AUTHOR=Al Noman Abdullah , Dev Sharma Pranab , Tuz Zohora Umme Fathima , Shifa Farhana Akter , Abdallah Emad M. , Alhatlani Bader Y. TITLE=Epigallocatechin-3-gallate: a multi-target bioactive molecule derived from green tea against Oropouche virus—a computational approach to host–pathogen network modulation JOURNAL=Frontiers in Chemistry VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1590498 DOI=10.3389/fchem.2025.1590498 ISSN=2296-2646 ABSTRACT=The Oropouche virus (OROV), an emerging arbovirus transmitted by arthropods, has caused significant outbreaks in South and Central America, with over half a million reported cases. Despite its public health threat, no approved vaccines or antiviral treatments exist for Oropouche fever (OF). This study explores the potential of epigallocatechin-3-gallate (EGCG), a bioactive polyphenol from green tea, as an antiviral agent against OROV using computational approaches. Due to the lack of experimentally resolved OROV protein structures, we employed AlphaFold2 to predict 3D models of key viral proteins, including RNA-dependent RNA polymerase (RdRp), envelopment polyprotein, nucleoprotein, and glycoprotein Gc. Molecular docking revealed strong binding affinities between EGCG and these targets, with particularly high interactions for RNA polymerase (−7.1 kcal/mol) and envelopment polyprotein (−8.7 kcal/mol), suggesting the inhibition of viral replication and entry. Protein–protein interaction (PPI) network analysis identified critical human host genes (e.g., FCGR3A, IRF7, and IFNAR1) involved in immune responses, while Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted enriched antiviral and inflammatory pathways. ADMET profiling indicated challenges in EGCG’s bioavailability, including poor gastrointestinal absorption and blood–brain barrier permeability, but its low toxicity and natural origin support its potential as a lead compound. These findings suggest that EGCG may disrupt OROV infection through multi-target mechanisms, warranting further experimental validation. This study provides a foundation for developing EGCG-based therapeutics against OROV and underscores the utility of computational methods in antiviral drug discovery.