
Editorial: Supramolecular cancer
therapeutic
biomaterials-volume II

Yong Yao1*, Guifei Huo2 and Ruibo Zhao3

1School of Chemistry and Chemical Engineering, Nantong University, Nantong, China, 2Department of
Chemistry, National University of Singapore, Singapore, Singapore, 3Department of Materials, Imperial
College London, London, United Kingdom

KEYWORDS

supramolecular chemistry, metal-organic framework, dynamic interactions,
biomaterials, cell imaging

Editorial on the Research Topic
Supramolecular cancer therapeutic biomaterials-volume II

Supramolecular cancer therapeutic biomaterials are a promising material for cancer
treatment (Lv et al., 2022; Zhang H. et al., 2022; Goor et al., 2017). These biomaterials are
designed and prepared based on supramolecular chemistry principles (Zhang X. et al., 2022;
Chen et al., 2023). Through intermolecular non-covalent forces, they form assemblies with
specific properties and complex structures (Klawa et al., 2024; Wang J. et al., 2022). These
materials have several advantages in the process of cancer treatment. First, they can be
precisely designed to specifically target cancer cells and reduce damage to healthy tissues
(Tang et al., 2024;Webber et al., 2016;Wang et al., 2022b). By combining targeting motifs or
using stimulus-responsive elements, they can be selectively enriched at the tumor site
(Zhang et al., 2023; Hazarika and Singh, 2023; Brito et al., 2021.).

Supramolecular cancer therapeutic biomaterials can also be designed to load and release
anticancer drugs in a controllable manner (Mann et al., 2018; Wang et al., 2022c). This
enables continuous drug delivery, improves therapeutic effects, and minimizes toxic side
effects at the same time (Yang et al., 2022; Wu et al., 2018). In addition, some of these
biomaterials can be triggered by external stimuli such as light, heat, or magnetic fields,
thereby enabling targeted activation of therapeutic agents (Zhou et al., 2024; Guo et al.,
2020). Interestingly, supramolecular biomaterials can exhibit unique properties such as self-
assembly, reversible interactions, and adjustable mechanical properties (Cui et al., 2019; Shi
et al., 2022). This flexibility allows the design of multifunctional platforms that can combine
different treatment methods such as chemotherapy, photothermal therapy, photodynamic
therapy, and multimodal synergistic therapy (Wen et al., 2024; Deiser et al., 2023). In this
context, we organized the Research Topic of “Supramolecular Cancer Therapeutic
Biomaterials” in 2022 and published 8 important articles, showing the latest research
results in this field (Yao et al., 2023). Due to the importance and popularity of this Research
Topic, we now organize the second volume on this topic. Here, we briefly introduce the
research work of this new topic.

Hepatocellular carcinoma (HCC) has the fourth highest death rate among all cancer
types worldwide. Programmed cell death (PCD) is a key biological mechanism for
controlling cancer progression, tumor expansion and metastasis. In addition, the
Tumor microenvironment (TME) is critical in influencing Overall survival (OS) and
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immune response to immunotherapy interventions. From a multi-
omics perspective, the combination of PCD and TME helps predict
survival and response to immunotherapy in patients with liver
cancer. Liu et al. analyzed changes in the PCD and TME
classifiers used to classify liver cancer patients into two
subgroups (high PVD-low TME and low PVD-high TME). Next,
they compared Tumor somatic mutation (TMB), immunotherapy
response, and functional annotation between the two groups.
Finally, Western blot (WB) was performed.
Immunohistochemistry (IHC) was assessed on the Human
Protein Map (HPA). In the PCD-TME classifier, 23 PCD-related
genes and three immune cell types were identified. Using this model,
patients’ prognosis and response to treatment can be accurately
predicted. The results of this study provide a new tool for the clinical
management of patients with hepatocellular carcinoma and help
develop accurate treatment strategies for these patients.

Fluorescence imaging in the near-infrared-II region has the
advantages of centimeter-scale tissue penetration and micron-
scale spatial resolution, which has sparked interest in visualizing
the lymphatic system. Jin et al. prepared HA@ICG nanoparticles
based on the NIR-II fluorescence characteristics of ICG, which
inhibited the π-π stacking between ICG molecules, had an ideal
particle size and surface modification, good imaging duration and
resolution, and could assess local microcirculation. In vitro and in
vivo studies demonstrated that it had excellent photostability,
biosafety and visualization ability of the lymphatic system, and
was expected to be used in the clinic (Zhang et al.). However,
further research was needed in the validation of disease models and
the imaging of deep-seated lymphatic tissues.

In a research paper, Prof. Wang and coworkers proposed a
metal-organic framework (MOF)-based nano-platform for
mitochondrial-targeted CO gas therapy and drug combination
therapy. They designed a thiol-functionalized MOF (UiO-66-SH)
and combined it with the drug resveratrol (RES) to form a UiO@
FeCO@RES nano-platform. The platform is capable of triggering
decomposition by ATP within tumor cells, releasing RES and
generating CO gas, achieving synergistic anti-cancer effects by
inhibiting ATPase and disrupting mitochondrial function.
Experimental results show that the nano-platform can effectively
target mitochondria and release CO gas in response to ROS,
significantly enhancing the killing effect on cancer cells (Wang
et al.). This strategy of combining gas therapy and drug therapy
provides new ideas for cancer treatment.

In a mini-review paper, Fukuhara et al. focuses on the
application progress of dynamic and stimuli-responsive
supramolecular chemosensors in cancer detection, with particular
attention to the external stimulus of solution-state hydrostatic
pressure and its role in biological systems. Focusing on the
mechanical force of hydrostatic pressure, it was found in HeLa
cells that it regulates the influx of Ca2+ through the piezo ion
channel, mainly affecting the intracellular pathway, and the cells

have a dynamic mechanism to restore the original state of the
channel. These findings suggest the importance of dynamic and
stimuli-responsive supramolecular chemosensors in biological
systems (Matsumoto et al.). The different pressure-responsive
characteristics of peptide scaffolds can provide ideas for the
development of new supramolecular imaging reagents and
promote the development of future mechanobiology.

In summary, we highly value the endeavors, understandings,
and outlooks of every contributor to the domain of supramolecular
cancer therapeutic biomaterials. We sincerely hope that this issue
can offer a perspective on applying supramolecular chemistry to
address particular biomedical issues and encourage in - depth
research within this field.
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