm range, closely overlapping with the
background reflection bands of the pure Si substrate. This overlap
results in similar spectral features across the six samples, making
differentiation challenging. In contrast, for microplastics deposited
on Ag nanoarrays, the influence of the substrate’s background
reflection is significantly diminished. Consequently, the reflection
spectra (Figure 4B) of the six microplastic categories exhibit distinct
spectral features. Each sample displays unique reflection band
distributions, with peak wavelengths ranging from 560 nm to
670 nm. This differentiation is advantageous for subsequent
neural network-based feature extraction and classification.
Furthermore, the LSPR effect of the Ag nanoarrays is highly
sensitive to the refractive index of the surface-adsorbed samples
(Montes-García et al., 2021). Variations in the refractive index
among different microplastic samples result in distinct shifts in
the resonance wavelength, thereby producing unique reflection

spectra for each sample type. Overall, the comprehensive spectral
comparison analysis clearly demonstrates that Ag nanoarrays
amplify spectral features and enhance the overall SNR. This
highlights the potential of Ag nanoarrays substrate for micro-HSI
applications, underscoring their effectiveness in improving
detection accuracy and spectral clarity for microplastic
identification.

3.2 Ablation study of the hybrid 3D-2D
CNN model

The architecture of the proposed hybrid 3D-2D CNN model
seamlessly integrates 3D and 2D convolutional layers to effectively
harness both spatial and spectral features from hyperspectral
imaging data. Hyperspectral imaging inherently encapsulates a
wealth of spectral and spatial information, demanding a model
adept at capturing these dual dimensions. An ablation study,
presented in the Supplementary Material (Supplementary Figure
S10), was conducted to evaluate the contributions of individual

FIGURE 4
The averaged reflection spectra of three distinct points for six different microplastic categories and their corresponding substrates on (A) Si
substrates and (B) Ag nanoarray substrates.
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network components. Models utilizing only 3D CNNs were capable
of capturing joint spectral-spatial features but lacked the refined
spatial processing achievable with 2D CNNs. Conversely, models
employing solely 2D CNNs failed to fully leverage the rich spectral
information inherent in hyperspectral data, resulting in reduced
classification accuracy. The hybrid 3D-2D CNN architecture
demonstrated superior performance compared to both single-
dimension models, highlighting the critical role of integrating
both convolutional dimensions for optimal feature representation.

This hybrid 3D-2D CNN architecture leverages the strengths of
both convolutional approaches (Feng et al., 2019). While traditional
2D CNNs excel at extracting spatial features from RGB images with
limited channels, hyperspectral images contain hundreds of spectral
bands, each providing unique spectral information. Standard 2D
CNNs are insufficient for fully integrating the rich spatial-spectral
data inherent in HSI. By incorporating 3D convolutional layers at
the initial stages, the model effectively captures the intricate
relationships between different spectral bands and spatial
locations, facilitating more comprehensive feature learning. This
integration of advanced substrate technology with a tailored CNN
architecture underscores the potential of Ag nanoarrays in
enhancing micro-HSI for precise microplastic detection and
characterization.

3.3 Classification performance analysis

To further evaluate the advantages of Ag nanoarray substrates,
micro-HSI datasets obtained from both Si and Ag nanoarray
substrates were analyzed using the proposed hybrid 3D-2D CNN
model for feature learning and six-class classification.
Supplementary Figures S11, S12 present the training loss curves
and test accuracy curves for the training process of datasets based on
the Si and Ag nanoarrays substrates, respectively. Figure 5 shows the
confusion matrices for the classification performance of the hybrid
3D-2D CNN model on micro-HSI data from Si substrates
(Figure 5A) and Ag nanoarrays substrates (Figure 5B). The
confusion matrices compare the true labels of the six
microplastic types, against the predicted labels by the model
(Theissler et al., 2022). Each matrix cell represents the proportion

of samples correctly or incorrectly classified, with values closer to
1.0 indicating higher classification accuracy.

In Figure 5A, the classification performance of the micro-HSI
dataset on Si substrates shows relatively high accuracy (91%–96%)
for most microplastic types, except for PET and PS+PET, which
achieved lower accuracies of 83% and 84%, respectively. The overall
six-class average accuracy for Si substrates is 90.17% (Table 1). These
results suggest that while the hybrid 3D-2D CNN model can extract
spatial and spectral features from the Si-based micro-HSI dataset, its
classification performance is limited by the relatively low SNR and
overlapping spectral features of the microplastic samples on Si
substrates. As discussed earlier, the micro-HSI dataset on Ag
nanoarrays substrates demonstrates significant advantages in
terms of the SNR of the microplastic reflection spectra. This
enhancement greatly facilitates the feature extraction and analysis
capabilities of the 3D-2D CNNmodel, ultimately leading to superior
classification performance. Indeed, when the micro-HSI dataset
based on Ag nanoarrays substrates is used, the classification
performance of the 3D-2D CNN model improves markedly, as
shown in Figure 5B. The classification accuracy increases
significantly across all categories, particularly for mixed
microplastic samples. Individual microplastic types, including PS,
PET, and PMMA, achieve near-perfect accuracy values of 0.99 or
higher. Similarly, mixed classes such as PS+PET and PS+PMMA
attain an accuracy of 0.99, while the more complex PS+PET+PMMA
class achieves an accuracy of 0.98. Table 1 provides a detailed
comparison of performance metrics, highlighting the overall
superiority of Ag nanoarrays substrates. The dataset based on Ag
nanoarrays achieves an overall classification accuracy of 98.98%,
with precision, recall, and F1-scores all approximately 99%. In
contrast, the dataset based on Si substrates achieves an accuracy
of 90.17%, with precision, recall, and F1-scores around 90%.
Notably, the error rate of the Si substrate-based dataset is nearly
10 times higher than that of the Ag nanoarrays substrate-based
dataset. This comparison underscores the critical role of Ag
nanoarrays substrates in enhancing hyperspectral data quality
and classification performance.

The improved performance is attributed to the LSPR effects of
the Ag nanoarrays. The LSPR effect enhances the scattering and
absorption of light in the 550–900 nm range, significantly reducing

FIGURE 5
Confusion matrices of the hybrid 3D-2D CNNmodel applied to Micro-HSI datasets obtained from (A) Si substrates and (B) Ag nanoarray substrates.
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the substrate’s background reflection intensity (Lv et al., 2022).
Without the interference of background reflection spectra, the
reflection spectral information beyond 580 nm is primarily
attributed to the microplastic samples themselves (as shown in
Figure 3c). This greatly increases the SNR and provides richer
spectral features. Additionally, the LSPR effect exhibits high
sensitivity to variations in the refractive index of materials in
surface. This sensitivity can further contribute to distinct spectral
features between different microplastic types, enhancing the model’s
ability to classify samples accurately. In summary, the Ag
nanoarrays substrate not only suppresses background reflection
but also amplifies microplastic spectral features, providing a
robust platform for micro-HSI data acquisition. Combined with
the hybrid 3D-2D CNN model, this approach offers a powerful
method for precise and reliable classification of microplastic
samples, demonstrating its potential for advanced environmental
monitoring and detection applications.

Support Vector Machine (SVM) is a classical machine learning
algorithm widely used for classification tasks. It is known for its
ability to find an optimal hyperplane in high-dimensional space,
maximizing the separation between classes (Quadir and Tanveer,
2024). In this study, SVM was employed as a complementary
baseline model alongside the 3D-2D CNN to further validate the
advantages of Ag nanoarrays substrates in enhancing micro-HSI
spectral features. The SVM classification results (Figure 6; Table 1)
show a significant improvement in performance when using Ag
nanoarrays-enhanced datasets compared to those based on pure Si
substrates. The Ag nanoarrays-enhanced datasets (Table 1) achieved
an overall accuracy of 94.95%, substantially higher than the 72.58%
accuracy observed with Si substrates. Moreover, the precision, recall,

and F1-scores for Ag nanoarrays-based samples consistently
approach 0.95, whereas the corresponding metrics for Si
substrate-based samples were markedly lower. These results
highlight that the improved spectral features facilitated by the Ag
nanoarrays not only benefit advanced deep learning models such as
the CNN but also enhance the performance of traditional classifiers
like SVM. This further validates the effectiveness of the LSPR effect
in improving the discriminative power of micro-HSI data. However,
the SVM classification performance on both substrates was inferior
to that of the 3D-2D CNN model, underscoring the superior
capability of CNNs in analyzing the complex spatial-spectral
features of micro-HSI data. The CNN model’s ability to jointly
extract and learn intricate spatial and spectral relationships provides
a distinct advantage over traditional classifiers, particularly for high-
dimensional hyperspectral data.

Both the SVM and 3D-2D CNN models demonstrated a
consistent trend: the Ag nanoarrays substrate significantly
enhanced classification performance across all metrics. This
underscores the efficacy of Ag nanoarrays in overcoming the
limitations of traditional micro-HSI methods, advancing the
precision and reliability of environmental monitoring
techniques. By combining Ag nanoarrays-enhanced spectral
data with advanced machine learning models, this approach
offers a robust and promising framework for the detection and
classification of microplastics. We also compared silver nanoarray-
enhanced micro-HIS with Raman spectroscopy for microplastic
detection. While Raman spectroscopy (Supplementary Figure S13)
showed limited signal detection for microplastics such as PS and
PET and encountered challenges with other samples, this
highlights the advantages of the approach proposed in this

TABLE 1 Comparison of the classification performance metrics for 3D-2D CNN and SVM models applied to micro-HSI datasets from samples on Ag
nanoarrays and Si Substrates.

Model Substrate Accuracy Recall F1 score Precision

3D-2D-CNN Ag nanoarrays 98.98% 98.98% 98.98% 98.99%

Si 90.17% 90.17% 90.16% 90.17%

SVM Ag nanoarrays 94.95% 94.95% 94.96% 95.01%

Si 72.58% 72.58% 72.34% 72.32%

FIGURE 6
Confusion matrices of the SVM applied to micro-HSI datasets obtained from (A) Si substrates and (B) Ag nanoarray substrates.
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study. To further evaluate the practical applicability of the
proposed strategy in real-world aquatic environments, we
conducted additional experiments using river water as the
solvent for microplastic samples. As illustrated in
Supplementary Figure S14, the classification performance
significantly declined due to interference from a mix of
environmental impurities of various sizes. The overall accuracy
of the 3D-2D CNN model dropped to 80.64%, down from 98.98%
in purified environments. These results highlight the limitations of
the current approach in complex water conditions, where
environmental noise impacted detection performance. Moving
forward, optimizing the Ag nanoarrays and enhancing the AI
model for improved computational efficiency will be critical for
real-time monitoring applications.

4 Conclusion

In this study, we demonstrated the significant advantages of Ag
nanoarrays substrates in enhancing the detection and classification
of microplastic samples using reflection-mode micro-
hyperspectral imaging (micro-HSI). Compared to conventional
Si substrates, Ag nanoarrays provided improved signal-to-noise
ratios (SNR) and richer spectral features, attributable to the
localized surface plasmon resonance (LSPR) effect. The LSPR
effect enhanced scattering and absorption, effectively
suppressing background reflection in the 550–900 nm
wavelength range and separating the microplastic reflection
bands from the background. These enhanced spectral features
were utilized in six-class classification tasks employing a hybrid
3D-2D CNN model. The micro-HSI dataset based on Ag
nanoarrays consistently outperformed its Si substrate
counterpart across all evaluation metrics, achieving an accuracy
of 98.98% compared to 90.17% for the Si substrate, with error rates
decreasing by nearly 90%. Additionally, traditional machine
learning models, such as support vector machines (SVM),
exhibited significant improvements in classification accuracy
when utilizing Ag nanoarrays-enhanced data.

This study is the first to employ a plasmonic substrate in
reflection-mode micro-HSI to separate microplastic reflection
bands from background spectra by effectively suppressing
background reflection. Furthermore, our findings highlight the
synergistic effect between Ag nanoarrays and CNN models,
demonstrating the ability of Ag nanoarrays to enhance micro-
HSI data quality for precise feature extraction and classification.
These advancements pave the way for broader applications
of plasmonic-based micro-HSI in microscopic detection and
analysis across chemistry, biomedicine, and materials science.
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