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Introduction: Pharmaceutical treatment protocols or combination therapies
based on chemical compounds make it possible to target cancer cells, which
can be complicated by several factors, including their resistance to bioactive
compounds and the potential for drugs to damage certain healthy cells.

Methods: This project was designed to assess the structural relationship between
new dihydropteridone-derived compounds bearing an oxadiazole moiety and their
corresponding cytotoxicity against breast cancer, using computational chemistry
tools. The aim of this research is to better understand how compound properties
influence their activity and to understand the underlying mechanisms, which could
then be integrated into the anticancer drug design process with a view to
recommending new optimized compounds likely to have the desired activity.

Results and discussions: The results show that the predicted molecules possess
enhanced selective cytotoxic inhibitory activity against breast cancer cells (MCF-
7). Guided by these analyses, we designed five novel dihydropteridone derivatives
incorporating an oxadiazole moiety. These compounds exhibited favorable
interactions with key breast cancer-related proteins, demonstrated enhanced
dynamic stability within their binding sites, and adhered to established drug-
likeness principles. Importantly, these compounds displayed promising oral
absorption (88%) in preliminary assessments and exhibited no significant
toxicity. These findings suggest that these novel dihydropteridone-oxadiazole
derivatives warrant further investigation as potential multifunctional agents for
the treatment of breast cancer cells (MCF-7).
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Introduction

Breast cancer is the most common cancer affecting women worldwide, representing
approximately 24.5% of all new cancer cases diagnosed in women in 2022. According to the
World Health Organization (WHO) and the International Agency for Research on Cancer
(IARC), in 2022, an estimated 2.3 million women were diagnosed with breast cancer, and
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tragically, 670,000 succumbed to the disease globally (Breast cancer,
2025; Cancer, 2024; Cancer Today, 2025; Information and Resources
about Cancer: Breast, Colon, Lung, Prostate, Skin, 2025). Despite
advancements in treatments like surgery, chemotherapy, and
hormone therapy, many patients experience systemic toxicity due
to the non-selective nature of these approaches (Zargan et al., 2022;
CDC, 2024). Additionally, drug resistance remains a significant
obstacle in breast cancer treatment, limiting the effectiveness of
current therapies (Chemoresistance mechanisms of breast cancer
and their countermeasures - ScienceDirect, 2024).

Given the limitations of current breast cancer treatments,
developing innovative drugs that can overcome these challenges
is crucial. One promising avenue is the exploration of
dihydropteridone derivatives containing oxadiazoles (Li et al.,
2023; Hou et al., 2025), which have demonstrated potential as
alternatives to existing therapies due to their antitumor
properties and selectivity (Aloui et al., 2024b; Analyzing the
Cytotoxic and Genetic Impact of Datura stramonium Extract on
MCF7 and HT29 Cancer Cells: A Metabolite and Gene Expression
Study, 2025). This study employs quantitative structure-activity
relationship (QSAR) methods to quantitatively analyze the
relationship between the structure of these compounds and their
anticancer activity, facilitating the design of more potent and
effective inhibitors of MCF-7 cells (Bailly, 2012; Kojja et al.,
2025). The present study is based on a multifaceted approach,
encompassing QSAR modeling, molecular docking and molecular
dynamics simulation, to identify and optimize novel MCF-7
inhibitors (Sun et al., 2008; Hassan et al., 2025). Using molecular
descriptors such as lipophilicity and geometry, QSAR models
predict the activity of potential inhibitors on the basis of their
structural features (Danishuddin and Khan, 2016). Molecular
docking analysis is employed to determine the optimal binding
mode between the ligand and the target protein, shedding light on
key interactions (Zhang et al., 2022). To delve deeper into these
interactions and assess their stability, molecular dynamics (MD)
simulations are conducted over a 100 ns timescale, examining the
protein-ligand complex using newly designated, highly active
molecules (Binary quantitative activity-activity relationship
QAAR studies to explore selective HDAC8 inhibitors: In light of
mathematical models, DFT-based calculation and molecular
dynamic simulation studies - ScienceDirect, 2024). In addition to
this, in silico studies are being carried out on ADMET to assess the
new compound’s potential as an anti-cancer drug and predict its
pharmacokinetic and toxicological profiles. This will enable the
development of new, better-targeted drugs more suited to the
fight against breast cancer. Structural modifications of new
dihydropteridone derivatives possessing oxadiazoles can
significantly increase their bioactivity (Li et al., 2023).
Furthermore, the research group reported that compound M5 is
highly selective towards theMCF-7 cell line and displays low toxicity
towards healthy breast cells.

The aim of this introduction is to highlight the central role of
QSAR methods in the search for novel anticancer agents for the
treatment of breast cancer, in order to find effective and innovative
pharmaceutical compounds. Molecular docking studies have been
carried out with these compounds to better understand the key
structural requirements and interactions between the ligand and the
2RKU.pdb protein (Aloui et al., 2024a). The results of these

simulations were promising and aligned well with experimental
data. Finally, 100 ns MD simulations are carried out to estimate
ligand-receptor stability under normal physiological conditions. All
molecules designed are also examined using conventional
computational pharmacokinetic parameters (ADMET) and
pharmacokinetics to assess their pharmacological potential. This
approach speeds up the pace of new drug discovery, provides a better
understanding of structure-activity relationships, and paves the way
for therapies that are both more effective and better tolerated. This
project is divided into two chapters: the first describes the materials
and methods used in this research, followed by another chapter
devoted to a detailed discussion of the results obtained from
computer simulations, and the final section summarizes the main
findings and overall implications of this research.

Materials and methods

Experimental dataset

Experimental data on 33 novel dihydropteridone compounds
with an oxadiazole moiety that are effective MCF-7 inhibitors are
shown in the following table (Table 1).

Examined compounds

Based on experimental data on the inhibitory activities of
33 previously synthesized dihydropteridone-derived molecules
containing an oxadiazole moiety against MCF-7 cells, we
conducted molecular modeling studies (Li et al., 2023). To
standardize and simplify the analysis, the observed activity values
(IC50) were transformed into pIC50 values, using a logarithmic scale
of log (IC50), the values of which are shown in Table 1.

Molecular descriptor calculation for
investigated compounds

A set of 17 descriptors, including geometric properties,
lipophilicity, physicochemical attributes and steric characteristics,
were employed to develop a robust QSAR model.

Molecular descriptors were determined using the MM2 method
integrated into the ChemBioOffice and ACD/ChemSketch
(Österberg and Norinder, 2001; Milne, 2010). Our approach to
molecular geometry was optimized by DFT calculations based on
the B3LYP/6-311G (d,p) basis set (Parr and Yang, 1995; Zhang et al.,
2009). All electronic descriptors were determined using Gaussian
09 quantum chemistry software (Frisch et al., 2004). The calculated
descriptor values are summarized in Table 2.

QSAR modeling

A set of 33 compounds was chosen from earlier studies that
shown remarkable activity as new inhibitors of MCF-7 in the quest
of developing a QSAR model. To construct the QSAR model. The
dataset was randomly divided into two subsets: a training set of
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TABLE 1 Dihydropteridone derivatives’ structures and pIC50 values as powerful PLK1 inhibitors.

*Refer to test set molecules. pIC50 = 6-log10 (IC50).
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TABLE 2 Descriptor values for the 33 compounds and observed activity.

Comp S B S-B Tor LogP NHBA NHBD NRB MP TD MV IR ST EHOMO ELUMO Repul η pIC50

1 3.17 26.86 0.57 5.34 3.12 11 2 9 1221.15 21 434.9 1.645 72 −0.1961 −0.0486 4588.56 0.07378 7.31

2 2.57 26.23 0.32 5.49 3.47 10 2 9 1161.91 18 380.6 1.657 75.2 −0.1966 −0.0493 3983.94 0.07366 6.76

3* 3.32 41.93 −0.61 14.46 3.89 10 2 9 1169.66 19 396.6 1.649 73.3 −0.1964 −0.0490 4127.68 0.07371 6.75

4* 2.86 27.88 0.26 9.60 4.30 10 2 9 1177.41 19 412.7 1.643 71.7 −0.1961 −0.0485 4278.85 0.07379 6.60

5 2.77 27.24 0.16 7.36 3.90 10 2 10 1173.18 19 416.7 1.62 60.2 −0.1883 −0.0408 4108 0.07378 6.75

6 2.99 27.40 0.53 5.95 4.80 10 2 11 1151.51 19 453.8 1.589 54 −0.1960 −0.0483 4317.95 0.07381 6.45

7 2.86 26.19 0.50 2.94 3.55 10 1 8 1112.51 17 402.4 1.609 57.9 −0.1964 −0.0493 3916.85 0.07355 7.43

8 3.62 25.48 0.73 8.41 3.55 11 1 11 1178.79 20 459.1 1.599 56.1 −0.1965 −0.0487 4466.09 0.0739 7.93

9 3.06 28.26 0.32 10.84 3.87 10 1 8 1153.71 18 414.4 1.624 61.5 −0.1955 −0.0479 4206.83 0.0738 6.97

10 3.25 29.82 0.42 10.76 3.33 11 2 9 1221.56 19 433 1.622 62.2 −0.1956 −0.0481 4533.19 0.07375 7.65

11 3.16 26.83 0.58 5.57 2.98 11 2 8 1218.04 20 429.2 1.629 64.4 −0.1962 −0.0492 4538.53 0.07348 7.56

12* 3.20 26.39 0.57 4.90 4.46 12 1 8 1182.3 20 421 1.629 69.5 −0.1987 −0.0526 4727.18 0.07305 7.05

13 3.22 28.09 0.70 6.24 3.15 11 1 8 1176.76 19 423.2 1.616 60.7 −0.1969 −0.0498 4381.84 0.07354 7.32

14 3.06 26.23 0.53 1.81 2.93 11 2 8 1255.22 19 428.2 1.616 59.4 −0.1962 −0.0489 4373.21 0.07362 7.65

15 3.16 31.59 0.79 10.17 3.03 11 2 8 1262.97 19 445.9 1.608 57.7 −0.1944 −0.0464 4577.86 0.07402 7.20

16 3.26 28.25 0.63 5.46 3.57 11 2 8 1269.28 19 468.2 1.595 53.3 −0.1966 −0.0496 4745.28 0.07349 8.00

17 3.31 26.82 0.64 1.80 3.31 11 1 8 1197.45 20 443.2 1.615 58.8 −0.1965 −0.0494 4532.35 0.07355 7.69

18 3.47 27.34 0.69 2.16 3.64 11 1 9 1208.72 21 460.8 1.607 57.2 −0.1964 −0.0493 4693.53 0.07354 7.87

19 3.68 29.28 0.48 5.31 4.03 11 1 10 1249.2 22 470.1 1.626 61.4 −0.1959 −0.0488 5007.98 0.07354 7.33

20 3.81 29.57 0.62 8.63 4.44 11 1 9 1253.43 22 485.6 1.622 60.8 −0.1963 −0.0490 5170.85 0.07361 7.11

21* 3.48 27.74 0.71 2.16 2.79 12 2 10 1269.54 22 458.3 1.619 61.6 −0.1969 −0.0499 4852.38 0.0735 7.64

22 3.16 29.95 0.51 7.45 4.23 11 2 9 1221.15 21 434.9 1.645 72 −0.1940 −0.0450 4625.67 0.07451 7.38

23 2.85 29.07 0.44 5.35 4.66 10 1 8 1112.51 17 402.4 1.609 57.9 −0.1936 −0.0454 3894.38 0.07408 6.98

24* 3.53 31.73 0.78 6.57 4.66 11 1 11 1178.79 20 459.1 1.599 56.1 −0.1937 −0.0458 4544.13 0.07395 6.87

25 3.24 32.64 0.36 13.26 4.44 11 2 9 1221.56 19 433 1.622 62.2 −0.1937 −0.0451 4502.94 0.07428 6.77

(Continued on following page)
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26 molecules for model development and a test set of seven
molecules for validation. Multiple linear regression (MLR) and
artificial neural networks (ANN) were employed as modeling
techniques (Gupta et al., 2016).

Multiple linear regression

MLR is a widely used technique in QSAR studies, due to its
simplicity and reliability when selecting molecular descriptors (Roy
and Mitra, 2011). MLR is often combined with other methods,
notably multinomial nonlinear regression (MNLR) and ANN. to
identify relevant descriptors for building QSAR models. MLR
models assume a linear relationship between the dependent
variable and a set of independent variables as described by the
following equation (Equation 1).

Y � a0 +∑
n

i�1
aiXi (1)

Y is the biological activity. Xi the molecular descriptors. a0 is the
intercept and ai are the coefficients associated with each descriptor.

Multiple nonlinear regression

The MNLR model is a non-linear method used to establish the
relationship between molecular descriptors (Xi) and the
corresponding biological activity (Y). It identifies the optimal
mathematical representation of this non-linear variation (Er-rajy
et al., 2022b). In this scenario. a second-order polynomial model is
employed for constructing the QSAR model using the MNLR
method based on descriptors from MLR models. The MNLR
linking these molecular descriptors with biological activity could
be modeled by the following equation (Equation 2):

Y � a0 +∑
n

i�1
ai× Xi + bi × X2

i (2)

In this equation, Y represents the predicted biological activity. Xi are
the molecular descriptors. n is the number of descriptors and a0, ai,
and bi are the model coefficients.

Artificial neural networks

To enhance the ability to characterize compounds and predict
biological activity. We developed an ANN-based QSAR model
(Aloui et al., 2025). The ANN model was developed using the
molecular descriptors identified through MLR analysis. The
network architecture consisted of three layers: input hidden and
output (Figure 1).

The input neural network corresponded to that of the
descriptors. While the output layer predicted biological
activity. We optimized the ANN’s performance by precisely
determining the number of neurons in the hidden layer and
the learning rate (ρ). To ensure model reliability and statistical
validity. ρ was maintained within the recommended range of 1–3
(Kůrková, 1992).T
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Cross-validation (CV)

To assess the accuracy of the QSAR models developed using
MLR, MNLR and ANN. We use Leave-One-Out cross-validation
(LOO-CV) (Golbraikh and Tropsha, 2002). In this method, each
molecule is removed from the dataset in turn, so that the model is
retrained and then used to predict the activity of that molecule.
This operation is repeated for all molecules (Roy and Mitra,
2011). The R2

cv coefficient, as calculated by Equation 3, is used to
evaluate the model’s performance. An R2

cv value above
0.5 generally indicates a robust model (Golbraikh and
Tropsha, 2002).

R2
cv � 1-

∑ Yob trai( ) - Yca trai( )( )2
∑ YOb trai( ) - Ytrai trai( )( )2

(3)FIGURE 1
The architecture of the ANN model used in this study.

FIGURE 2
The contribution coefficients of the five molecular descriptors of the MLR model.

FIGURE 3
MLR model correlations between predicted and observed activity values.
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Yob(train) represents the experimentally observed biological
activity in the training set. Yca(trai) denotes the predicted
biological activity obtained using the LOO-CV technique on the
training set. Ytrai(trai) represents the average of both the observed
and predicted biological activities in the training set.

Applicability domain

The applicability domain (AD) defines the region in chemical
space where a QSAR model can reliably predict the activity of
compounds. Compounds falling outside this domain may have less

TABLE 3 Comparison of observed and predicted biological activities using the QSAR model.

Comp S Tor MP NRB repul η pIC50Obs MLR MNLR

pIC50Pred Resid pIC50Pred Resid

1 3.1684 5.3358 1221.15 9 4588.56 0.073775 7.31 7.324 −0.011 7.345 −0.032

2 2.5717 5.4927 1161.91 9 3983.94 0.07366 6.76 6.944 −0.180 6.793 −0.028

3* 3.3203 14.4563 1169.66 9 4127.68 0.073705 6.75 6.668 0.082 6.829 −0.080

4* 2.8648 9.6019 1177.41 9 4278.85 0.07379 6.60 6.677 −0.073 6.618 −0.014

5 2.7726 7.3625 1173.18 10 4108.00 0.073775 6.75 6.683 0.069 6.721 0.031

6 2.9858 5.9475 1151.51 11 4317.95 0.07381 6.45 6.430 0.019 6.436 0.012

7 2.8589 2.9396 1112.51 8 3916.85 0.073545 7.43 7.370 0.058 7.425 0.004

8 3.0643 10.8436 1153.71 8 4206.83 0.073795 6.97 6.877 0.097 6.875 0.100

9 3.1563 5.5693 1218.04 8 4538.53 0.07348 7.56 7.500 0.056 7.521 0.035

10 3.1966 4.904 1182.3 8 4727.18 0.073045 7.05 7.118 −0.063 7.195 −0.140

11 3.2185 6.2351 1176.76 8 4381.84 0.07354 7.32 7.371 −0.056 7.417 −0.102

12* 3.0551 1.8107 1255.22 8 4373.21 0.07362 7.65 8.170 −0.518 8.148 −0.497

13 3.1579 10.1711 1262.97 8 4577.86 0.07402 7.20 7.440 −0.238 7.399 −0.197

14 3.2615 5.4632 1269.28 8 4745.28 0.07349 8.00 7.748 0.248 7.780 0.216

15 3.3069 1.8001 1197.45 8 4532.35 0.073545 7.69 7.852 −0.159 7.772 −0.080

16 3.4701 2.1641 1208.72 9 4693.53 0.073535 7.87 7.641 0.225 7.602 0.265

17 3.6827 5.3083 1249.2 10 5007.98 0.073535 7.33 7.274 0.058 7.284 0.048

18 3.8117 8.632 1253.43 9 5170.85 0.07361 7.11 7.218 −0.106 7.124 −0.012

19 3.4844 2.1634 1269.54 10 4852.38 0.073495 7.64 7.658 −0.014 7.709 −0.065

20 3.1592 7.4478 1221.15 9 4625.67 0.074505 7.38 7.231 0.152 7.256 0.127

21* 2.85 5.3534 1112.51 8 3894.38 0.074075 6.98 7.263 −0.287 7.312 −0.337

22 3.5298 6.5685 1178.79 11 4544.13 0.07395 6.87 6.821 0.053 6.827 0.048

23 3.238 13.2614 1221.56 9 4502.94 0.074275 6.77 6.829 −0.055 6.811 −0.037

24* 3.138 8.0742 1218.04 8 4512.91 0.074175 7.86 7.412 0.450 7.359 0.502

25 3.208 8.7184 1176.76 8 4336.63 0.07393 7.21 7.250 −0.041 7.260 −0.050

26 3.0406 4.2684 1255.22 8 4340.67 0.0742 8.06 8.073 −0.010 8.074 −0.011

27 3.1589 12.5753 1262.97 8 4539.71 0.07494 7.54 7.430 0.110 7.494 0.047

28 3.2619 7.7031 1269.28 8 4756.57 0.07437 7.79 7.703 0.088 7.672 0.119

29* 3.298 4.2607 1197.45 8 4524.05 0.07441 7.83 7.793 0.034 7.725 0.102

30 3.4583 4.5979 1208.72 9 4691.05 0.074435 7.45 7.584 −0.134 7.552 −0.102

31 3.491 4.4959 1269.54 10 4849.24 0.074305 7.44 7.608 −0.167 7.635 −0.194
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FIGURE 4
Correlations between observed and predicted activity using the MNLR model.

FIGURE 5
Correlation between the observed and the predicted activities calculated by ANN.

FIGURE 6
Correlation of observed and predicted activities calculated using LOO-CV.
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reliable predictions (Gramatica, 2007). To assess AD leverage values
(hi) are calculated for each compound using Equation 4:

hi � xi XTX( )−1xT
i i � 1.2. . . . ...n (4)

where xi is the vector of descriptors for a query compound. X is
the descriptor matrix of the training set, and n is the
number of compounds. If hi exceeds the critical value (h* = 3
(p + 1)/n, where p is the number of variables), the compound is
considered outside the AD. Conversely, a leverage value below
h* suggests a high likelihood of accurate predictions.

Molecular docking

In the present work, a molecular docking process was carried out
with the assistance of Autodock 4.2 and Discovery Studio
2021 programs, in which the most active compound (C28) and
the candidate ligand (M5) were chosen to be docked towards the
structure of PLK1 in complex with BI2536 (PDB ID of 2RKU) as a
targeted receptor responsible to the cytotoxic inhibitory activity
against breast cancer cells (MCF-7). In the first stage, the targeted
protein was prepared by adding the charges of Gasteiger, removing
Water (H2O) molecules and all suspended ligands (El fadili et al.,
2023a; Ed-Dahmani et al., 2024; Nouioura et al., 2024a). Then,
C28 and M5 were docked the prepared protein using
Autodock4.2 software (El fadili et al., 2023c; Nouioura et al.,
2024b). In the second stage, Discovery Studio 2021 software was
employed to visualize the produced contacts in two and three
dimensions (El fadili et al., 2023b; El fadili et al., 2024).

Molecular dynamics

A molecular dynamics (MD) technique was equally performed
to examine the thermodynamic stability of the produced
intermolecular contacts throughout 100 nanoseconds of MD
simulation time using Desmond, a package of LLC Schrödinger
software, in which the output files of molecular docking were chosen
as input files of molecular dynamics, working on standardized
physiological conditions with a Pressure of 1 atm, Temperature
of 300 K, OPLS force fields, and Counter ions in 0.15 M salt (Na+,
Cl) (El fadili et al., 2022; Er-rahmani et al., 2024).

TABLE 5 Predicted activities of test set compounds using MLR.

Compounds pIC50 obs Pred (pIC50) MLR Residual

3 6.750 6.668 0.082

4 6.604 6.677 −0.073

12 7.652 8.170 −0.518

21 6.976 7.263 −0.287

24 7.862 7.412 0.450

29 7.827 7.793 0.034

FIGURE 7
Correlation analysis of predicted vs. observed activity for the test set (MLR model).

TABLE 4 Criteria of Golbraikh and Tropsha’s for external validation.

Parameter Threshold Modelscore

Q2
training Q2

training > 0.5 0.618

r2 r2 > 0.6 0.7049

r20 0.6922

r′20 0.661

|r0
2- r’0

2| |r0
2- r’0

2| < 0.3 0.0382

K 0.85 < k < 1.15 1.00

r2−r20
r2

r2−r20
r2 < 0.1 0.018

k′ 0.85 < k’ <1.15 0.99

r2−r′20
r2

r2−r′20
r2 < 0.1 0.062
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In silico pharmacokinetic-
pharmacodynamic modeling

Due to advances in computer technology, drug design has been
accelerated by reducing the number of in-depth experiments. Early
identification of ADMET properties and drug similarity is now
crucial in the drug discovery process. In silico methods make it
possible to accurately assess the main ADMET parameters,
including absorption, distribution, metabolism, excretion and
toxicity (Vickers, 2017).

Lipinski’s Rule of Five is a valuable tool for predicting drug-
likeness. Compounds violating two or more of these rules often
exhibit challenges in ADMET properties (Hansch et al., 2004).
Notably, nearly 10% of drugs reaching clinical trials do not
adhere to these rules. Beyond Lipinski’s rule, factors such as
topological polar surface and number of rotational bonds also
influence drug similarity (Jin et al., 2020). Predicting these
factors helps us understand the flexibility of molecular
interactions with receptors.

Results and discussion

2D-QSAR study

Numerous tests were carried out to create a reliable model once
the molecular descriptors of 33 derivatives had been calculated
(Table 2). The six descriptors Stretch, Torsion, log P, Number of
rotating bonds, Molar volume and hardness were used to construct
the most appropriate model. Based on the results, the following
molecules (3, 4, 12, 21, 24 and 29) were chosen for the test set. In
addition the following molecules (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15,
16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, and 31) were chosen for
the training set. Equation 5 shows the QSAR model created by the
MLR approach.

pIC50 � −10.59993 + 0.81144 × S − 0.09127 × Tor + 0.00643 × MP

− 0.24116 × NRB − 0.00086 × repul + 191.40275 × η
(5)

N � 26; R2 � 0.91; MSE � 0.020 ; R � 0.95 ; R2
Ajus

� 0.88; Pr < 0. 0001; F � 30.363; R2
cv � 0.83

is the number of compounds in the training set. While MSE
corresponds to mean square error.

As shown in Equation 5, MCF-7 inhibitory biological activity
(pIC50) values correlate linearly with the five selected descriptors.
The following parameters are used to evaluate the QSAR model
developed using the MLR technique: R2, F, MSE, P-value and R2

cv.
These statistical measures, including a high coefficient of

determination (R2 = 0.91), a low root-mean-square error (MSE =
0.02) and a high F-statistic (F = 30.36), reveal a good statistical
performance of the QSAR model presented in Equation 5. This
suggests that the model is capable of accurately describing the
relationship between molecular descriptors and biological activity.
Additionally, the calculated P-value (Pr < 0.0001) confirms the
statistical significance of the model’s equation at a confidence
level above 95%.

The observed biological activity against MCF-7 breast cancer cells
can be mechanistically explained through the combined influence of
several molecular descriptors. Stretch and Torsion describe the internal
flexibility of the molecules and their ability to adopt bioactive
conformations within the survivin binding pocket; lower energy
values for these parameters enhance molecular adaptability and
binding affinity. The log P value reflects lipophilicity, which is
crucial for cell membrane permeability and intracellular
accumulation—a balanced log P ensures sufficient solubility and
effective penetration into MCF-7 cells. The number of rotating
bonds represents molecular flexibility; moderate flexibility facilitates
optimal conformational adjustments for target binding without
compromising structural stability. Molar volume affects the steric fit

FIGURE 8
The Williams graph of the model presented by Equation 5.
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within the survivin binding site—an appropriate volume allows efficient
cavity occupation and maximization of molecular interactions. Finally,
hardness, related to the molecule’s electronic properties, indicates its

potential for stabilizing interactions with the target protein; softer
molecules (lower hardness) generally display enhanced electronic
reactivity, favoring biological activity. Altogether, these descriptors

FIGURE 9
2D and 3D views of intermolecular contacts between the targeted protein of MCF-7 breast cancer cells (PDB ID of 2RKU) in complex with M28 (A)
and M5 (B) molecules, respectively.
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provide a rational explanation for the enhanced antiproliferative activity
observed in MCF-7 cells.

Stretch, melting point and hardness have a favorable effect on
biological activity, while torsion, repulsion and the number of
rotational bonds have an unfavorable effect, as shown in

Figure 2. The cross-validation correlation coefficient (R2
cv = 0.83)

is well above the 0.5 threshold, confirming the robustness of the
QSAR model derived from MLR.

The presence of an R2
cv value below R2 indicates the model’s

sensitivity when an element is omitted from the training set.

FIGURE 10
Conformational changes in RMSD values during 100 ns of MD time for the targeted protein of MCF-7 breast cancer cells (PDB ID of 2RKU) in
complex with M28 (A) and M5 (B), respectively.
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Figure 3 illustrates the correlation between observed and
predicted activities demonstrating the QSAR model’s ability to
accurately predict the biological activity of both training and test
set molecules. Figure 3 highlights the perfect correlation between
predicted and observed pIC50 values, confirmed by a low root-
mean-square error (RMSE). The formula in Equation 5 groups
together the five descriptors showing a significant linear
correlation with biological activity. To enhance alignment
between the QSAR model’s predicted activities and the six
molecular descriptors (S, Tor, MP, NRB, repul and η) we can
consider incorporating additional descriptors or refining the
existing ones, a new QSAR model is formulated employing
two non-linear methodologies: MNLR and ANN techniques.

Multiple nonlinear regression

The QSAR model, developed using the MNLR technique, is
presented in Equation 6:

pIC50 � 1166 + 7.30934 × S − 0.04749 × Tor + 0.02265 × MP

+ 0.14423 × NRB − 0.00686 × repul − 31788 × η
− 0.97489 × S2 − 0.00283 × Tor2

− 6.13750 × 10−6 × MP2 − 0.01803 × NRB2 + 6.14639E

− 7 × repul2 + 215698 × η2

(6)
N � 25 ; R � 0.96 ; R2 � 0.93 ; MSE � 0.025
The QSAR model’s performance is validated by its strong

coefficient of determination (R2) of 0.93, low mean squared error
(MSE) of 0.025, and high correlation coefficient (R) of 0.96. These
metrics indicate the model’s statistical significance and its ability to
accurately predict biological activity. The biological activities
predicted by the QSAR model, based on both linear and non-
linear regression, are presented in Table 3 for the training
and test sets.

The high coefficient of determination (R2
cv = 0.83) obtained

through LOO-CV confirms the robustness of the non-linear model.
This indicates that all 25 training set components contributed
significantly to the model’s effectiveness and reliability

Figure 4 demonstrates the strong correlation between
experimental and predicted pIC50 values, indicating the high
accuracy of the QSAR model.

Artificial neural networks

The ANN technique is used to generate a QSAR model a 6-three
to one architecture is utilized with a parameter ρ set to 1. The
proportion of the number of neurons in the hidden layer (3) to the
number of descriptors in the input layer (6) is reflected by the value
of ρ, which typically ranges between 1 and 3. This architecture aids
in predicting the pIC50 values represented by the single neuron in
the output layer. The QSAR model, developed using the ANN
technique, exhibited exceptional performance, as evidenced by a
coefficient of determination (R2) of 1 and a mean squared error
(MSE) of 0.0005. These results strongly suggest the model’s
statistical significance and its ability to accurately predict
antiproliferative inhibitory activity against MCF-7 cancer cells.
Consequently, predicting pIC50 values using the six selected
descriptors, namely, S, Tor, MP, NRB, repul and η is highly
relevant. These descriptors were chosen specifically because they
were deemed suitable for this particular task.

Figure 5 demonstrates a uniform distribution of predicted pIC50

values within the training set, indicating that the ANN model
effectively correlates with experimental pIC50 data.

Cross-validation (CV)

Results of cross-validation based on the Leave-one-out (LOO)
approach are shown in Figure 6. The cross-validation procedure
does not significantly affect the developed QSARmodel, as indicated
by the derived parameters, R2 = 0.83 and MSE = 0.027. These
unambiguous findings show how stable and reliable the suggested
QSAR model is. It is important to note that cross-validation alone

FIGURE 11
Conformational changes in RMSF values for the targeted protein
of MCF-7 breast cancer cells (PDB ID of 2RKU) in complex with
M28 (A) and M5 (B), respectively.
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may not be sufficient for fully evaluating the predictive capabilities of
QSAR models.

External validation

To assess the predictive capability of the QSAR models, we
performed external validation using the Golbraikh-Tropsha criteria
(Table 4) (Golbraikh et al., 2003) his involved evaluating the model’s
ability to accurately predict pIC50 values formolecules within the test set

as resulted in Table 5. To assess the model’s predictive power, we
calculated the correlation coefficient R2. A higher R2 value indicates a
stronger correlation between the predicted and actual activities of the
molecules, suggesting a more effective model, as shown in Figure 7.

The QSAR model demonstrated high predictive accuracy, with
an R2 value of 0.7049 falling within the acceptable range. This
indicates successful validation according to the Golbraikh and
Tropsha criteria. Additionally, external validation confirmed the
model’s ability to accurately predict pIC50 values for antiproliferative
activity against MCF-7 cancer cells.

FIGURE 12
Interaction fractions by the MCF-7 breast cancer cell-targeted protein (PDB ID of 2RKU) interacts with compounds M28 (A) and M5 (B) via
hydrophobic interactions represented by purple bars, water-bridge interactions represented by blue bars and hydrogen bonds represented by green bars.
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TABLE 6 Predicted pIC50 Values and Structural Features of Novel Compounds.

Compounds Structure pIC50_pred

M1 9.28

M2 9.53

M3 9.38

M4 9.42

(Continued on following page)
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Applicability domain (AD)

The William plot for the AD of the model is shown in Figure 8.
The Williams plot (Figure 8) illustrates the application of

leverage analysis to define the applicability domain (AD) of the
QSAR model. According to the results of the Williams diagram, the
leverage values are below the warning leverage (h*) for all
compounds in the training and test sets. The warning leverage is
calculated using the formula h* = 3 (p + 1)/n, where p represents the
number of model parameters, and n denotes the number of
compounds. In this case, h* is equal to 0.677. The lack of outliers
in the test sets enabled the QSAR model to generate precise
predictions. Consequently, all tested chemicals fall within the
AD, validating the anticipated activity levels. These findings
confirm the reliability and robustness of the developed QSARmodel.

Molecular docking simulations

The results of molecular docking reveal a variety of
intermolecular interactions that were produced between the most
active compound labeled C28 and the targeted protein of MCF-7
breast cancer cells coded as 2RKU.pdb such as one Hydrogen bond
detected with Cys133 amino acid residue, more than one Pi-Cation
bond fixed with Arg57 amino acid residue, one Pi-Pi Stacked bond
created towards Phe183 amino acid residue, in addition to several
Alkyl and Pi-Alkyl bonds, as presented in Figure 9A.

The best candidate ligand known by M5, was equally docked to
the structure of PLK1 in complex with BI2536 (PDB ID of 2RKU)

sharing common intermolecular interactions like those detected
towards Phe183, Cys133, Ala80, Leu130, Glu131, Cys67, and
Arg136 amino acids residues as presented in Figure 9B.
Moreover, a fairly low energy level in kcal/mol was observed for
both conditioned molecules, justified by a binding energy
of −8.25 kcal/mol and −6.38 kcal/mol for M28 and M5, respectively.

Molecular dynamics simulations

To examine the thermodynamic stability of intermolecular
interactions produced by molecular docking technique for
M28 and M5 molecules in complex with the targeted receptor of
MCF-7 breast cancer cells, the conformational changes in root mean
square deviation (RMSD) and root mean square fluctuation (RMSF)
were controlled throughout 100 nanoseconds of molecular
dynamic’s simulation time, in which the obtained results indicate
that M28 ligand synthesized by the lowest inhibitory activity was
complexed to the protein target revealing a good level of molecular
stability over 100 nanoseconds, which is justified by smaller RMSD
and RMSF values that not exceed 3Å threshold (Er-rajy et al., 2022a;
Er-rajy et al., 2023; Bouzammit et al., 2024). Almost the same level of
thermodynamic stability was detected for the M5 ligand as the most
active molecule among all five novel synthesized compounds, in
which all corresponding RMSD and RMSF values oscillated in an
equilibrium that did not exceed 3Å threshold as presented in Figures
10, 11, respectively. In other side, the interaction fractions diagram
confirms that Phe183, Ala80, Leu130, Glu131, Cys67, and
Arg136 amino acids residues have an important rule and

TABLE 6 (Continued) Predicted pIC50 Values and Structural Features of Novel Compounds.

Compounds Structure pIC50_pred

M5 9.58

TABLE 7 The values of parameters calculated for the news molecules and this predict activity.

Comp S Tor MP NRB repul η pIC50_pred

M1 2.3184 10.7868 1106.02 6 3659.74 0.08601 9.28

M2 2.281 12.669 1166.25 6 3579.79 0.086 9.53

M3 2.4091 10.8049 1116.7 6 3640.16 0.08575 9.38

M4 2.3513 10.94 1106.02 6 3690.36 0.08685 9.42

M5 2.3358 11.5044 1166.25 6 3647.79 0.08576 9.58
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especially Cys133 that was strongly implicated in the intermolecular
contacts of the responsible receptor of MCF-7 breast cancer cells
towards both M28 and M5 ligands, as displayed in Figure 12.

Design of new compounds

The main aim of this work is to design new MCF-7 inhibitors
based on dihydropteridone containing oxadiazoles, considering the
insights gathered from the 2D-QSAR studies. In this regard, four
dihydropteridone derivatives (M1, M2, M3, M4 and M5) were
designed to improve the inhibitory activity of the MCF-7
inhibitor (Table 6). Using the same method employed for the
previously studied molecules, we calculated the descriptors for
these newly designed compounds. The RLM model was then
used to predict their activity, as summarized in Table 7, the
newly designed candidate compounds exhibit significantly higher
inhibitory activity than the most active compounds in the studied
series. These findings suggest that the designed compounds have the
potential to serve as more effective MCF-7 inhibitors.

Lipinski’s rule

All the proposed new compounds adhere to Lipinski’s rules
(Table 8). The fact that the compounds adhere to Lipinski’s rule of
five suggests satisfactory physicochemical characteristics, meaning
that they have the potential for good oral bioavailability and may be
candidates for marketing authorization. However, it is essential to
stress that Lipinski’s rule of five is a recommendation, not a
definitive rule. Further preclinical studies are necessary to
thoroughly evaluate these compounds’ suitability as potential
medications.

ADMET properties

To assess the potential suitability of the designed molecules as
medications, we evaluated their pharmacokinetic properties,
specifically ADMET (Absorption, Distribution, Metabolism,
Excretion and Toxicity). The in silico ADMET properties were
predicted using the pkCSM online tool (Pires et al., 2015), and
the results are shown in the table below (Table 9).

The data in Table 9 lead to a number of conclusions:

- A threshold below 30% indicates poor human intestinal
absorption. All predicted molecules have an absorption
value in excess of 79%, indicating that they are well
absorbed by the human intestine.

- The volume of distribution (VDss) is a pharmacokinetic
parameter that indicates the distribution of drugs between
blood plasma and tissues. A low VDss indicates limited tissue
distribution, while a high VDss suggests significant tissue
distribution. Predicted VDss values for these compounds
reveal their suitability for good tissue distribution (Ahmed,
2015). Additionally, the partition coefficient (LogP) values for
all predicted compounds are below 4, suggesting favorable
distribution between blood and tissues. However, theseT
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TABLE 9 ADMET properties.

Models Properties

Absorption Distribution Metabolism Excretion Toxicity

Intestinal absorption
(human)

P-Gp substrate VDss (human) CYP450 Total clearance AMES toxicity

Substrate Inhibitor

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Unity Numeric (%absorbed) Categorical
(yes/no)

Numeric (Log
L kg−1)

Categorical (YES/NO) Numeric (log mL
min−1 kg−1)

Categorical
(yes/no)

Predicted values

M1 87.998 Yes 0.617 No Yes No No No No No 0.448 No

M2 79.198 Yes 0.593 No Yes No No No No No 0.456 No

M3 78.934 Yes 0.808 No Yes No No No No No 0.49 No

M4 87.998 Yes 0.617 No Yes No No No No No 0.448 No

M5 79.198 Yes 0.593 No Yes No No No No No 0.456 No

Fro
n
tie

rs
in

C
h
e
m
istry

fro
n
tie

rsin
.o
rg

18

A
lo
u
i
e
t
al.

10
.3
3
8
9
/fch

e
m
.2
0
2
5
.15

9
0
5
9
3

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1590593


compounds are likely to have a poor degree of central nervous
system (CNS) permeability, in accordance with their CNS
Index LogP values above 3 (El fadili et al., 2023b).

- Cytochrome P450 (CYP) enzymes, present in all body tissues,
play a crucial role in detoxification by oxidizing foreign
compounds, These enzymes can both inhibit and activate
various drugs, affecting their metabolism, Knowing whether
a compound can inhibit CYP enzymes is essential for drug
development. There are seventeen CYP families in humans, of
which CYP1A2, CYP2A3, CYP2A4, CYP3A4, CYP2C9,
CYP1A2, CYP2D6 and CYP2C19 are responsible for
metabolizing over 90% of drugs undergoing 1st-pass
metabolism (Šrejber et al., 2018). CYP3A4 and CYP2D6 are
the two main isoforms involved in drug metabolism.
According to the analysis of predicted compounds, these
may be CYP3A4 substrates only (Chandrasekaran et al.,
2018). This could affect the pharmacokinetics of these
drugs, altering their elimination rate and onset of action.

- To optimize drug dosage and guarantee fixed concentrations, it
is essential to take into account clearance rates, which depend
on hepatic metabolism and renal excretion (Benkhaira et al.,
2023). The lower the clearance index, the greater the drug’s
half-life. Our analysis indicates that all predicted compounds
have a total clearance index of less than 0.5, suggesting long
retention in the body. This prolonged presence probably
contributed to their efficacy in inhibiting MCF-7 cells, albeit
at very low doses.

- Toxicity studies are an essential step in drug development. To
assess the mutagenic potential of predicted compounds, in
silico Ames tests were performed (Shinu et al., 2022). None of
the compounds were predicted to be mutagenic. Additionally,
the ADMET in silico evaluation confirmed that all the
predicted molecules met the established
pharmacokinetic criteria.

Given their potential to inhibit MCF-7 breast cancer cells, these
compounds could serve as promising candidates for future cancer
treatments. Furthermore, they can form the basis for the
development of new molecules with enhanced biological
properties and broad therapeutic applications.

Conclusion

This study aimed to identify novel dihydropteridone derivatives
with oxadiazole moieties as potential inhibitors of MCF-7 breast
cancer cells. A 2D-QSAR analysis was employed to elucidate the
structural determinants influencing biological activity. The MLR
method yielded a robust QSAR model with exceptional predictive
power. Key descriptors (S, Tor, MP, NRB, repul and η) were
identified as critical for inhibitory activity. Based on the robust
QSAR model, five promising compounds were rationally designed
and subsequently subjected to in silico evaluation. Molecular
docking studies demonstrated favorable binding interactions
between these compounds and the target protein, suggesting
potential for strong binding affinity. Furthermore, comprehensive
pharmacokinetic and ADMET assessments indicated promising

profiles for these compounds, including good absorption,
reasonable distribution, and acceptable toxicity levels. These
encouraging findings collectively suggest that the identified
derivatives possess the potential to serve as promising lead
candidates for the development of novel and efficacious anti-
breast cancer agents. Future research efforts will focus on
constructing 3D-QSAR models to gain a more nuanced
understanding of the intricate structure-activity relationships
within this chemical space. This deeper understanding will
facilitate the design and optimization of even more potent and
selective inhibitors, ultimately paving the way for the development
of novel and improved therapeutic interventions for breast cancer.
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