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Introduction: Azadirachta indica (neem) shows medicinal potential against
chronic diseases, but clinical translation is challenging. This study aimed to
analyze neem compounds using topological indices (TIs) to predict
physicochemical properties.

Methods: Valency-based indices, including Zagreb and atom bond connectivity
indices, were used to characterize boiling point, vaporization, enthalpy, mass, and
refractivity. Regression analysis and multi-criteria decision-making methods
were employed for predictive modeling and compound ranking.

Results: Statistical metrics demonstrated the predictive power of the models.
Ranking methods provided a hierarchical ordering of compounds based on
therapeutic potential.

Discussion: This study contributes to analogous prediction, optimization, and
virtual screening of neem compounds using a cost-effective approach. The
findings offer insight into neem compound properties, potentially accelerating
drug discovery and development.
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1 Introduction

Azadirachta indica, informally known as neem, is a tree belonging to the family
Meliaceae. It is used in pharmaceuticals, animal nutrition, agriculture, cosmetics, dental
hygiene, personal care, and fuel production (Nwanekezie et al., 2023). Neem extracts (NEs)
have been patented for their antibacterial properties, targeting drug-resistant bacteria, and
treating breast carcinomas (Nandi and Ghosh, 2023). NEs have anticancer effects on the
liver and lung carcinomas, and clinical trials have shown their safe modulation of biological
systems in cancer treatment. Studies have revealed that nimbins, a bioactive neem
compound, act against four dengue virus strains (Khan et al., 2024). Continued neem
consumption can reduce dengue-related morbidity and human pathogens mortality (Wylie
and Merrell, 2022). Research suggests that incorporating neem into anti-diabetic agents
enhances their effectiveness (Abdullah et al., 2023). NEs inhibit SARS-CoV-2 3-
Chymotrypsin (3C) and impede their adhesion to the vascular epithelium. These
studies highlight potential of NE in treating COVID-19 (Johnson et al., 2021). Neem
leaf extracts show promise against HIV, malaria, and cancer cell proliferation (Eze et al.,
2022). Nimbolide, azadirachtin, and gedunin are bioactive neem compounds that influence
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biological processes in animals (Sarkar et al., 2021). NEs may be
suitable for managing HIV, cancer, skin diseases like psoriasis and
obesity (Maji and Modak, 2021; Mohan et al., 2023; Tiwari, 2023).
NE’s bactericidal, fungicidal, and insecticidal traits are vital for
ecological cultivation with arthropod control (Modi and Soni,
2023). Recent research has focused on exploring the potential of
neem as a novel therapeutic agent, particularly for its antimicrobial,
anti-inflammatory, antioxidant, and anticancer properties
(Puttongsiri et al., 2025). There is growing interest in neem
compounds for the treatment of drug-resistant pathogens and
biofilm-forming organisms (Kumar Singh et al., 2025).

Although the benefits of Azadirachta indica are vast and hold
significant pharmacological promise, several challenges hinder its
wider clinical application. Various obstacles that impede the
advancement of neem-based pharmaceuticals include a)
biodiversity, b) toxicity, c) regulatory inconsistencies, d)
inefficient and labor-intensive extraction processes, and e) the
requirement for precise elucidation of the molecular mechanism
(Tembe-Fokunang et al., 2019). A bibliometric analysis of reputable
publications and biodiversity studies from various countries
concluded that sufficient funding is required for neem research
to understand neem biodiversity and toxicity for its safe application
in the treatment of diseases (Onasanya et al., 2022). A brief
description of these obstacles is as follows:

Being a native to the Indian subcontinent, the neem tree has
been successfully introduced to African regions, but its global
distribution remains limited as shown in Supplementary Material
(Bakewell-Stone, 2024). Research on the toxicity of neem extracts
has revealed their effectiveness when administered orally over short
periods of time. Nevertheless, prolonged use may result in adverse
toxic effects including renal dysfunction, substantial decreases in
arterial blood pressure, and hypoglycaemic responses (Braga et al.,
2021; Saha et al., 2024; Stinguel et al., 2024; Tumanjong et al., 2024;
Ogundipe et al., 2025). Addressing toxicity involves elucidating the
precise mechanisms of action, establishing clinical efficacy, and
assessing the safety profile of neem-based therapeutics (Modi and
Soni, 2023). Furthermore, the development of standardized
protocols for extract preparation is essential, because suboptimal
processing techniques may lead to detrimental health consequences
(Islas et al., 2020).

Internationally recognized databases reveal a significant gap
in the information pertaining to the physicochemical
characteristics of neem phytochemicals. The phytochemicals in
the neem are likely to be composed of numerous flexible
molecules. Traditional methodologies struggle to capture the
conformation-dependent properties of these molecules and
their interactions with biological targets, necessitating
interdisciplinary approaches (Ramadhan et al., 2023). The
main challenges include: 1) collecting comprehensive, high-
quality data on a diverse array of neem compounds, 2)
choosing appropriate molecular descriptors, and 3) ensuring
rigorous validation and defining the applicability domain of
the models. Addressing these challenges is crucial to improve
the efficiency and sustainability of neem-derived drug
development for chronic diseases (Parmar et al., 2025).

Developing precise QSPR models and prioritizing lead
compounds can help to overcome these challenges. These
processes facilitate the prediction of properties and hierarchical

arrangements that are crucial for efficient virtual screening
(Noviandy et al., 2025). QSPR is a theoretical framework used in
medical research to enhance the scrutiny of pharmaceutical agents
intended to treat specific ailments with desired characteristics
derived from their physicochemical characteristics and biological
efficacy (Sorgun and Birgin, 2025). This vital methodology
supplements experimental research with computational analyses
and plays a crucial role in toxicity analysis and virtual screening
of pharmaceutical compounds (Hasani et al., 2025).

Molecular descriptors/topological indices are indispensable
tools for QSPR studies, enabling the theoretical prediction of
physicochemical properties (Huang et al., 2024; Ozge, 2024; Yu
et al., 2024). These descriptors accurately identify the
information embedded in molecular structures, which is
governed by the interconnectivity and spatial configuration of
atoms (Sahu and Ojha, 2023). The importance of topological
indices (TIs) stems from their ability to facilitate the prediction of
their theoretical chemical properties, thereby bolstering QSPR
methodologies (Ullah et al., 2023). These numerical descriptors
assign a polynomial or number to the correlation between the
positions of the atoms in a chemical graph structure and their
innate physical properties (Hakeem et al., 2023; Tharmalingam
et al., 2023; Yang et al., 2023).

In the literature, the first and second Zagreb indices have
applications in complexity and molecular chirality studies of
chemical compounds (Hakami et al., 2025). When studying the
heat of formation of octanes and heptane, the augmented Zagreb
index was found to be a suitable predictive index (Ali et al., 2021).
The heat of formation, stability, and strain energy of alkanes and
cycloalkanes are highly correlated with the atom bond connectivity
(ABC) index (Rahul et al., 2022). Vukičević and Gašperov defined
the Adriatic indices. There are three types of indices: variable,
discrete, and extended. Discrete Adriatic descriptors are among
the closest groups of these descriptors and contain
148 descriptors (Kulli et al., 2021). These indices predict the
enthalpy of vaporization, heat capacity, Log P, relative retention
time, and biological activity, which are necessary for virtual
screening of drug compounds (Anuradha et al., 2024).

TIs have been used in QSPR studies to investigate medications
used for diverse medical conditions. The physical attributes of
biochemical networks (Ullah et al., 2024), antiviral drugs used for
treating headaches (Sardar et al., 2023), and nonsteroidal anti-
inflammatory drugs, including opiates and antidepressants,
(Gnanaraj et al., 2023), were analyzed by TIs. Drugs used for
cardiac dysfunction (Kuriachan and Parthiban, 2025),
schizophrenia, tuberculosis, malignancies, viral infections, cancer
(Arockiaraj et al., 2025; Kuriachan and Angamuthu, 2025; Nasir,
2025; Qin et al., 2025; Sorgun and Birgin, 2025), and respiratory
disorders, such as asthma, were analysed by TIs (Adnan et al., 2022;
Balasubramaniyan and Chidambaram, 2023; Gnanaraj et al., 2023;
Hakeem, 2023; Huang et al., 2023; Pattabiraman and Cancan, 2023;
Zaman et al., 2023). The properties crucial to COVID-19 medicines
and anti-hepatitis drugs were investigated using M-polynomial and
NM-polynomial (Asghar, 2025), geometric-quadratic index,
quadratic-geometric indices, and the first and second inverse
Nirmala indices (Das et al., 2023; Nagarajan et al., 2023).
Adriatic indices have been used to analyze curcumin- and
benzophenone-conjugated PAMAM dendrimers, boron triangular
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nanosheets, and some nanostructures (Anuradha and Jaganthan,
2023; Anuradha and Jaganathan, 2023).

Multiple-criteria decision-making (MCDM) methodologies,
such as VIseKriterijumska Optimizacija I Kompromisno
Raspoređivanje (VIKOR) and Simple Additive Weighting
(SAW), enable hierarchical ordering of phytochemicals based
on various parameters (Zuo et al., 2023). Hierarchical ordering in
drug design streamlines discovery by prioritizing candidates
based on criteria. This method optimizes resources, provides
structure-activity relationship insights, facilitates data-driven
decisions, and optimizes combinatorial chemistry. By ranking
compounds, researchers identify promising candidates, allocate
resources effectively, navigate large libraries and increase success
in developing new therapeutics. Various drugs used for treating
lung disorders (Ashraf and Idrees, 2024), cancer (Li et al., 2022;
Farooq, 2024), eye disorders, kidney cancer (Husin et al., 2024),
anti-psychotic drugs (Saeed and Idrees, 2024),and multiple
sclerosis (Farooq et al., 2025) have used MCDM to rank
drug compounds.

QSAR/QSPR analysis of neem compounds has traditionally
been conducted using experimental methods. Recent
investigations have utilized laboratory techniques, such as gas
chromatography-mass spectrometry and liquid chromatography
coupled with quadrupole time-of-flight mass spectrometry, to
identify and quantify the bioactive constituents in neem extracts.
Density Functional Theory analysis remains the sole computational
method employed to evaluate the reactivity and stability of neem
phytochemicals (Costa et al., 2021; Ojha et al., 2021). Neem
compounds present substantial opportunities for drug discovery
and optimization; however, many of their critical properties have
not been sufficiently investigated.

In literature, phytochemical compounds like curcumin,
resveratrol were examined widely using TIs (Çolakoǧlu, 2022;
Preetha et al., 2024; Zaman et al., 2024). However, neem
compounds’ pharmacological activities through molecular
descriptors remains unexplored. Hence this article attempts to
explore them through QSPR modelling and ranking techniques.
Linear and quadratic regression methods were applied to create
QSPR models. The model was developed using a set of descriptor
formulations linked to specific physicochemical properties of a
range of chemicals that exhibited biological activity. The results
were used to evaluate and rank the neem chemicals. The
implications of these findings can enhance pharmacist
capabilities across various stages of drug development, namely,
analogs evaluation, predicting drug compositions, and
virtual screening.

2 Materials and methods

2.1 Neem phytochemicals

Neem, the botanical entity known as a “Pharmaceutical
Wonder,” is a repository for an extensive array of medicinal
properties. This plant contains approximately 300 distinct
phytochemicals, each characterized by its unique chemical
composition and structural complexity. The therapeutic
efficacy of neem is attributed to its complex phytochemical

profile, which includes gallic acid, limonoids, saponins,
nimbins, catechins, glycoproteins, and flavonoids, which
contribute to its diverse medicinal properties (Sandhir et al.,
2021). This study focused on a subset of 11 phytochemicals
selected for their extensive research history and frequent
utilization across various scientific disciplines, namely,
azadirone, nimbin, nimbolide (Sarkar et al., 2021),
azadirachtin (Nagini et al., 2024), stigmasterol (Bakrim et al.,
2022), tiglic acid (Khanpara and Jadeja, 2022), catechin (Monika
et al., 2023), scopoletin (Antika et al., 2022), odoratone, tirucallol
(Fernandes et al., 2019), and sugiol (Bajpai et al., 2021). The
structures of the phytochemicals (as per PubChem database) are
shown in Table 1.

2.2 Valency based indices and drug likeness
prediction

Numerous physicochemical characteristics are crucial for
predicting drug-likeness, particularly Absorption, Digestion,
Metabolism, Excretion, and Toxicity (ADMET) properties, which
are governed by Lipinski’s rule of five. However, these properties of
neem phytochemicals have not been extensively studied, leading to a
scarcity of data in internationally recognized databases. TI is a
crucial alternative method for analyzing and predicting the
properties of these compounds. This study employed valency-
based topological indices (TIs) to describe a range of chemical,
physical, and biological activities using edge partition technique.
The following section offers a succinct overview of the properties
and indices expected to predict the properties examined in this study
(Abdullah et al., 2023).

The efficacy of pharmaceutical compounds is significantly
influenced by their solubility, with more soluble compounds
generally demonstrating a higher potency. The solubility is
determined by the octanol-water partition coefficient, expressed
as Log P, which can be derived from the boiling point of a
molecule (Karami et al., 2022). The dissolution process is affected
by polarizability and vaporization enthalpy, which involves heat
absorption. These characteristics are linked to enhanced drug effects
and mitigated impact reduction due to evaporation. In
pharmaceutical research, mass determination is critical because it
influences whether substances remain suspended or sink in the
liquid media. For pharmacological molecules, a lower mass is
typically preferred because of its association with crystallization
processes. Drug behavior is also influenced by molar refraction, a
property that is related to both refractive index and polarizability.
Increased refractive index and polarizability can enhance the
interaction of a drug with light and other molecules, making
these properties particularly relevant for phototherapeutic
applications (Idrees et al., 2025). These attributes play a
significant role in drug absorption, distribution, and formulation.
This study aims to classify and rank NEs based on their
physicochemical properties by deriving the QSPR for
vaporization enthalpy, boiling point, polarizability, molar
refractivity, and monoisotopic mass (Nagar et al., 2020;
Khalikova et al., 2023). TIs, hypothesized to be the best
predictors of the aforementioned properties, were used in this
study. The following section offers a concise description of the
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TABLE 1 Therapeutic neem phytochemicals - molecular structure.

Structure of potent Azadrichita indica bio active compounds

(a) Azadirone (b) Azadirachtin

(c) Stigmasterol (d) Tiglic Acid

(e) Catechin (f) Scopoletin

(g) Odoratone (h) Tirucallol

(Continued on following page)
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definitions, notations, terminology, and formulations of the TIs
utilized in this study.

Throughout this article, Ω denotes any chemical graph,
V(Ω) is the set of all vertices ξ, ξ1, ξ2, . . . ξm{ }, E(Ω) represents
the collection of all edges ∂, ∂1, ∂2, ∂3 . . . ∂n{ }. Two vertices ξ,and
ξ1, are said to be neighbors if there exists an edge to link them. Let
∂ represent an edge in the graph E(Ω) that ends at ξ and ξ1. The
number of edges incident on any vertex ξ is the degree of the
vertex and is denoted by dξ . Degree corresponds to the valency of
atom. TIs are based on the edge-partition technique, whose
summation runs over all partitions. The indices utilized in this
study are formulated in Equations 1–10.

The atom bond connectivity (ABC) index was formulated based
on the connectivity between the atoms proposed by Estrada et al.,
as follows:

∑
∂∈E Ω( )

����������
dξ + dξ1 − 2

dξdξ1

√
(1)

The first Zagreb index (M1) is one of the elementary indices
established by Trinajstic and Gutman and is defined as

∑
∂∈E Ω( )

dξ + dξ1 (2)

An augmented Zagreb index (AUZ) was developed based on the
ABC index.

∑
∂∈E Ω( )

dξ × dξ1

dξ + dξ1 − 2
[ ]3

(3)

The randic type lodeg index (Heat Capacity predictor) is
denoted by RLI and is defined by∑

∂∈E Ω( )
ln dξ( ) ln dξ1( ) (4)

The sum lordeg index (a good predictor of Log P Value) is
denoted by SLI and is defined by

∑
∂∈E Ω( )

������
ln dξ( )√

+
������
ln dξ1( )√( ) (5)

The inverse sum indeg index (a good predictor of TSA) is
denoted by ISI and is defined as:

∑
∂∈E Ω( )

dξdξ1

dξ + dξ1

( ) (6)

The misbalance lodeg index (a good predictor of Enthalpy of
Vaporization) is denoted by MLI and is defined by

TABLE 1 (Continued) Therapeutic neem phytochemicals - molecular structure.

Structure of potent Azadrichita indica bio active compounds

(i) Nimbin (j) Nimbolide

(k) Sugiol
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∑
∂∈E Ω( )

ln dξ( ) − ln dξ1( )∣∣∣∣ ∣∣∣∣ (7)

Themisbalance index (a good predictor of the standard enthalpy
of vaporization) is denoted by MDI and is formulated as∑

∂∈E Ω( )
dξ − dξ1

∣∣∣∣ ∣∣∣∣ (8)

Themax-min rodeg index denoted asMMRDI (a good predictor
of density), is defined by

∑
∂∈E Ω( )

�����������
max dξ , dξ1{ }
min dξ , dξ1{ }

√
(9)

The inverse sum lordeg index (ISLI), a good predictor of total
surface area, is defined by

ISLI Ω( ) � ∑
∂∈E Ω( )

dξdξ1

dξ+dξ1

( ) (10)

The physicochemical properties taken from Chemspider and
calculated indices numerical values are shown in Tables 2, 3 respectively.

To aid a better understanding graphical representation is
provided in Figure 1.

The correlation coefficient is a crucial metric for evaluating the
efficacy of any QSPR model. The computed correlation coefficients
are graphically shown in Figure 2.

TABLE 2 Physicochemical characteristics of bioactive compounds from Azadirachta indica.

Property Enthalpy of vaporization Boiling point Polarizability Molar refractivity Monoisotopic Mass

NEs

Azadirone 77.6 506 49 123.7 436.26

Azadirachtin 131.3 792.4 66.6 168 720.26

Stigmasterol 88.7 501.1 51.2 129.1 412.37

Tiglic Acid 47.9 198.5 10.6 26.7 100.05

Catechin — 630.4 29.2 73.6 290.08

Scopoletin 69.2 413.5 19.2 48.3 192.04

Odoratone 98.4 571.2 53.6 135.2 472.36

Tirucalol 88.3 498.9 52.9 133.4 426.39

Nimbin 90.1 606.1 54.8 138.1 540.24

Nimbolide 90.4 608.6 47.7 120.4 466.2

Sugiol 72.1 437.2 35.5 89.7 300.21

TABLE 3 Topological indices for analysis of Azadirachta indica phytochemicals.

TI ISI MDI MMRDI ISLI ABC M1 RLI SLI AUZ MLI

NEs

Azadirone 43.845 44 47.664 21.547 25.983 198 27.3274 64.193 301.78 18.6562

Azadirachtin 70.2026 68 76.437 35.887 40.875 306 44.4979 99.675 542.53 29.7

Stigmasterol 38.99 40 42.897 20.273 23.67 168 25.6985 50.483 271.2 14.8535

Tiglic Acid 5.7 8 9.4282 4.8263 4.53 26 1.6684 7.9502 37.516 4.7998

Catechin 26.35 23 29.582 11.686 16.647 114 20.7007 39.726 174.44 10.7632

Scopoletin 16.9667 13 16.901 10.646 10.744 72 9.7478 25.705 97.656 6.5392

Odoratone 53.8 54 45.083 24.777 27.692 208 31.1197 58.012 381.57 20.977

Tirucalol 40.6857 42 53.359 17.359 30.342 180 24.5695 59.16 278.09 17.96915

Nimbin 50.547 52 53.283 24.929 29.388 209 32.2078 73.497 350.3 19.0154

Nimbolide 48.5143 40 49.691 22.897 27.275 237 31.4463 70.153 270 17.1059

Sugiol 28.4089 30 33.205 15.01 17.538 118 16.8485 41.18 187.65 13.2349
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2.3 Regression model for phytochemicals
of neem

Linear regression is a widely employed algorithm with a high
level of predictability and adaptability, and is easily interpretable
for QSPR analysis. The physicochemical properties were viewed
as the dependent variables in this model, and the TIs of neem
chemicals were considered as the independent variables. The
following equations provide linear and quadratic regression
models: PC � A + [B × TI]

PC � A + B × TI[ ] + C × TI 2[ ]
where PC (dependent variable) denotes the physico chemical
property of phytochemical, A is the intercept (constant), B and C
denote the regression coefficient (constant), and TI is the
topological index (independent variable). The constants A
(intercept) and B (regression coefficient) were computed for
the five physicochemical properties and ten TIs considered for
the study.

2.4 Ranking of compounds

The hierarchical arrangement of drug compounds is a crucial
component of the virtual screening methodology. Machine learning
derived MCDM techniques are pivotal in compound ranking. This
study used the VIKOR and SAW rankings to classify neem compounds
and evaluate their comparative accuracy. These techiques facilitates
drug design by prioritizing candidates, assessing drug-likeness,
balancing multiple parameters, and supporting decision making
(Magaji Yuguda et al., 2023). This process helps researchers to focus
on the most promising compounds with desired properties, such as
potency, selectivity, and safety. Ranking allows the rapid screening of
large compound libraries by reducing the number of experimental
assays required (Gates and Hamed, 2020). The following sections
provide a detailed explanation of this process.

2.4.1 VIKOR ranking
VIKOR, an acronym for VIseKriterijumska Optimizacija I

Kompromisno Raspoređivanje, represents a sophisticated MCDM

FIGURE 1
TIs and Properties of Neem compounds - Graphical Representation.

FIGURE 2
Correlation coefficient between Properties and TIs of Azadrichta Indica.
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approach. This methodology facilitates the selection of an optimal
solution by concurrently optimizing multiple parameters. In the
pharmaceutical industry, VIKOR is used to coordinate drug
candidates and identify a compromise solution that accurately

approximates the ideal. This technique is particularly valuable in
contexts where a balanced solution is more appropriate than an
absolute optimal choice. The emphasis on compromise ranking in
VIKOR is especially beneficial when no single pharmaceutical agent

TABLE 4 Statistical Metrics obtained from Linear Regression Analysis.

Property
and TI

BP
and RLI

Enthalpy of vaporization
and ISLI

Molar refraction
and ABC

Polarizability
and ABC

Monoisotopic Mass
and SLI

NEs Statistical
Parameter

N 11 10 11 11 11

R2 0.8381 0.9100 0.95382 0.95389 0.9748

F- statistics 46.61 80.96836 185.8923 186.1926 348.299

p 0.000 0.000 0.000 0.000 0.000

A 11.778 2.4211 4.1407 1.641 6.7562

B 239.32 37.426 11.964 4.7596 33.822

FIGURE 3
Best fit plots: Linear regression of neem phytochemicals.
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TABLE 5 Statistical Metrics obtained from Quadratic Regression Analysis.

Property
and TI

BP
and RLI

Enthalpy of vaporization
and AUZ

Molar refraction
and MDI

Polarizability
and MDI

Monoisotopic Mass
and RLI

NEs Statistical
Parameter

N 11 10 11 11 11

R2 0.83912 0.918,456 0.9779 0.97774 0.97952

F- statistics 20.8633 39.42159 177.3291 175.7358 191.3124

p 0.0006 0.000155 2.37E-07 2.45E-07 1.76E-07

C −0.0001 -5E-10 -8E-06 -3E-06 -9E-05

B 0.4394 0.0004 0.0626 0.0248 0.4608

A 295.97 57.2 36.32 14.422 135.94

FIGURE 4
Best Fit Quadratic Regression Models: Azadirachta indica compounds.
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satisfies all ideal criteria. It considers both group utility (S) and
individual regret (R) to avoid bias. This methodology provides a
clear hierarchical structure and decision-making stability (Gerdes
et al., 2021; Feng et al., 2022). The processes involved in this
ranking system is described as follows.

2.4.1.1 Alternatives, criterions, and decision matrix
The compounds that need ranking are termed a set of

alternatives (αm). Indices that influence the drug likeness of
compounds are criteria. The indices providing the best-fit
regression models derived from QSPR analysis were considered
as criteria (βn). Construct a decision matrix γ � [θmn] , where θmn

represents the performance of alternatives αm under criterion βn

2.4.1.2 Criteria weights
To reflect the relative importance of each criterion in the

decision process, weights were assigned through a systematic
approach, satisfying ∑k

n�1n � 1

2.4.1.3 Best (maximum) and worst (minimum) alternatives
Identify the maximum and minimum of the alternatives.
The beneficial criteria are calculated using An* �

max
m

θmn , An
− � min

m
θmn

The non-beneficial criteria are calculated using An* �
min
m

θmn , An
− � max

m
θmn

Utility and Regret Measures: Compute the Utility Measure Si

and the Regret Measure Ri

Utility Measure: Si � ∑k
n�1[n ×

An*−θmn
An*−An

−], Regret
Measure: Ri � max(n

An*−θmn
An*−An

−)

2.4.1.4 VIKOR index
Parameter λ helps balance the majority rule and individual

dominance. Compute theVIKORRankingwith theVIKOR index (Ωm)

Ωm � λ
Si −S*
S− −S*

+ 1 − λ( )Ri −R*
R− −R*

where λ is the weight of the strategy, typically λ � 0.5 , where S* �
mini Si , S

− � maxi Si, R* � mini Ri , R
− � maxi Ri

2.4.1.5 VIKOR ranking
Arrange alternatives Ωm in ascending order. The alternative

possessing the minimal value is ranked as one (best alternative), and
the rest follow in order.

2.4.2 SAW ranking
The Simple Additive Weighting (SAW) method is a widely used

multicriteria decision-making approach for ranking alternatives based
on multiple criteria and their associated weights. SAW is characterized
by their straightforward nature and ease of implementation, rendering
them a prevalent choice for decision-making across various domains,
including business, finance, and project management (Peng et al., 2021;
Feng et al., 2022; Idrees et al., 2025). This process is delineated into
distinct phases.

1. Define decision matrix θmn using the criterions βn used to
evaluate the alternatives αm

2. Normalize the decision matrix to ensure that all criteria are on
the same scale and allows comparison using θmn* � θmn�������∑k

m�1θmn
2

√ .

TABLE 6 Compounds (alternates) and indices (criterion).

S. No Compound ABC AUZ RLI SLI MDI ISLI

1 Azadirone 25.983 301.78 27.3274 64.193 44 21.547

2 Azadirachtin 40.875 542.53 44.4979 99.675 68 35.887

3 Stigmasterol 23.67 271.2 25.6985 50.483 40 20.273

4 Tiglic Acid 4.53 37.516 1.6684 7.9502 8 4.8263

5 Catechin 16.647 174.44 20.7007 39.726 23 11.686

6 Scopoletin 10.744 97.656 9.7478 25.705 13 10.646

7 Odoratone 27.692 381.57 31.1197 58.012 54 24.777

8 Tirucalol 30.342 278.09 24.5695 59.16 42 17.359

9 Nimbin 29.388 350.3 32.2078 73.497 52 24.929

10 Nimbolide 27.275 270 31.4463 70.153 40 22.897

11 Sugiol 17.538 187.65 16.8485 41.18 30 15.01

TABLE 7 Assigned criterion weights.

Index ABC AUZ RLI SLI MDI ISLI

Weight 0.2 0.1 0.3 0.1 0.2 0.1

TABLE 8 The positive and negative ideal solutions.

Compound ABC AUZ RLI SLI MDI ISLI

Maximum 40.875 542.53 44.4979 99.675 68 35.887

Minimum 4.53 37.516 1.6684 7.9502 8 4.8263
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This process ensures that all alternatives are normalized such that
one criterion does not dominate because of a larger magnitude.

3. Weights and Weighted Scores: The Weights are assigned to
each criterion to reflect their relative importance. In this study,
they were determined based on their performance in producing
the best-fit regression models satisfying the equation∑k

n�1n � 1. The weighted scores (Smn) are calculated for
each alternative on each criterion by multiplying its
performance value by the corresponding weight: Weighted
Score (Smn) � θmn × n

4. Aggregation: This total score for each alternative on each
criterion is termed as the total score and calculated by:
Total Score (TSm) � ∑k

n�1Smn

5. The evaluation of alternatives was conducted through a
hierarchical ranking system, where higher numerical values
corresponded to enhanced effectiveness.

3 Results

A regression-based QSPR model was developed using degree-
based TIs derived from the molecular structures. The statistical
parameters were characterized as follows. The correlation coefficient
(R) was used to quantify the extent of data variance, model fit, and
predictive capacity of the relationship. The squared correlation
coefficient served as a metric to evaluate the reproducibility of
the experimental data (R2). The robustness of a model is assessed
by statistical metrices. Specifically, a model demonstrates a strong
predictive capability when its p-value, calculated from F-statistics,
falls below 0.05 and its R-value meets or exceeds 0.6. In this context,
N denotes the number of data points in the sample.

3.1 Linear regression

Statistical analysis showed all indicators were significant, with
p-values below 0.05 and correlation coefficients over 0.78. The
metrics confirmed the model’s significance and fit, with the best

fit linear regression models and their metrics summarized in Table 4.
Figure 3 shows the obtained results.

3.2 Quadratic regression

The statistical parameters listed in Table 5 corroborate the
optimal fit and the statistical significance of the quadratic
regression model. Visual depictions of the result are
in Figure 4.

3.3 VIKOR ranking of neem chemicals

TIs yielding superior regression model fits were used to
rank compounds. The relevant data for the alternatives and
criteria employed in this ranking procedure are presented
in Table 6.

TABLE 9 Normalised decision matrix of bioactive Azadirachta indica compounds for VIKOR.

S. No Compound ABC AUZ RLI SLI MDI ISLI

1 Azadirone 0.0819 0.0477 0.1203 0.0387 0.0800 0.0462

2 Azadirachtin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Stigmasterol 0.0947 0.0537 0.1317 0.0536 0.0933 0.0503

4 Tiglic Acid 0.2000 0.1000 0.3000 0.1000 0.2000 0.1000

5 Catechin 0.1333 0.0729 0.1667 0.0654 0.1500 0.0779

6 Scopoletin 0.1658 0.0881 0.2434 0.0806 0.1833 0.0813

7 Odoratone 0.0725 0.0319 0.0937 0.0454 0.0467 0.0358

8 Tirucalol 0.0580 0.0524 0.1396 0.0442 0.0867 0.0597

9 Nimbin 0.0632 0.0381 0.0861 0.0285 0.0533 0.0353

10 Nimbolide 0.0748 0.0540 0.0914 0.0322 0.0933 0.0418

11 Sugiol 0.1284 0.0703 0.1937 0.0638 0.1267 0.0672

TABLE 10 VIKOR ranking of bioactive Azadrichta indica compounds.

S. No Compound Si Ri Ωm Rank

1 Azadirone 0.4147 0.12027 0.40782 5

2 Azadirachtin 0 0 0 1

3 Stigmasterol 0.4773 0.1316 0.45812 7

4 Tiglic Acid 1 0.3 1 11

5 Catechin 0.6662 0.16668 0.61089 8

6 Scopoletin 0.8425 0.24340 0.82695 10

7 Odoratone 0.326 0.09370 0.31917 3

8 Tirucalol 0.4404 0.13958 0.45284 6

9 Nimbin 0.3045 0.08608 0.29573 2

10 Nimbolide 0.3876 0.09333 0.34933 4

11 Sugiol 0.65 0.19367 0.64779 9
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The distribution of criterion weights is predicated on the
effectiveness of the TIs in constructing the optimal linear and
quadratic regression models. Table 7 delineates the allocated
weights, which are collectively summed to unity.

The positive and negative ideal solutions of this study are listed
in Table 8.

The normalized decision matrix used for the VIKOR is derived
from the decision matrix is in Table 9.

The utility and regret measures and the corresponding VIKOR
rankings were calculated, as mentioned in the previous sections. The
finalized decisions on ranking are listed in Table 10.

3.4 SAW ranking of neem chemicals

Thematrix calculated for the alternates and criteria was normalized
to reduce the dominance of data with higher numerals. This process was
achieved using the second phase of the SAW ranking. The resulting
normalized matrix is listed in Table 11.

The data in the normalized matrix are aggregated as mentioned
in the phase narration. From the obtained aggregation, the SAW
ranking was assigned, as shown in Table 12.

A comparative graphical depiction of the hierarchical arrangement
obtained from different techniques is shown in Figure 5.

4 Discussion

This research incorporated a range of parameters, such as
correlation coefficients between indices and properties, to extract
insights from both linear and quadratic regression analyses along
with MCDM methodologies. These insights are instrumental in
establishing mathematical models that enable the prediction of
pharmaceutical compound behavior and hierarchical ranking.

The potential outcomes of the study were evaluated to underpin
further investigations aimed at the development of effective neem-based
drug formulations. From the statistical metrics of the linear and
quadratic regression analyses and MCDM, it can be concluded that.

a) Predictive ability based on reproducibility of the TIs can
be ordered as

AUZ � SLI � ISLI( )< MDI � ABC( )<RLI.

b) Prediction accuracy of the properties considered in the study
can be ordered as

BP<EV<MR≤Polarization<MM.

c) A nuanced distinction in drug performance was evident, as
exemplified by the contrasting rankings of catechin and sugiol.
The association between VIKOR and SAW rankings,
quantified using the Spearman rank correlation coefficient ρ �
1 − 6∑i

δi
2

N(N2−1) is 0.98, where δi represents the difference between
compound rankings.

Regression analysis demonstrated predictive accuracies for various
molecular properties, potentially accelerating the identification of
promising neem-derived compounds for further development. The
compound rankings derived from VIKOR and SAW techniques
lend substantial credence and a notable degree of congruence,
underscoring the reliability of the proposed ranking system.

To address biodiversity challenges, researchers can use these
results to guide the creation of synthetic compounds that replicate
the active components of neem. This approach enables drug
development in regions in which neem are not readily available.
Furthermore, these indices can serve as a bridge between scientists
in neem-rich areas and those in countries with limited plant
resources, thereby fostering worldwide collaborations in drug
discovery. Given the limited global availability of neem, the use
of regression models to make analogous predictions could aid
pharmacists in creating synthetic compounds that replicate the
properties of neem chemicals. The potential outcomes of this study
could greatly enhance the clinical application of neem-derived
compounds. Drug repurposing for new therapeutic applications,
exploration of combination therapies for synergistic effects, and
natural product-inspired drug design.

TABLE 11 Normalised matrix of bioactive Azadirachta indica compounds for SAW ranking.

S. No Compound ABC AUZ RLI SLI MDI ISLI

1 Azadirone 0.6357 0.5562 0.6141 0.6440 0.6471 0.6004

2 Azadirachtin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 Stigmasterol 0.5791 0.4999 0.5775 0.5065 0.5882 0.5649

4 Tiglic Acid 0.1108 0.0692 0.0375 0.0798 0.1176 0.1345

5 Catechin 0.4073 0.3215 0.4652 0.3986 0.3382 0.3256

6 Scopoletin 0.2629 0.1800 0.2191 0.2579 0.1912 0.2967

7 Odoratone 0.6775 0.7033 0.6994 0.5820 0.7941 0.6904

8 Tirucalol 0.7423 0.5126 0.5521 0.5935 0.6176 0.4837

9 Nimbin 0.7190 0.6457 0.7238 0.7374 0.7647 0.6947

10 Nimbolide 0.6673 0.4977 0.7067 0.7038 0.5882 0.6380

11 Sugiol 0.4291 0.3459 0.3786 0.4131 0.4412 0.4183
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The QSPR model and compound ranking contribute to a)
forecasting enzyme inhibition data that align with ligand
physicochemical properties, b) elucidating supplementary
information extracted from three-dimensional structures, c)
minimizing the number of compounds required for synthesis, d)
anticipating properties of structurally similar molecules, and e)
ascertaining drug composition. Despite these valuable
contributions, the development of QSPR models has limitations.

In QSPR, the formulation of optimal regression models is
frequently challenged by issues such as overfitting and a lack of
three-dimensional data. These challenges restrict the
generalization ability of the models, particularly in scenarios
involving multiple mechanisms. Overcoming these obstacles
could facilitate the development of more robust QSPR models,
which are vital for developing models that leverage extensive
datasets. Neem is a plant containing over 300 phytochemicals,

each exhibiting diverse biological activities, including
insecticidal, antimicrobial, and medicinal properties. When
ranking and QSPR models were integrated with machine
learning techniques, it was possible to evaluate all neem
phytochemicals. This integration allows pharmacists to explore
their potential for disease treatment, optimize drug formulations,
conduct virtual screenings, and perform ADMET profiling.

Chronic illnesses, including cardiovascular and neurological
disorders, ischemic conditions, diabetes mellitus, renal impairment,
skeletal muscle diseases, and certain cancers, continue to pose
significant challenges in the medical field. However, despite these
advancements, these conditions often result in drug resistance and
adverse outcomes. The integration of experimental research on the
bioactive compounds of neem with computational modeling can
substantially advance the development of therapeutic strategies for
chronic disorders.

TABLE 12 SAW ranking of bioactive Azadirachta indica compounds.

S. No Compound ABC AUZ RLI SLI MDI ISLI Summation Rank

1 Azadirone 0.1271 0.0556 0.1842 0.0644 0.1294 0.0600 0.6209 5

2 Azadirachtin 0.2000 0.1000 0.3000 0.1000 0.2000 0.1000 1.0000 1

3 Stigmasterol 0.1158 0.0500 0.1733 0.0506 0.1176 0.0565 0.5638 7

4 Tiglic Acid 0.0222 0.0069 0.0112 0.0080 0.0235 0.0134 0.0853 11

5 Catechin 0.0815 0.0322 0.1396 0.0399 0.0676 0.0326 0.3932 9

6 Scopoletin 0.0526 0.0180 0.0657 0.0258 0.0382 0.0297 0.2300 10

7 Odoratone 0.1355 0.0703 0.2098 0.0582 0.1588 0.0690 0.7017 3

8 Tirucalol 0.1485 0.0513 0.1656 0.0594 0.1235 0.0484 0.5966 6

9 Nimbin 0.1438 0.0646 0.2171 0.0737 0.1529 0.0695 0.7216 2

10 Nimbolide 0.1335 0.0498 0.2120 0.0704 0.1176 0.0638 0.6471 4

11 Sugiol 0.0858 0.0346 0.1136 0.0413 0.0882 0.0418 0.4054 8

FIGURE 5
Ranking comparison of Bioactive Azadirachta indica Compounds -VIKOR and SAW.
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5 Conclusion

In this study, the properties of neem phytochemicals were
evaluated using regression analysis and multi-criteria decision-
making methodologies. In regression models, RLI demonstrated
the highest reproducibility with 0.83912 and 0.97952 for BP and
MM, respectively, with significant p-values, indicating strong
correlation with the desired metrics and proves effective in QSPR
analysis. Hierarchical rankings demonstrated high concordance,
with azadirachtin securing the first rank by providing positive
ideal solutions of 40.875, 542.53, 44.4979, 99.675, 68, and 35.887,
indicating its highest therapeutic potential. These results aid in
rapid compound library assessment and guide the selectivity
refinement of neem compounds. The results can be utilized to
overcome geographical limitations, facilitate drug optimization,
improve predictive accuracy, and enhance virtual screening,
bridging drug development and clinical implementation while
reducing effort, time, and resources.
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