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Topological characterization through graph-theoretical methods translates
chemical and structural data into quantitative values that represent the
molecular system. Our research explores the use of topological indices to
study fractal structures. Molecular fractals are complex geometric
configurations that exhibit self-similarity at different levels and systematically
formed by repeating a fundamental unit. This study focuses on coronene-based
molecular fractals, where coronene, a benzenoid molecule with a symmetrical
graphite-like structure, finds applications in organic semiconductors, sensors,
and molecular electronics, due to its unique electronic and optical properties.
Additionally, information entropy is employed to evaluate and compare the
structural complexities of coronene fractals. Spectra-based energetic
properties such as total π-electron energy, HOMO-LUMO energy gaps,
spectral diameter, delocalization and resonance energies are calculated to
assess their kinetic and thermodynamic stability. Furthermore, predictive
models are provided for estimating spectral characteristics across higher-
dimensional coronene fractal structures.
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1 Introduction

Benzenoid hydrocarbons are a group of polycyclic compounds consisting of six-
member linked rings, characterized by their aroma and unique physicochemical
properties. These substances create powerful inter-molecular bonds by acting in single
and double bonds alternatively (Hill et al., 2004). Higher-order structural co-ordination is
indicated by larger π-conjugated complexes. These characteristics primarily make them
useful for applications in opto-electronic devices, nanomaterials, and natural
semiconductors (Pisula et al., 2010; Pisula et al., 2011). Coronene, a planar molecule
with seven peri-fused benzene rings, is well-known for having delocalized π-electrons,
extended conjugation, and extreme symmetry (Newman, 1940; Robertson andWhite, 1945;
Popov and Boldyrev, 2012). It serves as a fundamental polycyclic aromatic hydrocarbon
(PAH) model for studying larger PAHs, graphene quantum dots, and graphene nanoflakes.
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Coronene-based structures enable precise theoretical investigations and
bridge PAHswith graphenematerials (SantaDaría et al., 2024; Tachikawa
and Lund, 2022). It has a well-defined structure, fluorescence, and
electronic properties which makes it a benchmark in theoretical and
experimental studies. Coronene fractals exhibit exceptional electronic,
optical, and energy-related properties, with strong π-electron
delocalization enhancing charge transport and stable π-conjugation
improving the performance of capacitors and batteries (Demir and
Üngördü, 2023; Sanyal et al., 2013; Dobrowolski et al., 2011).
Molecular stacking and employers are further enhanced by its
symmetrical and planar architecture (Fedotov et al., 2013).

Fractal geometry, which explores recurring patterns at different
scales, has evolved from describing physical theories to serve various
applications such as complexes in medical and molecular
engineering, neural networks, and laptop graphics, etc (Kirkby,
1983). Extensive research has been carried out using fractal
methods. These deterministic fractals arise by combining benzene
with hierarchical structure sequences, making them a significant tool
for advancing nanotechnology and biotechnology (Uahabi and
Atounti, 2015). Clar aromatic sextet theory is a concept
introduced by Erich Clar to describe the electronic structure of
polycyclic aromatic hydrocarbons (PAHs). It is particularly useful
for understanding resonance, stability, and reactivity in PAH
systems (Hosoya, 2005). Fractal molecular architecture, often
analyzed through Clar’s system and golden ratio measurements,
exhibits scaling properties that demonstrate its adaptability and
potential (Lee and Chang, 1996). Studies of coronene-based fractals
have shown that they can serve as supports for advanced
nanomaterials (Nisha and Senthil Kumar, 2020). Despite
significant advances in theoretical research, the integration of
these complex systems remains a challenge, requiring further
research (Kumar et al., 2017). Recent work emphasis on the
unique aromatic properties and scaling behavior of fractal
benzenoids, emphasizes their importance in development and
fabrication of high-performance nanomaterials for optical and
electronic device applications (Duan et al., 2021).

In computational chemistry, topological indices considered as are
important tools that provide information on the chemical and
structural characteristics of molecules (Estrada and Uriarte, 2001;
Kumar and Das, 2024). Among these, the degree-based Zagreb index
and the distance-based Wiener index have been crucial in forecasting
molecular characteristics, including stability and boiling points
(Wiener, 1947; Gutman and Trinajstić, 1972). In this article, we
utilize modified reverse degree-based indices that incorporate a
variable parameter, “k,” which potentially alters the graph’s degree
sequence. Unlike traditional methods with fixed-degree sequences,
this approach allows customization of the “k,” value to better correlate
with specific datasets and their properties. This method is not limited
to specific indices and can be applied to all degree-based indices.
Notably, as the “k,” value increases, these modified indices exhibit a
high correlation with the physicochemical characteristics of corona,
blood cancer, and heart disease treatment drug molecules (Arockiaraj
et al., 2023a; Arockiaraj et al., 2023b; Arockiaraj et al., 2024). In
addition, they are used for stability analysis in advanced materials like
carbon nanosheets, metal-organic frameworks, and pent-heptagonal
nanostructures (Abul Kalaam and Berin Greeni, 2024). Further,
employing hybrid models allows for more precise predictions of
molecular activity (Arockiaraj et al., 2023c).

Entropy analysis is a fundamental method in the field of
information theory, which offers special insights into the
complexity and stability of molecules. Shannon’s entropy
measures structural randomness (Dehmer, 2008; Shannon, 1948),
while graph entropy is related to the vertices and edges of molecular
graphs, which makes it easier to analyze a system using graph
structures. Higher entropy of a structure constitutes more
disorderness in the macrostructure, which reduces structural
stability. However, high entropy materials, such as high-entropy
alloys (HEAs), exhibit unique properties due to their high
configurational entropy, which can result in the formation of
stable disordered solid solutions. While high entropy promotes
disorderness, it can also contribute to distinctive structural
stabilities and desirable properties. For instance, HEAs are
known for their high strength, ductility, and resistance to wear
and corrosion.

Research articles focused on molecular fractals have explored
various structural and topological aspects (Malik et al., 2023; Xu and
Liu, 2025; Yogalakshmi and Easwaramoorthy, 2024). Recent studies
on coronene fractals have examined degree and degree-sum
properties, reverse degree-based indices, and coronene
frameworks, as discussed in (Arockiaraj et al., 2022; Ullah et al.,
2024; Khabyah et al., 2023). This study explores coronene fractal
structures, analyzing their entropy levels and complexity through
modified reverse degree-based indices. By delving into their
structural and spectral features, it aims to deepen our
understanding of their stability, complexity, and overall properties.

2 Methodology

In this study, we examine three configurations of coronene
fractals modeled as two-dimensional molecular graph structure
and is represented by G, with |V(G)| and |E(G)| denote the
number of vertices and edges, respectively. The degree of a vertex
a ∈ V(G) denoted as d(a), indicates the number of vertices directly
connected to a. The maximum degree, Δ(G), represents the highest
connectivity among all vertices in the graph G. Recent modification
in reverse degree is done by introducing a parameter k (with k≥ 1)

FIGURE 1
The degree based enumeration of coronene fractal structure.
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that enhance the graph degree sequence to closely predict properties
(Arockiaraj et al., 2023a). The modified reverse degree, represented
MkRd(a), is defined as follows:

MkR d(a)( ) � Δ G( ) − d(a) + k : k≤ d(a)
Δ G( ) − d(a) + k mod Δ G( )( ) : k> d(a){

Modified reverse degree-based topological indices, MkRTI, are
employed to characterize coronene fractals by evaluating atom
connectivity and providing insights into their molecular
structure. For a graph G, the formulation of MkRTI is given as:

MkRTI G( ) � ∑
ab∈E G( )

MkRTI d a( ), d b( )( )

� ∑
ab∈E G( )

TI MkR d a( )( ),MkR d b( )( )( ),

where ab represents the edge connecting vertices a and b. This
formula provides an intensive evaluation by using the contributions
of all edges inside the graph. The edge set E(G) is divided into
equivalent subsets, such that E(G) � ⋃n

i�1Ei. Each subset of Ei,
where ab ∈ Ei and i � 1, 2, . . . , n, groups edges based on vertex
connectivity in G. For any subset Ei, the corresponding MkRTI is
calculated as:

MkRTI Ei( ) � |Ei|× TI MkR d a( )( ),MkR d b( )( )( ),
where |Ei| represents the number of edges in subset Ei, and
TI(MkR(d(a)), MkR(d(b))) evaluates the contribution of
modified reverse degree for the connected vertices.

The total MkRTI for graph G is obtained by summing the
contributions from all subsets Ei:

MkRTI G( ) � ∑n
i�1

|Ei|× TI MkR d a( )( ),MkR d b( )( )( )

The topological index functions based on the modified reverse
degree are outlined below.

• Modified reverse first Zagreb index (MkRM1):
MkRM1 d a( ), d b( )( ) � MkR d a( )( ) +MkR d b( )( ) (1)

• Modified reverse second Zagreb index (MkRM2):
MkRM2 d a( ), d b( )( ) � MkR d a( )( ) × MkR d b( )( ) (2)

• Modified reverse forgotten index (MkRF):
MkRF d a( ), d b( )( ) � MkR d a( )( )( )2 + MkR d b( )( )( )2 (3)

• Modified reverse Sombor index (MkRS):

MkRS d a( ), d b( )( ) �
���������������������������
MkR d a( )( )( )2 + MkR d b( )( )( )2

√
(4)

• Modified reverse geometric arithmetic index (MkRGA):

MkRGA d a( ), d b( )( ) � 2 · �����������������������
MkR d a( )( ) × MkR d b( )( )√

MkR d a( )( ) +MkR d b( )( ) (5)

• Modified reverse hyper-Zagreb index (MkRHZ):

FIGURE 2
Configurations of coronene fractals (a) ZHCF(3) (b) AHCF(2) (c) RCF(5,3).
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MkRHZ d a( ), d b( )( ) � MkR d a( )( ) +MkR d b( )( )( )2 (6)

• Modified reverse harmonic index (MkRH):

MkRH d a( ), d b( )( ) � 2
MkR d a( )( ) +MkR d b( )( ) (7)

• Modified reverse first redefined Zagreb index (MkRReZ1):

MkRReZ1 d a( ), d b( )( ) � MkR d a( )( ) +MkR d b( )( )
MkR d a( )( ) × MkR d b( )( ) (8)

• Modified reverse second redefined Zagreb index (MkRReZ2):

MkRReZ2 d a( ), d b( )( ) � MkR d a( )( ) × MkR d b( )( )
MkR d a( )( ) +MkR d b( )( ) (9)

• Modified reverse bi-Zagreb index (MkRBM):

MkRBM d a( ), d b( )( ) � MkR d a( )( ) +MkR d b( )( )
+ MkR d a( )( ) × MkR d b( )( )( ) (10)

• Modified reverse tri-Zagreb index (MkRTM):
MkRTM d a( ), d b( )( ) � MkR d a( )( )( )2 + MkR d b( )( )( )2

+ MkR d a( )( ) × MkR d b( )( )( ) (11)

• Modified reverse geometric bi-Zagreb index (MkRGBM):
MkRGBM d a( ), d b( )( )

�
�����������������������
MkR d a( )( ) × MkR d b( )( )√

MkR d a( )( ) +MkR d b( )( ) +MkR d a( )( ) × MkR d b( )( ) (12)

3 Evaluation of modified reverse
degree indices

We explore three coronene fractal configurations: ZHCF(n),
AHCF(n), and RCF(m, n), as illustrated in Figures 1, 2. The
structural parameters for these configurations are given by:
|V(ZHCF(n))| � 126n2 + 6n and |E(ZHCF(n))| � 171n2 + 3n; for
AHCF, these are |V(AHCF(n))| � 378n2 − 366n + 120 and
|E(AHCF(n))| � 513n2 − 507n + 168; and for RCF, they are
|V(RCF(m, n))| � 84mn + 2m + 46n and |E(RCF(m, n))| �
114mn +m + 59n. All configurations share a maximum vertex
degree of 3. The modified reverse degree metrics for each vertex
are as follows:

M1R d a( )( ) � 2 : d a( ) � 2
1 : d a( ) � 3

{

TABLE 1 Degree based edge partition of three configurations of coronene fractals.

Bond type ab Coronene fractals

d(a) d(b) ZHCF(n) AHCF(n) RCF(m,n)
C-C 2 2 18n2 + 6n 54n2 − 42n + 12 12mn + 2m + 10n

C-C 2 3 36n2 + 12n 108n2 − 84n + 24 24mn + 4m + 20n

C-C 3 3 117n2 − 15n 351n2 − 381n + 132 78mn − 5m + 29n

TABLE 2 Modified reverse degree indices of ZHCF structure for variable parameters k = 1, 2, and 3.

Zigzag hexagonal coronene fractal structure

MkRTI k � 1 k � 2 k � 3

MkRM1 414n2 + 30n 756n2 + 36n 882n2 − 30n

MkRM2 261n2 + 33n 846n2 + 66n 1179n2 − 93n

MkRF 558n2 + 78n 1728n2 + 144n 2502n2 − 138n

MkRS 296.8731n2 + 22.5903n 537.0936n2 + 26.2956n 635.6868n2 − 17.2071n

MkRGA 168.9411n2 + 2.3137n 297.5400n2 − 8.8210n 166.1769n2 + 1.3923n

MkRReZ1 306n2 − 6n 159n2 − n 162n2 + 18n

MkRReZ2 100.5n2 + 6.5n 187.2n2 + 8.4n 211.5n2 − 10.5n

MkRH 150n2 − 4n 78.9n2 − 0.7n 75n2 + 7n

MkRHZ 1080n2 + 144n 3420n2 + 276n 4860n2 − 324n

MkRBM 675n2 + 63n 1602n2 + 102 2061n2 − 123n

MkRTM 819n2 + 111n 2574n2 + 210n 3681n2 − 231n

MkRGBM 53.6823n2 − 0.1059n 40.8668n2 + 0.1222n 38.3077n2 + 1.9692n
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M2R d a( )( ) � 3 : d a( ) � 2
2 : d a( ) � 3

{
M3R d a( )( ) � 1 : d a( ) � 2

3 : d a( ) � 3
{

To calculate the modified reverse topological indices, edge
partitioning is used, as illustrated in Figure 1, for three
configurations of coronene fractals based on their standard vertex
degrees, as detailed in Table 1. Each index involves complex
computations with varying parameters. For instance, the
calculation of the first Zagreb-based index is demonstrated using
ZHCF coronene structures for different values of k � 1, 2, 3. When

the variable parameter is set to k � 1, the degree pairs (2,2), (2,3),
and (3,3) are modified to (2,2), (2,1), and (1,1),
respectively. Therefore,

M1RM1 ZHCF n( )( ) � |E 2, 2( )|× M1R d 2, 2( )
+ |E 2, 3( )|× M1R d 2, 3( )
+ |E 3, 3( )|× M1R d 3, 3( )
� 18n2 + 6n( ) × 2 + 2( )
+ 36n2 + 12n( ) × 2 + 1( )
+ 117n2 − 15n( ) × 1 + 1( )� 414n2 + 30n

For k � 2 the degree classes are modified into (3,3), (3,2), and
(2,2). Therefore,

TABLE 3 Modified reverse degree indices of AHCF structure for variable parameters k = 1, 2, and 3.

Armchair hexagonal coronene fractal structures

MkRTI k � 1 k � 2 k � 3

MkRM1 1242n2 − 1182n + 384 2268n2 − 2196n + 720 2646n2 − 2706n + 912

MkRM2 783n2 − 717n + 228 2538n2 − 2406n + 780 3537n2 − 3723n + 1272

MkRF 1674n2 − 1518n + 480 5184n2 − 4896n + 1584 7506n2 − 7782n + 2640

MkRS 890.6194n2 − 845.4390n + 274.2829 1611.3n2 − 1558.7n + 510.7973 1907.1n2 − 1941.5n + 652.8938

MkRGA 506.8224n2 − 502.1952n + 166.6272 892.6092n2 − 910.2516n + 306.3576 498.5280n2 − 495.7440n + 164.7840

MkRReZ1 918n2 − 930n + 312 477n2 − 479n + 160 486n2 − 450n + 144

MkRReZ2 301.5n2 − 288.5n + 94 561.6n2 − 544.8n + 178.8 634.5n2 − 65.55n + 222

MkRH 3240n2 − 2952n + 936 236.7n2 − 238.1n + 79.6 225n2 − 211n + 68

MkRHZ 450n2 − 458n + 154 10260n2 − 9708n + 3144 14580n2 − 15228n + 5184

MkRBM 2025n2 − 1899n + 612 4806n2 − 4602n + 1500 6183n2 − 6429n + 2184

MkRTM 2457n2 − 2235n + 708 7722n2 − 7302n + 2364 11043n2 − 11505n + 3912

MkRGBM 161.0424n2 − 161.2552n + 53.7872 122.6016n2 − 122.3568n + 40.7448 114.9231n2 − 110.9846n + 36.3385

TABLE 4 Modified reverse degree indices of RCF structure for variable parameters k = 1, 2, and 3.

Rectangular coronene fractal structures

MkRTI k � 1 k � 2 k � 3

MkRM1 10m + 158n + 276mn 12m + 276n + 504mn 274n − 10m + 588mn

MkRM2 11m + 109n + 174mn 22m + 326n + 564mn 331n − 31m + 786mn

MkRF 26m + 238n + 372mn 48m + 672n + 1152mn 742n − 46m + 1668mn

MkRS 7.5301m + 114.0178n + 197.9154mn 8.7654m + 196.5618n + 358.0622mn −5.7357m + 200.4243n + 423.7912mn

MkRGA 0.7711m + 57.8563n + 112.6274mn 93.2982n − 2.9404m + 198.3579mn 0.4641m + 56.3205n + 110.7846mn

MkRReZ1 98n − 2m + 204mn 52.333n − 0.333m + 106mn 6m + 66n + 108mn

MkRReZ2 2.1667m + 37.8333n + 67mn 2.8m + 68n + 124.8mn 63.5n − 3.5m + 141mn

MkRH 47.3333n − 1.3333m + 100mn 25.8333n − 0.2333m + 52.6mn 2.3333m + 29.6667n + 50mn

MkRHZ 48m + 456n + 720mn 92m + 1324n + 2280mn 1404n − 108m + 3240mn

MkRBM 21m + 267n + 450mn 34m + 602n + 1068mn 605n − 41m + 1374mn

MkRTM 37m + 347n + 546mn 70m + 998n + 1716mn 1073n − 77m + 2454mn

MkRGBM 17.8236n − 0.0353m + 35.7882mn 0.0406m + 13.7037n + 27.2443mn 0.6564m + 14.0821n + 25.5385mn
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M2RM1 ZHCF n( )( ) � |E 2, 2( )|× M1R d 2, 2( )
+ |E 2, 3( )|× M1R d 2, 3( )
+ |E 3, 3( )|× M1R d 3, 3( )
� 18n2 + 6n( ) × 3 + 3( )
+ 36n2 + 12n( ) × 3 + 2( )
+ 117n2 − 15n( ) × 2 + 2( )� 756n2 + 36n

Similarly for k � 3 the degree classes are modified into (1,1),
(1,3), and (3,3). Therefore,

M3RM1 ZHCF n( )( ) � |E 2, 2( )|× M1R d 2, 2( )
+ |E 2, 3( )|× M1R d 2, 3( )
+ |E 3, 3( )|× M1R d 3, 3( )
� 18n2 + 6n( ) × 1 + 1( )
+ 36n2 + 12n( ) × 1 + 3( )
+ 117n2 − 15n( ) × 3 + 3( )� 882n2 + 30n

The modified reverse degree-based indices illustrated in
Equations 1–12, combined with the edge partitioning present in

TABLE 5 Comparison of entropy levels for ZHCF at k � 1, k � 2, and k � 3.

IMkRTI Zigzag hexagonal coronene fractal structure

k � 1 k � 2 k � 3

n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5

IMkRM1 9.3772 10.5436 11.3720 12.0148 9.4136 10.5797 11.4078 12.0505 9.3651 10.5332 11.3624 12.0057

IMkRM2 9.2082 10.3750 11.2037 11.8468 9.3605 10.5271 11.3556 11.9986 9.2105 10.3858 11.2186 11.8641

IMkRF 9.1938 10.3591 11.1871 11.8297 9.3556 10.5221 11.3505 11.9934 9.2797 10.4518 11.2830 11.9276

IMkRS 9.3734 10.5397 11.3680 12.0109 9.4128 10.5788 11.4070 12.0497 9.3724 10.5404 11.3695 12.0127

IMkRGA 9.4300 10.5958 11.4237 12.0663 9.4304 10.5961 11.4241 12.0667 9.4278 10.5937 11.4217 12.0643

IMkRReZ1 9.3988 10.5656 11.3941 12.0370 9.4181 10.5842 11.4124 12.0551 9.2860 10.4524 11.2808 11.9237

IMkRReZ2 9.3825 10.5491 11.3776 12.0205 9.4149 10.5810 11.4091 12.0518 9.3367 10.5058 11.3356 11.9792

IMkRH 9.3911 10.5581 11.3867 12.0297 9.4165 10.5827 11.4108 12.0536 9.2991 10.4667 11.2957 11.9390

IMkRHZ 9.2027 10.3687 11.1970 11.8399 9.3583 10.5248 11.3533 11.9962 9.2519 10.4253 11.2571 11.9020

IMkRBM 9.3240 10.4908 11.3194 11.9624 9.3896 10.5560 11.3843 12.0272 9.2934 10.4646 11.2953 11.9396

IMkRTM 9.2001 10.3658 11.1940 11.8368 9.3574 10.5240 11.3524 11.9953 9.2625 10.4353 11.2669 11.9117

IMkRGBM 9.4230 10.5890 11.4171 12.0597 9.4262 10.5920 11.4201 12.0627 9.4056 10.5718 11.4001 12.0428

TABLE 6 Comparison of entropy levels for AHCF at k � 1, k � 2, and k � 3.

IMkRTI Armchair hexagonal coronene fractal structures

k � 1 k � 2 k � 3

n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5

IMkRM1 10.1830 11.6202 12.5802 13.3006 10.2193 11.6560 12.6158 13.3362 10.1716 11.6105 12.5712 13.2921

IMkRM2 10.0142 11.4519 12.4122 13.1329 10.1664 11.6038 12.5640 13.2845 10.0201 11.4661 12.4301 13.1528

IMkRF 9.9991 11.4353 12.3951 13.1154 10.1615 11.5987 12.5588 13.2793 10.0880 11.5308 12.4933 13.2152

IMkRS 10.1792 11.6162 12.5762 13.2967 10.2185 11.6552 12.6150 13.3353 10.1789 11.6175 12.5782 13.2990

IMkRGA 10.2356 11.6720 12.6317 13.3519 10.2360 11.6724 12.6320 13.3523 10.2334 11.6699 12.6296 13.3499

IMkRReZ1 10.2048 11.6422 12.6024 13.3229 10.2238 11.6606 12.6204 13.3408 10.0918 11.5290 12.4891 13.2096

IMkRReZ2 10.1885 11.6258 12.5859 13.3063 10.2206 11.6573 12.6172 13.3375 10.1437 11.5835 12.5448 13.2659

IMkRH 10.1972 11.6348 12.5951 13.3157 10.2222 11.6591 12.6189 13.3393 10.1054 11.5438 12.5045 13.2253

IMkRHZ 10.0083 11.4452 12.4053 13.1258 10.1642 11.6015 12.5616 13.2821 10.0607 11.5047 12.4678 13.1900

IMkRBM 10.1300 11.5676 12.5279 13.2484 10.1955 11.6326 12.5925 13.3130 10.1012 11.5431 12.5053 13.2269

IMkRTM 10.0056 11.4422 12.4022 13.1226 10.1633 11.6006 12.5607 13.2812 10.0711 11.5146 12.4775 13.1995

IMkRGBM 10.2287 11.6653 12.6251 13.3453 10.2318 11.6683 12.6280 13.3483 10.2114 11.6483 12.6082 13.3286
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Table 1, are employed to compute theMkRTI for three configurations
of coronene fractals. The results, corresponding to the variable
parameters k � 1, 2, and 3, are summarized in Tables 2–4.

4 Evaluation of graph entropy

A mathematical foundation for assessing a system’s randomness
and uncertainty is provided by Shannon’s concept of entropy, which
quantifies the content of possibility distributions. For a discrete random
variable (x1, x2, . . . , xn) with chances (h(x1), h(x2), . . . , h(xn)), thus
Shannon’s entropy (H), is expressed as:

H � −∑n
i�1

h xi( )log2h xi( ),

where h(xi) � Ni
N ,Ni represents the frequency of a specific outcome

xi, and N is the total number of outcomes (Shannon, 1948). The
information obtained from measuring the system is captured by
using the logarithm base-2 to validate the entropy values in bits.
This equation has a significant analogy to thermodynamic
entropy, which quantifies the randomness of states in a
physical system (Mowshowitz and Dehmer, 2012; Sabirov
and O-sawa, 2015). In Physics, thermodynamic entropy is
used to assess microstates, while Shannon’s entropy is
generally applicable to abstract systems, such as graphs, and
allows for the analysis of their structural complexity using
attributes like vertices and edges (Mowshowitz, 1968).

Based on this foundation, incorporating topological indices into
the entropy framework appears as a robust approach to assess
molecular complexity. This approach focuses on graph edges and
uses topological indices (TIs), which are mathematical structural
characterization of molecular graphs (Arockiaraj et al., 2023d). The

probability given to each edge of a molecular graph G, with edges
ab ∈ E(G) is defined as f(ab)

MkRTI, where f(ab) is a modified reverse
degree-based function and MkRTI is the associated index. The
graph entropy is expressed as:

IMkRTI � − ∑
ab∈E G( )

f ab( )
MkRTI

log2
f ab( )
MkRTI

( ).
Further the graph entropy equation simplifies as:

IMkRTI � log2 MkRTI G( )( ) − 1
MkRTI G( ) ∑

ab∈E G( )
f ab( )log2f ab( ).

By employing specific topological indices, the simplified
representation makes it easier to calculate graph entropy for a
molecular graphs of coronene fractals. For example, the modified
first Zagreb index applied to a ZHCF(n) structure. The result of
substituting into the entropy formula is:

IMkRM1 � log2 MkRM1( ) − 1
MkRM1

∑
ab∈E G( )

f ab( )log2f ab( ).

Employing degree-based edge partitions presented in Table 1,
the entropy of ZHCF(n) when k � 1 and M1RM1 is:

IM1RM1 ZHCF n( )( ) � log2 414n2 + 30n( )
− 1

414n2 + 30n
18n2 + 6n × 4 × log2 4( )( )[

+ 36n2 + 12n × 3 × log2 3( )( )
+ 117n2 − 15n( ) × 2 × log2 2( )( )]For n
� 2, we obtain : IM1RM1 ZHCF 2( )( )
� log2 1716( ) − 1

1716
2346.82110036[ ]

� 9.37722247

TABLE 7 Comparison of entropy levels for RCF where (m � n) at k � 1, k � 2, and k � 3.

IMkRTI Rectangular coronene fractal structure

k � 1 k � 2 k � 3

n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5 n � 2 n � 3 n � 4 n � 5

IMkRM1 9.1164 10.1830 10.9586 11.5688 9.1529 10.2193 10.9947 11.6047 9.1031 10.1716 10.9482 11.5590

IMkRM2 8.9473 10.0142 10.7901 11.4005 9.0995 10.1664 10.9422 11.5524 8.9443 10.0201 10.8008 11.4143

IMkRF 8.9337 9.9991 10.7741 11.3840 9.0947 10.1615 10.9371 11.5474 9.0154 10.0880 10.8669 11.4791

IMkRS 9.1126 10.1792 10.9548 11.5649 9.1521 10.2185 10.9939 11.6039 9.1106 10.1789 10.9554 11.5661

IMkRGA 9.1695 10.2356 11.0108 11.6207 9.1699 10.2360 11.0112 11.6211 9.1673 10.2334 11.0087 11.6186

IMkRReZ1 9.1376 10.2048 10.9806 11.5909 9.1574 10.2238 10.9992 11.6093 9.0253 10.0918 10.8674 11.4776

IMkRReZ2 9.1216 10.1885 10.9642 11.5744 9.1542 10.2206 10.9960 11.6060 9.0742 10.1437 10.9209 11.5320

IMkRH 9.1298 10.1972 10.9731 11.5835 9.1558 10.2222 10.9977 11.6078 9.0376 10.1054 10.8818 11.4924

IMkRHZ 8.9422 10.0083 10.7838 11.3939 9.0973 10.1642 10.9399 11.5501 8.9869 10.0607 10.8403 11.4530

IMkRBM 9.0630 10.1300 10.9059 11.5162 9.1288 10.1955 10.9711 11.5812 9.0296 10.1012 10.8796 11.4915

IMkRTM 8.9397 10.0056 10.7809 11.3909 9.0965 10.1633 10.9390 11.5492 8.9977 10.0711 10.8504 11.4629

IMkRGBM 9.1624 10.2287 11.0040 11.6140 9.1656 10.2318 11.0071 11.6170 9.1448 10.2114 10.9869 11.5970
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The entropy expressions for all configuration of coronene
fractals are too extensive to display. Therefore, Tables 5–7
present the comparison of numerical values of modified reverse
degree-based entropy levels for the fractal structures. For rectangular
coronene fractals, we assume m � n.

The entropy stages provided in Tables 5–7 monitor dynamic
variation throughout the three configurations of coronene
fractals for k � 1, 2, and 3. Notably, entropy values continually
peaks at k � 2 in comparison to k � 1 and k � 3. The entropy
measures differ slightly in their decimal values across all indices.
Among the configurations, AHCF demonstrates slightly higher
entropy values than the other coronene structures, while RCF
exhibits lower entropy values, indicating greater structural
stability. However, direct comparisons of complexity measures
across these fractal structure are complicated by differences in the
number of edges. We utilize relative measures, including
structural information content (SIC) and bond information
content (BIC), derived from the computed entropy values.
These metrics provide a exact evaluation of the structural
complexity and stability of the three coronene fractal
configurations.

4.1 Relative complexity metrics

This subsection offers numerical and graphical estimation of
complexity across the configurations of coronene fractals,
emphasizing the importance of accounting for molecular size
differences. Since graph entropy values are depending on the size
of the molecular graph, the application of relative complexity
measures has become essential for higher comparisons among
molecular systems of varying dimensions (Dehmer, 2008). To
address this, two normalized measures, namely structural
information content (SIC) and bond information content (BIC),
are introduced. Graph entropy alone may not adequately reflect
structural complexity, especially for systems with differing
dimensional sizes, highlighting the necessity of employing relative
metrics (Bonchev and Trinajstić, 1982; Sabirov and Shepelevich,
2021). The maximum entropy concept is used to establish these
metrics, where the limiting entropy value for IMkRTI is defined as
Imax
MkRTI � log2(MkRTI) (Junias et al., 2024). This leads to SIC,

which quantifies molecular structure and the most useful
information, as shown below:

SICMkRTI � IMkRTI

Imax
MkRTI

. (13)

Similarly, BIC includes a molecular graph where edges are
counted to compute relative complexity. The formula for the BIC
normalizes the entropy using the logarithmic scale of the total
number of edges, as shown here:

BICMkRTI � IMkRTI

log2|E G( )|. (14)

From Equations 13, 14, we calculate the SIC and BIC measures
for coronene fractals. The analysis focuses on the entropy values of
the Zagreb index when k � 2, where IMkRTI � IM2RM1 providing
insight into the relative complexity assessment between the fractals.
For example the ZHCF(3) system with |E(G)| � 1548, the Zagreb
index value IMkRTI � IM2RM1 � 10.57965167 and Imax

MkRTI �
log2(M2RM1) � log2(6912). The values calculated by equations
for SIC and BIC are as follows.

SICM2RM1 �
IM2RM1

log2 M2RM1( ) �
10.57965167
12.7548875

� 0.829458642

BICM2RM1 �
IM2RM1

log2|E G( )| �
10.57965167
10.59618976

� 0.998439242

The SIC and BIC measures for other coronene fractals across
various vertex ranges, are presented in Table 8. These relative
complexity measures offer a comparative analysis of complexity
across different sizes, with values ranging from 0 to 1, where
1 indicates the highest complexity and 0 the lowest. The SIC and
BIC measures, are shown in Table 8, with a graphical comparison
in Figure 3.

Table 8; Figure 3 show that RCF and AHCF exhibit similar
complexity values at small scales. However, with increasing size, the
rectangular fractals exhibits slightly higher complexity compared to
armchair configuration, while the zigzag-based coronene exhibits
lower complexity than all other configurations because BIC is
evaluated based on number of bonds in molecular graph and SIC
obtained from maximum entropy. These two analyzes facilitate

TABLE 8 Relative complexity measures of three classes of coronene structures.

Vertex ranges Structures IM2RM1 Imax
M2RM1

log2|E(G)| SIC BIC

900–1152 ZHCF(3) 10.57965 12.75489 10.59619 0.829459 0.998439

AHCF(2) 10.2193 12.39874 10.23601 0.824221 0.998367

RCF(3,3) 10.2193 12.39874 10.23601 0.824221 0.998367

2040–2424 ZHCF(4) 11.40779 13.57932 12.06676 0.840086 0.94539

AHCF(3) 11.65602 13.82814 11.67243 0.842921 0.998595

RCF(9,3) 11.65602 13.82814 11.67243 0.842921 0.998595

4572–4872 ZHCF(6) 12.57579 14.74357 12.59199 0.852967 0.998713

AHCF(4) 12.61584 14.78463 12.63209 0.853307 0.998714

RCF(9,6) 12.6542 14.82277 12.67043 0.853700 0.998718
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better comparisons, and help to determine the most appropriate
indicator of complexity measures for molecular system.

From Figure 3; Tables 5–8, greater entropy variations are
observed among the three configurations for smaller structures,
while for the largest structure, all configurations approach the 2D
graphitic sheet, and their entropy values converge to a limit.
However, two types of isentropic structures exist: AHCF(2) and
RCF(3,3) have the same number of vertices (900) and edges (1206);
similarly, AHCF(3) and RCF(9,3) share the same number of vertices
(2424) and edges (3264). Thus, we use spectral properties for a more
conclusive analysis of stability.

5 Analysis of spectral properties in
coronene fractals

This section focuses on the spectral properties of coronene
fractals, using metrics derived from their graph spectra. Since
these structures are two-dimensional and satisfy the Coulson-

Rushbrook theorem, this method is more effective for analysis. It
is not practical to perform complete Ab initio calculations for
complex systems such as AHCF(3) and RCF(9,3) with
2424 vertices and spectral eigenvalues (Arockiaraj et al., 2022).
Consequently, machine learning techniques are needed to
efficiently estimate stability in large, fractal structures. Significant
spectal and energy properties such as total π-electron energy,
spectral diameter, HOMO-LUMO energy gap, delocalization
energy, and resonance energy, are determined by combinatorial
analysis of graph spectra (Prabhu et al., 2024). These parameters
provide valuable insights into the thermodynamic and kinetic
stability of the coronene fractals under investigation.

The total π-electron energy (Eπ) is a critical measure of
electronic stability in conjugated systems (Gutman and Trinajstić,
1972; Gutman, 1978). For coronene fractals, including zigzag,
armchair, and rectangular patterns, Eπ is calculated using the
eigenvalues (λi) of the graph spectra of the molecular graph
(Kalaam et al., 2024; Graovac et al., 1977). For a system with
p atoms:

FIGURE 3
Graphical comparison of complexity measures among zigzag, armchair and rectangular coronene fractals. (a) Comparison of SIC measures across
the range of k values for coronene fractals. (b) Comparison of BIC measures across the range of k values for coronene fractals.
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Eπ �
2∑p/2

i�1
λi, if p is even,

λ p+1( )/2 + 2 ∑p−1( )/2

i�1
λi, if p is odd.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
The π-electron distribution depends on whether p is

even or odd.
The HOMO-LUMO energy gaps, defined as the difference

between the highest molecular orbital (HOMO) denoted λH and
the lowest unoccupied molecular orbital (LUMO) denoted λL. It
plays an important role in analyzing molecular reactivity and kinetic
stability. These difference is calculated by subtracting the lowest
positive eigenvalue from the highest negative eigenvalue from the
graph spectrum, expressed as ΔG � λH − λL (Wu et al., 2018; Li et al.,
2013). Larger HOMO-LUMO energy differences indicate increased
kinetic stability and low chemical reactivity, as more energy is
required to transfer an electron from HOMO to LUMO, thus
decreasing the chemical reactivity however this difference does
not directly reflect thermodynamic stability.

Thermodynamic stability is closely related to parameters such as
delocalization and resonance energies, which generally increase with
molecule size, increasing the stability. The delocalization energy
(EDeloc)per bond, is calculated as (EDeloc)per bond � Eπ − |V(G)|. Kekul�e
counts (KC), which reflect the number of Kekul�e resonance
structures in coronene fractals, are used to compute resonance
energies as coronene fractals are benzenoid systems and bipartite
graphs. Thus (KC) is derived from the square root of the constant
term of the characteristic polynomial (Balasubramanian, 2023).
According to Herndon’s definition of resonance, REper bond �

1
|V(G)|(1.185 × ln(KC))) (Herndon and Ellzey, 1974). The increase
in size of the coronene fractals increases both delocalization and
resonance energies. Because of the stabilization of the molecular
orbitals (Mazouin et al., 2022), the HOMO-LUMO energy gap
decreases with increasing molecular size. The spectral diameter
SD is calculated as the difference between the maximum and
minimum eigenvalues: SD � λmax − λmin. These graph spectra

based energy properties were assessed using programs such as
newGRAPH and MATLAB software (Stevanović et al., 2021;
MATLAB, 2022). Table 9 displays the results, which are given in
β units.

The data present in Table 9; Figure 4 show that the HOMO-LUMO
energy gaps decrease as the size of coronene structures increase. This
suggests that larger structures have more electronic delocalization and
resonance energy, which results in lower energy differences between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO). Meanwhile, both
delocalization and resonance energy show an increasing trend,
reflecting enhanced stability and conjugation within these structures.
Among the fractal configurations analyzed, the rectangular coronene
fractals have the largest HOMO-LUMO energy gaps, suggesting high
kinetic stability, lower reactivity, and the lowest delocalization and
resonance energies. On the other hand, armchair coronene fractals
display the smallest HOMO-LUMO energy gaps, indicating less kinetic
stability, larger chemical reactivity, higher electron delocalization, and
resonance energies, all of which lead to greater stability with efficient
electron transfer. This study emphasizes the significance of structural
configuration on stability and reactivity in coronene fractals.

6 Predictive models

The prediction of the spectral properties of chemical structure by
graph-entropy measures utilizes structure-property models which play
an important role in characterizing and prediction chemical properties
using topological indices (Raza et al., 2024; Rauf et al., 2022) These
models offer a cost-effective alternative to experimental studies, offering
reliability, accuracy and robustness (Hayat et al., 2019). For coronene
fractals, we examine the relationship between spectral features and
entropy measurements obtained from the reverse degree-based indices.
Our findings show that there is a better correlation between the
entropy measures and spectral properties, except for the HOMO-
LUMO energy gap, which exhibits negative correlation due to its

TABLE 9 Energetic properties of three classes of polycyclic aromatic hydrocarbons.

Structure Eπ (ΔG) gaps (Eπ)per bond (EDeloc)per bond (RE)per bond SD
ZHCF(1) 194.662 β 0.7638 β 1.475 β 0.474712 β 0.156614 β 5.5937 β

ZHCF(2) 765.926 β 0.65732 β 1.484 β 0.484353 β 0.159251 β 5.64926 β

ZHCF(3) 1713.792 β 0.62768 β 1.488 β 0.487666 β 0.160157 β 5.65958 β

ZHCF(4) 3038.259 β 0.61518 β 1.489 β 0.489343 β 0.160615 β 5.66336 β

AHCF(1) 194.662 β 0.7638 β 1.475 β 0.474712 β 0.156614 β 5.5937 β

AHCF(2) 1337.189 β 0.63774 β 1.486 β 0.485766 β 0.159636 β 5.65682 β

AHCF(3) 3609.522 β 0.61322 β 1.489 β 0.489077 β 0.160541 β 5.66408 β

RCF(1) 194.662 β 0.7638 β 1.475 β 0.474712 β 0.156614 β 5.5937 β

RCF(2) 640.3919 β 0.66974 β 1.482 β 0.482389 β 0.158714 β 5.64364 β

RCF(3) 1337.19 β 0.6379 β 1.486 β 0.485766 β 0.159637 β 5.65572 β

RCF(4) 2285.055 β 0.6229 β 1.488 β 0.487666 β 0.160156 β 5.66072 β
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decrease in energy gaps with increasing system size. As noted in
the previous section, the first Zagreb index was employed to
compare relative complexity measures among the structures.
We found that entropy measures associated with M2RM1

demonstrate the strongest correlation with spectral
characteristics. Linear regression analysis was used to
develop predictive models for spectral properties. The
linear regression equation given as P � R · (IMkRTI) + c, where
P is the spectral properties, R is the regression coefficient, and c
is the regression constant. The statistical parameters such as r2,
r2, F-values, and S.E are utilized to validate model’s
performance.

The regression models optimized to predict spectral
characteristics are given detailed in Table 10 and illustrated in
Figure 5. The selection was based on their unique performance
indicators, such as r2, adjusted r2, high F-values, in addition to
reduced error (SE) objectives. These metrics confirm the reliability
and accuracy of the models. The developed models are particularly
effective in estimating the energy value of high-aspect ratio coronene
explosions. An efficient method based on linear regression was used

to ensure accurate predictions while minimizing computational
complexity.

7 Conclusion

In this paper, we develop topological expressions based onmodified
reverse degree-based indices for three configurations of two-
dimensional coronene fractals. These indices capture structural
complexities and are effective in predicting physico-chemical
properties. The computed indices function as graph-based metrics
for evaluating entropy levels and relative complexity. The resulting
entropy values offer insights into the structural challenges of these
fractal systems, providing a foundation for further investigation into
their properties. When paired with graph spectra, these approaches
form a comprehensive machine learning framework for efficiently and
accurately computing the spectral and thermodynamic properties of
fractals and other two-dimensional materials. By integrating graph-
theoretic methods with advanced statistical techniques, this study
contributes to the development of improved computational

FIGURE 4
Graphical representation of energetic properties across kekulene tessellations. (a)HOMO-LUMO energy gap (b) Energy per bond (c)Delocalization
energy per bond (d) Resonance energy per bond.

Frontiers in Chemistry frontiersin.org11

Kalaam and Greeni 10.3389/fchem.2025.1588942

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1588942


TABLE 10 Statistically derived optimal regression models for predicting energetic properties.

P Optimal regression equation r2 adj(r2) SE F

Eπ 0.248(M2RM1)–2.775 0.999 0.998 0.886 17582849.51

(ΔG) energy gaps −0.038(IM2RM1)+1.036 0.951 0.946 0.015 175.129

(Eπ)per bond 0.004(IM2RM1)+1.448 0.973 0.970 0.001 329.292

(EDeloc)per bond 0.004(IM2RM1)+0.448 0.973 0.970 0.001 329.292

(RE)per bond 0.001(IM2RM1)+0.149 0.973 0.970 0.006 327.889

SD 0.018(IM2RM1)+5.467 0.915 0.906 0.009 96.845

FIGURE 5
Linear regressionmodels for the energetic properties. (a) Total π electron energy (b)Homo-Lumo energy gap (c) Energy per bond (d)Delocalization
energy (e) Resonance energy per bond (f) Spectral diameter.
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chemistry algorithms, particularly forQSAR andQSPR studies aimed at
predicting the stability and characteristics of complex chemical systems.
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