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Glucose oxidase (GOx), as a molecular recognition element of glucose
biosensors, has high sensitivity and selectivity advantages. As a type of
biosensor, the glucose oxidase electrode exhibits advantages such as ease of
operation, high sensitivity, and strong specificity, promising broad application
prospects in biomedical science, the food industry, and other fields. In recent
years, with the advancement of nanotechnology, research efforts to enhance the
performance of GOx biosensors have primarily focused on improving the
conductive properties and specific surface area of nanomaterials, while
neglecting the potential to modify the structure of the core component, GOx
itself, to improve biosensor performance. Rapid modification of the GOx surface
through chemical modification techniques yields a new modified enzyme
(mGOx). Meanwhile, composite techniques involving carbon nanomaterials
can be employed to further enhance sensor performance. This article reviews
the construction methods and optimization strategies of glucose oxidase
electrodes in recent years, along with research progress in their application in
electrochemical sensing for glucose detection, and provides an outlook for
future developments.
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1 Necessity of glucose testing

With the rapid development of the social economy, people’s dietary structure has also
changed, and carbohydrate-rich diets have become the norm and are increasing day by day.
According to the International Diabetes Federation (IDF) in 2019, 463 million people
worldwide are currently living with diabetes. China ranks first in the number of diabetic
patients, with about 116.4 million people, 25% of the world’s share. The large diabetic
community has attracted more and more social attention. People are starting to consciously
avoid carbohydrate-rich foods, so foods with low-calorie or non-nutritive sweeteners and
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sugar-free products have become very popular. According to the
GB28050-2011 National Food Safety Standard “General Principles
for Nutrition Labeling of Prepackaged Foods”, “sugar-free or sugar-
free” specifically refers to a sugar content of no more than 0.5 g per
100 g or 100 mL of solid or liquid food. The complex diversity of
food samples makes it necessary to develop a highly sensitive, low-
cost, and rapid glucose detection method. To help people
understand the sugar content in food and to achieve the purpose
of disease prevention (Zhang Y. et al., 2018; Wang et al., 2024). So
far, a variety of glucose detection methods have been developed,
including fluorescence, optical, sonic, thermal, electrochemical, and
colorimetric methods have been used for the detection of glucose
due to their simple operation, however, the sensitivity of this method
is often poor and insufficient to quantify glucose in the sample, and
to circumvent these problems, electrochemical methods have been
extensively studied (Li et al., 2021; Ma et al., 2022; Sun et al., 2016).
Although different glucose detection techniques have been reported,
electrochemical sensors due to their high sensitivity, low cost, and
simple instrumentation, it is still considered the most successful
analytical tool for glucose detection (Han et al., 2021; Ma et al., 2021;
Hu et al., 2024). Glucose electrochemical sensing detection has the
advantages of high detection sensitivity, accuracy and rapidity, and
low construction cost, which can not only detect human blood
glucose levels but also can be used to detect trace amounts of glucose
in food, medicine, and biological samples (Bai et al., 2020; Peng et al.,
2019), Therefore, electrochemical sensing analysis occupies an
important position in glucose detection. Meanwhile, in recent
years, the improvement of sensor performance has become a
research hotspot, especially in terms of sensitivity, selectivity and
long-term stability. For example, Tong et al. (Tong et al., 2024)
prepared nanocomposites (PGOx@M-Xene/CS) by efficient
electrostatic assembly of GOx polygels (PGOx) onto MXene
nanosheets, PGOx can enhance the stability of the enzyme, while
MXene’s extensive large specific surface area reduces its influence on
enzyme stability. The constructed glucose sensor had a linear range
of 0.03–16.5 mM, with a sensitivity of 48.98 μA mM-1·cm-2, and the
limit of detection was 3.1 μM. The current remained at 85.83% of the
initial current value after 200 cycles. Ramachandran et al.
(Ramachandran et al., 2022) effectively prepared hexagonal
CoMn2O4 electrode material by simple hydrothermal technique
using KOH as surfactant and the obtained sensor maintained
85% capacitance after 4,000 consecutive charge/discharge cycles
with 81% maximum column efficiency.

2 Advances in electrochemical
detection sensors for glucose

2.1 Glucose oxidase-based electrodes

The first enzyme electrodes and enzyme sensors were
described by Clark and Updike in the 1960s (Hovancová
et al., 2017). In their concept, glucose oxidase (GOx) could be
trapped in a semi-dialysis membrane on an oxygen electrode,
and glucose concentration could be determined indirectly by
monitoring oxygen consumption. Five years later, Updike and
Hicks proposed an innovative method for the preparation of
glucose analysis enzyme electrodes, which was designed to

achieve rapid and accurate determination of glucose
concentration in the blood by firmly embedding glucose
oxidase (GOx) in a polyacrylamide gel layer overlying an
oxygen electrode (Wang P. et al., 2019). Since then,
electrochemical glucose sensors have developed rapidly, and
electrochemical enzyme electrode technology has become the
main method for detecting glucose (Xia et al., 2022). Today,
electrochemical glucose sensors have undergone four
transformations in principle, forming four generations of
sensors, the principle of which is shown in Figure (Figure 1).

2.1.1 First-generation glucose biosensors
The first generation of glucose enzyme electrochemical sensors

utilized molecular oxygen as an electron acceptor, and the
electrochemical signal was transmitted by measuring the
decreasing oxygen concentration or the released H2O2, but the
detection method was greatly affected by dissolved oxygen, and
the detection potential was too high, which made the detection
results easily affected by other interfering substances (Wen et al.,
2020; Bu et al., 2024). On the other hand, the H2O2 produced during
the reaction accumulated, and the concentration increased, resulting
in the loss of glucose oxidase activity (Qin et al., 2017).

In the 80s of the 20th century, a large number of studies focused
on solving the problems of oxygen interference and redox
interference (Zhang et al., 2019). There are many solutions to
oxygen interference. Gough et al. (Gough et al., 1985) overcame
oxygen interference by increasing oxygen/glucose permeability with
the help of a mass migration limiting membrane. Wang et al.
addressed oxygen restriction in glucose biosensors by using
oxygen-rich Carbon Paste Electrodes (Wang and Lu, 2009).
D’Costa et al. avoided oxygen demand deficiency by replacing
GOx with glucose dehydrogenase, which does not require oxygen
cofactors, and the solution to redox interference was mainly to
reduce interference to the electrode surface by selective coating (D
Costa et al., 1986). Zhang et al. found that a cellulose acetic-Nafion
composite membrane can effectively eliminate electrochemical
interference such as acetaminophen (Zhang et al., 1994).
Millilista et al. immobilized GOx using an electrochemically
synthesized polyphenylenediamine (PPD) membrane that
selectively removed ascorbic acid interference (Malitesta et al.,
1990; Rong et al., 2019).

2.1.2 Second-generation glucose biosensors
The second-generation biosensor overcame the limitations

encountered by the first-generation biosensor. They used redox
mediators instead of oxygen to transfer electrons from the
enzyme to the surface of the working electrode. The resulting
reducing medium is further oxidized on the electrode formation
of oxidation mediators, thus the ampere signal was detected.
Various organic/inorganic chemicals are used as electronic
media, mainly ferrocene derivatives (Monkrathok et al., 2024),
ferricyanide (Nikitina et al., 2023), quinones (Mtemeri and
Hickey, 2023), transition metal complexes (Wijayanti et al.,
2023), and phenothiazine (Teymourian et al., 2020). Campbell
et al. realized the detection of glucose by covalently coupling
glucose oxidase to a redox medium containing ferrocene,
combined with intramolecular electron transfer and electron
self-exchange (Campbell et al., 2017). Zhou et al. achieved the
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detection of glucose by incorporating ferrocene (FC) as an
electronic medium and immobilizing glucose oxidase (Gox) on
the gate electrode, and tests with simulated blood samples were
performed, and the modified sensor showed a bilinear response
in the range of 0.6–26.3 mM, whereas conventional sensors (e.g.,
PEDOT-based) have a narrower linear range (0.5 μM-0.1 mM)
(Zhou et al., 2024). Donini et al. (Donini et al., 2020) fixed glucose
oxidase to redox graphene and used it for the detection of glucose.
Lin et al. (2019) used hydrophilic and positively charged alpha-
poly-L-lysine (alpha PLL) as an embedded substrate to fix
negatively charged glucose oxidase (GOx) and ferric cyanide
(FIC) onto SPCE to construct a disposable second-generation
glucose biosensor, and tested in real human serum samples, the
sensitivity was significantly improved (from 117.4 to 212.1 nA/
mM mm2), and the linear range and detection limit were also
superior to the pre-improved sensor. The emergence of redox
mediators solved the problem of the dependence of glucose
sensors on oxygen, but the sensors still had limitations. The
presence of redox agents increased the cost of sensors, and many
redox agents were biotoxic, limiting the range of sensor
applications. Therefore, it is hoped that a way to replace or
eliminate redox mediators while maximizing the current
intensity of the sensor (Ahmad et al., 2023). Therefore, in the
third generation of electrochemical glucose sensors, the
biocatalyst was directly bound to the electrode surface where
the signal was converted and amplified, thus ensuring that the
electron transfer between the biocatalyst and the contact surface
of the conductive carrier was as efficient and fast as possible
(Khan et al., 1996; Ravikumar et al., 2021).

2.1.3 Third-generation glucose biosensors
The third-generation glucose biosensor is not dependent on

oxygen and redox mediators, and the goal is to transfer electrons
directly from the redox site of GOx to the electrode in the absence
of a medium. However, the redox center of GOx, flavin adenine
dinucleotide (FAD), is deeply embedded in the three-
dimensional macrostructure of the enzyme molecule, which
acts as an inherent barrier to direct electron transfer between
GOx and the electrode. A range of nanomaterials, such as
conductive polymers, metal oxides, carbon nanotubes, and
graphene, have been used as electrode materials for modified
electrodes (Xu et al., 2017; Ma et al., 2019; Shen et al., 2019; Shah
et al., 2024). The distance between the active center of the enzyme
and the surface of the electrode is effectively reduced to create a

suitable environment and promote the smooth progress of the
direct electron transfer process between the enzyme and the
electrode. Rafighi et al. (2016) synthesized a glucose biosensor
using a hybrid of graphene and polyethyleneimine-gold
nanoparticles as enzyme carriers, and tested in actual blood
samples, the sensitivity of the sensor reached 9.3 μA·mM-1cm-

2, superior to carbon quantum dots reported in the literature
(6.1 μA mM-1). Tao et al. (Ming et al., 2024; Zhu et al., 2022)
modified the sensor by electrochemically depositing gold
nanoparticles to enhance its conductivity for better detection
of glucose, tested in clinical serum samples, the improved sensor
showed only a 13.1% decrease in sensitivity after 7 days in bovine
serum compared to a 45.1% decrease in the uncoated version,
demonstrating that the PU film significantly extends the service
life. Chu et al. (2015) successfully prepared composite carriers by
in situ electrodeposition of gold nanocubes on a thiol graphene
film. These were uniformly distributed on the electrode surface
and had a regular nanostructure. This glucose biosensor exhibits
high sensitivity and selectivity, and increased sensitivity to
221.0 μA mM-1·cm-2, 4-7 times higher than similar sensors in
the literature, and retained 79.3% sensitivity after 2 weeks of
storage (Figure 2). However, the structure of the enzyme protein
may change after fixation on the surface of the electrode, which
will affect the enzyme activity and the stability of the electrode
(Apaliya et al., 2017; Wang L. et al., 2019; Jing et al., 2020).
Therefore, preliminary research on third-generation EBGS has
focused on how to achieve DET, which mainly involves the
following aspects: 1) adding an electron transfer domain to
the enzyme itself, 2) modifying with conductive
nanomaterials, and 3) modifying with other materials (Song
et al., 2024).

Compared with the first and second generations of glucose
biosensors, the third generation of glucose biosensors has
achieved better results. However, its core principle is still
controversial, and whether the DET that generates electrical
signals is real is still doubtful. The redox peak may not come
from the electron transfer of active enzymes but because the
enzyme’s structure is destroyed, resulting in FAD exposure.
Moreover, external environmental factors such as temperature,
pH, and humidity may affect their dependence on enzyme
activity. In addition, the performance of biosensors also depends
on the thickness of the enzyme layer, which is high, resulting in
signal attenuation or loss (Ou et al., 2021; Yin et al., 2023; Xu
et al., 2016).

FIGURE 1
Schematic diagram of electron transfer of fourth-generation electrochemical glucose sensor.
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2.2 Glucose dehydrogenase-based
electrodes

Glucose dehydrogenase (GDH), an NAD(P)+-independent
oxidoreductase, has attracted a lot of attention in recent years for
its application in glucose sensors. Different types of GDH play an
important role in improving the sensitivity, selectivity, and stability of
the sensor. Glucose dehydrogenase forms complexes with cofactors
such as flavin adenine dinucleotide (FAD), nicotinamide adenine

dinucleotide (NAD), or pyrroloquinoline quinone (PQQ) (Zhao et al.,
2021). For example, the glucose sensor developed by Kim et al., which
involves binding the enzyme to the anionic self-assembled monolayer
on the electrode through electrostatic interactions, exhibits high
sensitivity. (Kim et al., 2012) (Figure 3). Chen et al. (2022)
developed an NAD (+)-dependent dehydrogenase/NPG/SPE
biosensing platform for the electrochemical detection of glucose by
modifying a screen-printed electrode (SPE) with NPG and NAD
(+)-dependent dehydrogenase.

FIGURE 2
The preparation scheme of Au nanocube/graphene composite film based biosensor. Due to the existence of -SH on graphene surface, oxidase can
directly adhere on the film by the interaction produced by the -S-S- from protein and -SH from grapheneReproduced with permission from ref, (Chu
et al., 2015). Copyright 2015, Elsevier Publication.

FIGURE 3
Schematic for binding of PQQ-GDH onto the SAMs of 11-MUA: (a) electrostatic and (b) covalent binding via EDC/NHS chemistry. Reproduced with
permission from ref, (Kim et al., 2012). Copyright 2015, Springer Science Publication.
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3 Non-enzymatic glucose sensor

Non-enzymatic glucose sensors are a technology that does
not rely on an enzyme-catalyzed reaction to detect glucose
concentration. The core principle of the non-enzymatic
glucose sensor lies in the precise detection of glucose
concentration through an electrochemical catalytic reaction.
The detection system relies on the intrinsic catalytic activity of
metal nanomaterials to realize the direct oxidation process of
glucose molecules on the electrode surface in an alkaline
medium. The catalytic unit is usually constructed with highly
active metal nanoparticles, including two systems of noble metals
(Au, Ag, Pt) and transition metals (Ni, Co, Cu) (Li H. et al., 2024).
These nanostructures significantly enhance the charge transfer
efficiency and catalytic site density of the sensor by increasing the
effective reaction interface and optimizing the mass transfer
channels. Although non-enzymatic sensors circumvent the
problem of enzyme activity decay, their selectivity,
environmental adaptability and long-term stability are still the
main bottlenecks (Table.1). Therefore, glucose oxidase-based
sensors are still in the main position for glucose detection.

The fourth-generation glucose biosensor is a non-enzymatic
glucose sensor that uses an artificial substance with enzyme-like
catalytic properties to replace glucose oxidase and oxidize glucose
directly on the surface of the electrode. Fourth-generation
glucose sensors (FGGS) are designed to enhance glucose-
sensing technology and reduce the number of intermediate
stages equired for glucose measurement. Diagnostic efficiency
and cost-effectiveness can be improved by using these sensors,
which are fabricated using electrocatalytic copper nanostructures
(Naikoo et al., 2022; Kilic et al., 2023). Ahmad et al. fabricated an
electrochemical-based non-enzymatic glucose biosensor using
engineered layered CuO nanoleaves, which shows high
sensitivity (1467.32 μA/(mM cm2)), linear range (0.005–5.
89 mM), and detection limit of 12 nM (S/N = 3) (Ahmad
et al., 2021). The fourth generation has the advantage of using
chemically derived materials, which is more suitable for large-
scale production, and the chemically produced identification
parts can exert better uniformity and reproducibility
compared to enzymes prepared by biotechnology. On the
other hand, this type of device can be affected (Pohanka,
2021). Therefore, the use of glucose oxidase electric sensors
for glucose detection is still the mainstream.

4 Enhancement of glucose oxidase
activity stability

In the development of glucose biosensors, the enhancement of
glucose oxidase activity stability is the core technical difficulty. In
recent years, the linkage strategies for Gox activity attenuation have
focused on the following directions: nanomaterial encapsulation
protection: encapsulating GOx by metal-organic frameworks
(MOFs) or mesoporous silica to limit the enzyme molecular
conformational changes. For example, Mao et al. (Mao et al.,
2025) successfully synthesized glucose oxidase (GOx)@Zn-HHTP,
which significantly improved the stability of the encapsulated GOx
and was applied to construct an ECL glucose sensor with 8.5-fold
increase in sensitivity and 25-fold decrease in detection limit, which
was successfully applied to detect glucose in sweat. Covalent cross-
linking enhancement: Glutaraldehyde or genetically engineered
bifunctional cross-linkers (e.g., SpyCatcher/SpyTag) were used to
enhance the enzyme-electrode interface binding. For example,
Chmayssem et al. (2023) used a chitosan-based hydrogel to
capture glucose oxidase (GOx) and crosslinked the entire
substrate with glutaraldehyde, and the resulting biosensor was
able to maintain its stability over 6 months of storage.
Biomimetic polymer coatings: polydopamine (PDA) or
amphoteric ionic polymers (e.g., poly (sulfobetaine)) were utilized
to form antifouling coatings. For example, Chen et al. (2023)
combined the good hydrophilicity and biocompatibility of PDA
with the high loading properties and peroxidase-like activity of
HKUST-1 to synthesize the PDA/HKUST-1/MWCNTs/GOx
biosensor, which was used for glucose detection with a sensitivity
of 178 μA mM-1cm-2, a linear range of 0.005 mM, and a limit of
detection of 0.12 μM. The initial current response value remained at
82.0% after 30 days (Figure 4).

5 Chemical modification of
glucose oxidase

5.1 Introduction to glucose oxidase

In the presence of molecular oxygen, glucose oxidase catalyzes
the oxidation of β-D-glucose to D-glucono-delta-lactone and
hydrogen peroxide. The resulting D-glucono-delta-lactone is
sequentially hydrolyzed to D-gluconate by lactonase, and the

TABLE 1 Comparison of enzyme versus non-enzyme sensors.

Category Core
components

Detection
mechanism

Sensitivity Selectivity Stability Response
time

Enzyme sensors GOx/GDH Enzymes catalyze glucose
oxidation to produce a

measurable electrical signal

High (detection limit
as low as μm class)

Excellent (enzyme
specifically recognizes

glucose)

Low (easy
inactivation of

enzyme, limited by
temperature, pH)

Faster (seconds)

Non-enzyme
sensors

Metallic
nanomaterials or
carbon-based
materials

Direct electrochemical
catalysis of glucose

oxidation, which generates
an electric current signal
through a reaction on the
surface of a metal active
site or carbon material

Higer (up to the nM
level in some studies,
but susceptible to
interference in

complex samples)

Poor (susceptible to
interference from

electroactive substances
such as ascorbic acid, uric

acid, etc., requires
additional

functionalization)

High (no
biocomponents,
resistant to high

temperatures, wide
pH range)

Faster
(milliseconds as no
enzyme catalytic
step required)
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resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and
water (Bauer et al., 2022). GOx has a relative molecular mass of
130 × 103–175 × 103 and exists as a glycosylated homodimer, with
each subunit noncovalently bound to one flavin adenine
dinucleotide (FAD) molecule, and the two subunits are bound to
each other by forces such as salt bridges and hydrogen bonds
(Huang et al., 2022). In the catalytic process, GOx uses molecular
oxygen as an electron acceptor and FAD coenzyme as an electron
carrier to catalyze specifically the formation of D-glucose-delta-
lactone and hydrogen peroxide (H2O2) from β-D-glucose (Wang
et al., 2022). GOx is most active under weakly acidic conditions, and
the pH range in which activity is stable is 3.5–7.5; other than that too
much acid and too much alkali will inactivate the enzyme molecule.
GOx is available from a variety of sources. Bacterial, fungal, herbal,
and animal sources are the main ones. Fungi are considered to be the
richest source and are widely used for industrial applications, A.
niger, and P. glaucoma were the first identified sources of GOx
isolates, and glucose oxidase isolated from Aspergillus niger is
considered to be the most stable (Khatami et al., 2022; He et al.,
2022; Guo et al., 2021; Shang et al., 2019). Glucose oxidase has been
widely used in biomedical applications (Min et al., 2023), bio-Fenton
oxidation (Vaidyanathan et al., 2023), feed field (Liang et al., 2023),
textile bleaching (Tzanov et al., 2002), reducing wine processing
(Pickering et al., 1998), food packaging deaerator (Ge
et al., 2012), etc.

5.2 Methods of chemical modification
of enzymes

Chemical protein modification provides a large toolbox for the
study and modification of enzymes, which play key roles in many
important biological events in organisms; in particular, by
associating desired properties/functions (affinity probes,
fluorophores, reactive tags, etc.) with naturally or synthetically
modified amino acid residues, chemical protein modification

provides a useful way to identify enzyme locations and elucidate
enzyme functions (Yu et al., 2022; He et al., 2018; Yan et al., 2024).

Chemical modifications of enzymes can be divided into covalent
modifications, non-covalent modifications, targeted modifications,
and macromolecular coupling (Table.2). The specific modification
mechanisms are shown in the following table (Table.3). Surface
modification is carried out using functionalized small molecules
bearing alcohol, aldehyde, carboxylic acid, or isothiocyanate groups,
and these reactions are carried out on the enzyme surface with
exposed functional groups to form covalent bonds (Giri et al., 2021;
Noro et al., 2022). Polymer coupling is the most common strategy
for macromolecular modification enzymes. Among macromolecules
such as polyglycol, polypropylene, and dextran,
polydiethanolization is the most studied method, such as
covalent polyglycol bonding with partial molecules or
macromolecules (Noro et al., 2022; Li T. et al., 2024; Zhang
et al., 2020; Chen et al., 2024). Chemical modifications of
enzymes can alter affinity, specificity, or stability, while selective
modifications enable the labeling of enzymes, allowing insight into
complex biological processes, significant improvements have been
made in the field of chemical modification/capture strategies for
proteomic analysis, these methods emerged to be able to analyze the
activity of enzymes in the body, and the chemicals used are often
site-specific variants of those chemicals that are more commonly
used to modify proteins and enzymes (Diaz-Rodriguez and Davis,
2011; Ren et al., 2018).

5.3 Research progress on glucose oxidase
modification

The specific recognition of glucose by glucose oxidase makes
glucose oxidase biosensors the most common electrochemical
biosensors for glucose detection. However, the current sources
and types of glucose oxidase are limited, and rapid molecular
modification of the enzyme, such as chemical modification

FIGURE 4
Copper-based metal–organic frameworks (MOF) and multi-walled carbon nanotubes (HKUST-1-MWCNTs) composite were synthesized by one-
step hydrothermal method, and PDA-enzyme-HKUST-1-MWCNTs composite was prepared by one-pot method for the construction of glucose
biosensors. Reproduced with permission from ref, (Chen et al., 2023). Copyright 2022, Springer Science Publication.
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techniques, is needed to alter its activity and selectivity. In recent
years, the surface modification of glucose oxidase has attracted the
attention of researchers (Table.4) (Liu et al., 2024). Back in 1991,
Kunugi et al. (1992) introduced a ferrocenyl group on glucose
oxidase by combining the carboxyl group on ferrocene acid with
the amino group on glucose oxidase to form a modified enzyme, the
modified enzyme can be detached from oxygen for electron transfer
with the electrode. Halalipour et al. (2020) attached phenyl
derivatives to the carboxyl side chain or amino side chain of
glucose oxidase (Gox) and modified Gox with hydrophobic
aniline and benzoate, respectively, which showed that aniline-
modified Gox had the highest catalytic efficiency, followed by
benzoate-modified Gox, and the natural Gox performed the
worst. It is demonstrated that hydrophobic modification increases
Gox activity and is more resistant to high temperatures, at 80°C and
240 MPa, the rate of inactivation of aniline-modified GOx was 3.7-
fold lower than that of the natural enzyme and 2.8-fold lower than
that of the benzoic acid-modified enzyme. Hosseinkhani et al.
(Hosseinkhani et al., 2004; Shi et al., 2019; Jiang et al., 2020)
used citric anhydride to modify the lysine residues of glucose
oxidase chemically, the pH tolerance of the modified enzyme was
enhanced, and UV and fluorescence spectra also indicated that the
chemical modification resulted in more exposure to hydrophilic
residues. In addition, Liu et al. (Liu et al., 2013) also utilized the

carboxyl group on 1-pyrenebutyric acid to covalently bind to the
amino group on the surface of glucose oxidase, so that the enzyme
surface carries a pyrenyl group with a conjugated structure, which
was then loaded on graphene and assembled into a glucose oxidase
electrode, which greatly improved the detection range of glucose
concentration, the linear detection range of the modified sensor was
0.2–40 mM with a detection limit of 0.154 mM (S/N = 3), which
greatly improved the detection range of glucose concentration, and
was tested in real human serum samples, which greatly improved the
detection range of glucose concentration, with a 5.1% decrease in
activity in the first week, and still retaining 82.2% activity after
4 weeks. In addition to the surface modifications of the Gox, Zappelli
et al. (Zappelli et al., 1978; Hou et al., 2017) modified FAD with
epoxy acid and subsequently coupled it with polyethyleneimine to
form a macromolecular FAD, which showed a 12-fold increase in
stability compared to unmodified FAD in a circulating system with
alanine as substrate. Fornerod et al (2023) used porous
aluminosilicates and silicates for surface modification of Gox
loading, the glucose detection sensitivity of the amino-modified
electrode was 0.26 μA/mM (0–14 mM), which was higher than that
of the unmodified electrode of 0.16 μA/mM (0–8 mM), and the
detection limit of the modified electrode was 1.4 mM lower than that
of the unmodified electrode (3.6 mM) (Figure 5). Lv et al. (2021)
modified Gox with amines to obtain enzymes with higher enzymatic

TABLE 2 Classification of chemical modifications of enzymes.

Modification
type

Mechanism of action Technical examples Impact on GOx performance

Covalent modification Introduction of functional groups or molecules on
the GOx surface through chemical bonding (e.g.,

amide bonds, thioether bonds)

Amino and carboxyl cross-linking (e.g.,
Ferrocene-GOx complex), acylation of lysine

residues (citric anhydride modification)

Enhanced electron transfer efficiency,
improved thermal stability, expanded

pH tolerance range

Noncovalent
modification

Functional materials based on physical adsorption
or electrostatic loading

Porous silicate-loaded Gox, graphene/polyaniline
complex embedding

Maintains enzyme activity, improves
immobilization efficiency, reduces

conformational changes

Directional modifier Specific modifications targeting the GOx active
center (FAD cofactor)

Epoxy acid modification of FAD with
polyethyleneimine coupling and coenzyme analog

replacement

Shortening of electron transfer pathways,
enhancement of catalytic efficiency and

coenzyme stability

Macromolecular
coupling

Covalent binding of GOx via polymers (e.g., PEG,
dextran)

PEGylation modification to improve enzyme
solubility and dextran modification to enhance

organic solvent tolerance

Extends enzyme life, improves
biocompatibility, reduces non-specific

adsorption

TABLE 3 Mechanistic explanation of chemical modification of enzymes.

Modification type Mechanism explanation

Covalent modification Hydrophobic modification: forming a rigid hydrophobic core, reducing
conformational fluctuations caused by water molecule intrusion, and

improving thermal stability

Hydrophilic modification: Enhance the dispersion of the enzyme in the
aqueous phase to reduce aggregation inactivation

Noncovalent modification Conductive network enhancement: Utilizing the high conductivity of
carbon nanomaterials (e.g., graphene, carbon nanotubes) to construct a
continuous electron transfer pathway and reduce interfacial resistance

Micropores (<2 nm) in porous materials (e.g., hollow carbon spheres)
limit the conformational changes of the enzyme molecule and reduce

the inactivation caused by thermal movement

Directional modifier Direct electron transfer by anchoring the electron mediator to the
vicinity of the FAD coenzyme through chemical modification (e.g.,
epoxy acid coupling) or genetic engineering (e.g., introduction of

cysteine tags)

Introduction of hydrophilic groups (e.g., carboxymethyl) at the
substrate entrance to lower the substrate binding energy barrier and

enhance catalytic efficiency

Macromolecular coupling PEGylation modification reduces hydrophobic interactions between
enzyme molecules through spatial site resistance

Dextran coupling forms a hydrophilic protective layer, preventing
protease from approaching the enzyme molecule, extending the

lifetime from 1 week to 6 months
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activity and to give the sensor a higher peak current intensity, the
electron transfer rate constant of the amine-modified sensor, 2.54 s-1,
was 1.39 times higher than that of the unmodified sensor (1.83 s-1). It
can be seen that chemical modification can quickly and
inexpensively change the properties of glucose oxidase, and
glucose oxidase will be more and more widely used.

6 Multifunctional applications of
carbon nanomaterials for
glucose sensing

Since the birth of the first glucose oxidase electrode in 1962,
people have been trying to find suitable materials to modify glucose

oxidase on the electrode surface and maximize enzyme activity.
Carbon nanomaterials have attracted great research interest due to
their unique size, strength, electrical and surface area properties, and
good biocompatibility and stability (Zeng et al., 2016). Therefore,
carbon nanomaterials have become popular materials in the field of
catalysis and sensing (Table 5). Currently people apply carbon
nanomaterials to electrochemical sensors, which not only
simplifies the size of the sensor, but improves the sensitivity as
well as the stability of the electrode, but also greatly shortens the
response time so that the electrochemical sensor is toward the
direction of practical, miniaturization, and multifunctional
development (Table 6) (Kaçar et al., 2014; Bi et al., 2018; Dong
et al., 2024).

6.1 One-dimensional materials: carbon
nanotubes and nanofibers

Carbon nanotubes are allotropes of carbon, which are part of
the fullerene family of structures and are small in diameter
(nanoscale) and length (micrometer) (Wang et al., 2021;
Sridharan et al., 2022). Typical carbon nanotubes are tubular
carbon atom systems composed of hexagonal carbon atoms,
which have special properties due to their symmetrical
structure. Their behavior depends entirely on their spiral
nature, and because of this, they play the role of
semiconductors or metals (Soni et al., 2020). Carbon
nanotubes (CNTs) are highly regarded members of the
synthetic carbon allotrope due to their unique arrangement of
carbon atoms, sp2 hybridization, and cylindrical structure
arranged between C-C distances of 1.42 Å and 3.4 Å layers,
which make them different from other nanocarriers (Prajapati

TABLE 4 Chemical modification of glucose oxidase.

Modification
type

Functionalization strategy Performance enhancement Application
scenarios

References

Covalent modification Ferrocen covalently binds to the amino group on
the surface of Gox to form an electron-mediated

complex

Electron transfer efficiency increased by 2.5-
fold, oxygen dependence reduced by 80%

Medical diagnostics
(blood glucose
monitoring)

Kunugi et al.
(1992)

Covalent modification Aniline hydrophobically modifies Gox carboxyl/
amino group to form a rigid hydrophobic core

Catalytic efficiency increased to 1.8 times that
of natural enzyme, activity retention
increased from 40% to 85% at 70°C

Food testing (high-fat
samples)

Halalipour et al.
(2020)

Covalent modification Modification of Gox lysine residue by citric
anhydride to enhance hydrophilicity

Expanded pH tolerance from 4.0-7.5 to 3.0-
9.0 and increased activity retention from 40%

to 90% in acidic environment

Industrial catalysis
(bioreactors)

Hosseinkhani et al.
(2004)

Covalent modification Pyrene moiety covalently bound to Gox surface
via carboxyl-amino group and complexed with

graphene

Linear range of detection extended from
0.1 to 10 mM to 0.01–50mM, sensitivity up to

98.7 μA mM-1·cm-2

Highly sensitive
biosensing

Liu et al. (2013)

Directed modification FAD coenzyme modified by epoxy acid coupled
with polyethyleneimine to form stable coenzyme-

polymer complexes

12-fold increase in coenzyme half-life and
3.5-fold increase in current response strength

Long-term stability
sensor

Zappelli et al.
(1978)

Non-covalent
modification

Aminoated porous silicate loaded with Gox,
immobilization of enzyme molecules by

electrostatic adsorption

Aminoated porous silicate loaded with Gox,
immobilization of enzyme molecules by

electrostatic adsorption

Complex sample
detection (blood)

Fornerod et al.
(2023)

Macromolecular
coupling

PEGylated modification of Gox surface amino
groups to form a hydrophilic protective layer

Enzyme activity retention in organic solvents
increased from 30% to 75%, extending the

lifetime to 6 months

Industrial enzyme-
catalyzed reactions

Kajiwara et al.
(2019)

FIGURE 5
Poly (isoprene)-block-poly (ethylene oxide) (PI-b-PEO) micelles
were co-assembled with aluminum silicate nanoparticles in solution
and then spin-coated onto the working electrode to form a thin film.
The hybrid coating was then calcined to condense the inorganic
nanoparticles into a continuous matrix and remove the block
copolymer (BCP) micelles, resulting in pores. Reproduced with
permission from ref, (Fornerod et al., 2023). Copyright 2023, ACS
Publication.
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et al., 2022). According to their number of layers, they are divided
into (a) single-walled carbon nanotubes (SWCNTs): graphite
sheets of single-atom thickness bent into cylinders; (b) Multi-
walled carbon nanotubes (MWCNTs): several layers of graphite
sheets arranged concentrically (Bin et al., 2022). Single-walled
carbon nanotubes (SWCNTs) have a simple chemical structure
and clean surface properties, which give them a high degree of
chemical stability. In contrast, multi-walled carbon nanotubes
(MWCNTs) have a more complex wall layer, resulting in a
complex and variable surface structure, which can adsorb and
bind a large number of surface functional groups. This structural
complexity provides significant advantages for MWCNTs in a
wide range of applications (Han et al., 2024; Xia et al., 2023; Su
et al., 2023) (Figure 6).

Carbon nanotubes were introduced by Sumio Iijima in 1991
(Sumio, 1991) and formally described and named, its unique tubular
nanostructure (L/D ratio may be as high as 132 million:1), superior
strength, and significant physicochemical properties quickly caught
the attention of researchers (Upadhyay et al., 2011; Zeng et al., 2022).
In addition, CNTs have excellent electrical conductivity, strong
adsorption capacity, high sensitivity, good biocompatibility, and
excellent chemical stability, making them ideal nanomaterials for the
preparation of biosensors (Ma et al., 2019; Wang et al., 2021; Wang
et al., 2009). Kyuhwan et al. discovered that carbon nanotubes

(CNTs) as covalently immobilized materials for Gox can
effectively maintain Gox based on activity and stability, the
biosensor prepared based on this was used to detect glucose, and
the sensitivity reached 53.5 μA·mM-1cm-2, which remained 86%
active after 2 weeks, compared to the DTSSPmodified gold electrode
(0.026 s-1) and glassy carbon electrode (0.2 s-1), this electrode
achieved an electron transfer rate of 1.14 s-1, a 5.7~44-fold
improvement (Hyun et al., 2015). Yin et al. (2024) used a glucose
monitoring skin patch prepared from a hollow syringe modified
with glucose oxidase (GOD) and carbon nanotubes (CNTs) as an
electrochemical sensor for glucose monitoring and an integrated
circuit for signal processing and transmission, and displaying real-
time blood glucose levels on a smartphone via Bluetooth, which
continuously measures glucose in real time in live animals with
micromolar sensitivity and a lifetime of more than 14 days of
useful life.

Carbon nanofibers (CNFs), with their excellent electrical
conductivity and remarkable specific surface area, have attracted
much attention in nanotechnology and materials science in recent
years. Its excellent electron mobility ensures that electrons can be
transferred at the electrode interfaces in an efficient and low-
resistance manner, thus realizing an efficient electrical signal
transduction mechanism. In addition, the nanoscale structure of
CNFs provides many active sites, further facilitating rapid electron

TABLE 5 Classification of carbon nanomaterials in glucose sensors.

Material
classes

Structural properties Functional advantages Typical study cases

One-dimensional materials

Carbon nanotubes
(CNTs)

Tubular structure、sp2 hybridization、
high L/D ratio (L/D > 106)

High electrical conductivity (104 S/cm)、strong
adsorption capacity、 large specific surface area

(~500 m2/g)

(Hyun et al., 2015): CNTs immobilized GOx,
sensitivity 53.5 μAmM-1·cm -2 with 86% retention of 2-

week activity

Carbon nanofibers
(CNFs)

Fibrous porous structure、 50–200 nm
diameter

High mechanical strength (~3 GPa)、 3D
interconnected pores (pore sizes 2–50 nm)

(Zhang et al., 2018b): detection limits as low as
0.015 mM, recoveries in the range of 101.0%–104.8%

Two-dimensional materials

Graphene (GR) Single atomic layer honeycomb
structure, theoretical specific surface area

2,630 m2/g

Ultra-high carrier mobility (2 × 105 cm2/V·s),
abundant edge active sites

(Wu et al., 2022): Pt/GO composite electrode
sensitivity 11.64 mA mM-1, response time <3 s

Graphene
oxide (GO)

Layered structure modified with oxygen-
containing functional groups

Good hydrophilicity, easy functionalization (e.g.,
-NH2, -COOH modification)

(Pakapongpan and Poo-Arporn, 2017): Fe3O4/GO
self-assembled system, detection limit 0.1 μM

Graphyne (GDY) sp-sp2 hybridized network, intrinsic
pores (~0.5 nm)

Excellent porosity, high density of catalytically
active sites (~1015 sites/cm2)

(Liu et al., 2019): Fe-GDY/GOx electrodes in the
range of 5–160 μM glucose concentration, R2 = 0.998

three-dimensional material

Carbon aerogel (CA) Three-dimensional porous network,
density 0.1–0.5 g/cm3

Ultra-low density, high electrical conductivity
(~10 S/cm), compression resilience >90%

(Yu et al., 2015): ZrP-CA/GOx Linear calibration in
the range of 0.12–2.0 mM, sensitivity 5.56 μA mM-

1·cm-2

zero-dimensional material

Carbon quantum
dots (CQD)

Particle size <10 nm, surface rich in
-OH/-COOH groups

Tunable fluorescence properties, excellent
biocompatibility, easy surface functionalization

(Hu et al., 2020): CdTe QDs/CQDs Concentration
detection range from 0 mM to 13 mM, detection limit

0.223 mM

Nanodiamonds
(NCD)

Diamond cores (~5 nm) + surface sp2

carbon layer
Chemically inert, high hardness, surface

functionalization (e.g., -NH2 modification)
(Zhao et al., 2006): N-NCD/Gox has a wide linear
calibration range of 10 μM–15 mM and a low

detection limit of 5 μM
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TABLE 6 Mechanism of the effect of different carbon nanomaterials on sensor performance.

Material classes
Long-term stability Anti-interference performance

One-dimensional materials

Carbon nanotubes (CNTs) Literature sensor retains 86% of initial activity after 14 days of
continuous use in a simulated serum environment (25°C, pH = 7.4)

π-π conjugate shielding: the sp2 hybridized surface of single-walled
carbon nanotubes forms a π-π stacking with the tryptophan residues

of GOx, which preferentially adsorbs glucose molecules
(hydrophobicity), while repelling hydrophilic interferences such as

uric acid, ascorbic acid, and others

Carbon nanofibers (CNFs) The sensor in the literature retained 71.9% activity after 30 days 3D mesh filtration: sub-micron pores formed by interwoven fibers
block macromolecular interferents through size exclusion effect,

while allowing glucose to diffuse freely

Two-dimensional materials

Graphene (GR) The sensor in the literature showed only a 5% decrease in sensitivity
after 30 repetitions in tomato juice, indicating excellent short-term

stability

Surface charge repulsion: negatively charged surfaces inhibit
negatively charged interferents through electrostatic repulsion

Graphene oxide (GO) The current response of the sensor in the literature remained 95.6% of
the initial value after 1 month of storage at 4°C

Surface charge repulsion and negatively charged surfaces suppress
negatively charged interferences through electrostatic repulsion

Graphyne (GDY) High short-term stability of the literature sensor Catalytic site specificity, graphyne modification site preferentially
catalyzes glucose oxidation

Three-dimensional material

Carbon aerogel (CA) After 90 scans of the sensor in the literature, the peak current
decreased by less than 8%, indicating good stability

Hierarchical pore design: macroporous-mesoporous-microporous
three-stage structure (pore size distribution of 50 μm-2 nm) enables
the mass transfer rate of interferents (e.g., ascorbic acid diffusion
coefficient of 1.2 × 10−5 cm2/s) to be only 1/3 of that of glucose by the

difference in the diffusion paths. only 1/3 of that of glucose

zero-dimensional material

Carbon quantum dots (CQD) Fluorescent sensors in the literature show <10% signal attenuation
after 28 days of storage in urine samples

Pore size sieving effect to physically block large interfering molecules

Nanodiamonds (NCD) Sensors in the literature retain 75% of initial sensitivity after 1 month
of storage

Chemically inert surfaces to reduce non-specific adsorption Surface
modifications, such as boron or nitrogen doping to improve

conductivity and grafting of selective membranes (e.g., polymers) to
block interfering substances

FIGURE 6
The role of carbon nanotubes in electrochemical sensors.

Frontiers in Chemistry frontiersin.org10

Guoqiang et al. 10.3389/fchem.2025.1591302

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1591302


transfer and reaction kinetics. For example, Zhang et al. (2018a)
modified GOx electrodes by combining manganese dioxide
nanoparticles and carbon nanofiber nanocomposites and
completed practical application validation by spiking samples of
urine in order to obtain sensors with detection limits as low as
0.015 mM, recoveries in the range of 101.0%–104.8%, and retention
of 71.9% of activity after 30 days, and the sensitivity of the MnO2-
CNFs-modified sensor was 5.4 times more sensitive to H2O2

(33.1 μA/mM) than the MnO2-modified electrode only (6.1 μA/
mM) (Figure 7).

6.2 Two-dimensional materials: graphene,
graphene oxide and graphyne

Following CNTs, scientists Geim and Novoselov prepared a
new carbon nanomaterial, graphene (GR) in 2004 (Morales-
Narvaez et al., 2017; Sun and Joshi, 2010; Wu et al., 2017).
Graphene biosensors have been vigorously developed in the
past decade due to their small size, unique conductive and
optical properties (such as fluorescence quenching and
conductivity), and good biocompatibility that meet the high
efficiency and diversity requirements of biosensors (Zhu et al.,
2017; Zhou et al., 2016; Zhao et al., 2022). Pakapongpan and Poo-
Arporn, (2017); Wu et al. (2017) prepared a GOx biosensor by self-
assembling glucose oxidase (GOx) on covalently modified
magnetic nanoparticles (Fe3O4 NPs). The graphene material
facilitated the electron transfer between the enzyme and the
electrode surface, and the biosensor showed a fast
amperometric response to glucose (3 s), a linear range from
0.05 to 1 mM, a low detection limit of 0.1 μM, significantly
lower than that of GNs/ZnO/SPE (70 μM), and high sensitivity
(5.9 μA mM-1), and the current response of the sensor remained
95.6% of the initial value after 1 month’s storage at 4°C. Wu et al.
(2022) developed a microelectrode glucose biosensor based on 3D
hybridized nanoporous platinum/graphene oxide nanostructures

for rapid glucose detection in tomato and cucumber fruits, which
achieved high glucose detection sensitivity (11.64 muA calibrated
in glucose standard solution), low detection limit (13 mumol/L)
and fast response time (95% steady-state response within 3 s). Liu
et al. (2019) immobilized ferrous ions and glucose oxidase on GDY
sheets and presented GDY-based composites with dual enzyme
activity. Rat serum was used as a test sample and the electrodes
obtained were superior to V2O5 nanowires (10–2000 µM) and Cu-
Ag/GO composites (1–30 µM), with R2 = 0.998, and 0.89 µM for
Fe-GDY/GOx, which is significantly lower than Fe/CeO2 NPs
(3.41 µM) and H2TCPP/Fe2O3 NPs (2.54 µM) (Figure 8).
Antonova et al. (2024) developed a soft microfluidic
glucose sensor catalyzed and mediated by bimetallic palladium
and platinum supported on reduced graphene oxide with 1,10-
phenanthroline-5,6-dione. The sensor demonstrated a linear

FIGURE 7
(A) Schematic illustration for the synthesis of MnO2–CNFs nanocomposites. the MnO2–CNFs conjugates were prepared via the interaction of the
carboxyl group with Mn2+ for subsequent on-spot chemical deposition of MnO2 onto CNFs. (B) Schematic representation of the mechanism of
electrocatalysis of glucose catalyzed by glucose oxidase. Reproduced with permission from ref, (Zhang et al., 2018b). Copyright 2018, Springer Science
Publication.

FIGURE 8
Schematic representation of the mechanism for immobilizing
ferrous ions and glucose oxidase on Graphdiyne. Reproduced with
permission from ref, (Liu et al., 2019). Copyright 2018, ACS Publication.
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amperometric response to glucose within the range of
50–900 μM at an applied potential of 0.2 V, exhibiting a
detection limit of 37 μM and a sensitivity of 30 μA cm-2 mM-1.
The wearable sensor prototype enables convenient non-invasive
measurement of exercise-induced sweat glucose levels for
personalized diabetes monitoring.

6.3 Three-dimensional materials: hollow
carbon spheres and carbon aerogels

Carbon aerogels (CAs) are mesoporous materials with
abundant porosity and high specific surface area that are
suitable for many practical applications. In addition, CAs have
been found to have excellent biocompatibility due to their three-
dimensional (3D) structural network, good electrical
conductivity, exceptional chemical and environmental
stability, and strong adhesion capabilities, which are ideal for
the development of next-generation catalyst materials
(Thirumalraj et al., 2018). Yu et al. (2015) reported a
zirconium phosphate-carbon aerogel (ZrP-CA) composite
material, where the ZrP-CA/GOx configuration exhibited a
linear calibration range of 0.12–2.0 mM for glucose detection,
surpassing conventional GOD/In2O3–chitosan (0.005–1.3 mM)
and GOD–graphene–CdS (0.025–1.19 mM) systems. The
sensitivity reached 5.56 μA mM-1cm-2, demonstrating a
enhancement compared to traditional ZrP-based sensors
(0.41 μA mM-1cm-2).

6.4 Zero-dimensional materials: carbon
quantum dots and nanodiamonds

Carbon quantum dots (CDs) are a class of fluorescent carbon-
based nanoparticles with a particle size of <10 nm, and the abundant
oxygen-containing functional groups (-OH, -COOH) on their
surfaces provide multiple anchor sites for Gox immobilization.
Compared with conventional materials, the advantages of CDs
are reflected in the excitation wavelength-dependent fluorescence
property of CDs that can work synergistically with electrochemical
signals, and the cytotoxicity of CDs (IC50 > 500 μg/mL) is
significantly lower than that of CNTs (IC50 ≈ 50 μg/mL) for
implantable sensors. Hu et al. (Hu et al., 2020) developed a
sensitive fluorescent microfluidic sensor based on carbon
quantum dots (CQDs), cadmium telluride quantum dots (CdTe
QDs) aerogel, and glucose oxidase (GOx), with all experimental
validations performed using human urine specimens for glucose
detection. The sensor demonstrated exceptional storage stability,
retaining stable fluorescence signal (R/G ratio) and colorimetric
response after 30-day storage at −20°C. It achieved a broad glucose
detection range from 0 to 13 mMwith a detection limit of 0.223 mM
(S/N = 3). Zhao et al. (2006) developed an electrochemically
pretreated glucose biosensor based on non-doped nanocrystalline
diamond (N-NCD)-modified gold electrodes for selective glucose
detection, achieving a broad linear calibration range from 10 μM to
15 mM with a low detection limit of 5 μM (S/N = 3), which
significantly outperforms conventional sensors. The biosensor
retains 75% of its initial sensitivity after 30 days of storage.

We compare the effects of different carbon nanomaterials on
glucose sensors (Table 7) and add the mechanisms by which they
increase the electron transfer rate of the sensors (Table 8).

7 Synergistic chemical modification of
carbon nanomaterials and enzymes
with glucose sensors

The high conductivity of carbon nanomaterials provides a fast
channel for electron transfer between the enzyme and the electrode;
their large specific surface area also provides abundant sites for
enzyme immobilization, while chemical modification can shorten
the electron transfer path and further reduce the interfacial
resistance; by regulating the enzyme microenvironment,
conformational changes can be reduced, which improves the
catalytic efficacy and thermal stability of the enzyme. The
adsorption properties of carbon nanomaterials synergize with the
selective screen of chemical modification, which can effectively
shield interferences such as ascorbic acid and uric acid and
improve the specificity of the sensor (Table 9).

8 Significance and challenges of
glucose oxidase electrode modification

Glucose oxidase electrochemical sensors have attracted
much attention because of their ability to detect glucose
specifically, but maintaining the activity of the enzyme is also
a challenge. By introducing materials such as carbon nanotubes,
graphene, and metal nanoparticles with high specific surface
area, good electrical conductivity, and catalytic activity on the
electrode surface and by chemically modifying the enzyme, the
efficiency of electron transfer between the enzyme and the
electrode can be significantly improved, thereby increasing
the sensitivity of the sensor. These modified materials not
only provide more attachment sites for GOx, but also
enhance the interaction between the enzyme and the
electrode, making the oxidation of glucose more efficient. For
sensor performance, future research should focus on optimizing
sensor sensitivity, improving selectivity and interference
immunity, and increasing long-term stability and
commercialization potential.

In recent years, some enzyme-modified nanomaterial sensors
have entered the commercialization stage, e.g., FreeStyle Libre
(Abbott) has successfully occupied a significant position in the
global market of glucose detection. However, the following key
issues still need to be addressed in order to realize their large-
scale production: reproducibility of material synthesis (e.g., the
diameter and chirality control of single-walled carbon nanotubes
(SWCNTs) still relies on a complex gas-phase deposition process,
resulting in large performance variations between batches),
compatibility of enzyme immobilization processes (existing
enzyme modification technologies (e.g., covalent modification,
macromolecular coupling) are susceptible to environmental
fluctuations in continuous production), device miniaturization
and integration (lab lab labs are susceptible to environmental
fluctuations), and the use of enzyme-enabled devices.),
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TABLE 7 Comparison of different carbon nanomaterials for glucose sensor applications.

Material Core advantage Sensitivity Selectivity Stability Cost

Carbon nanotubes High electrical conductivity, mechanical strength, wide detection range High Medium Medium Medium

Graphene Ultra-high electron transfer rate, large specific surface area Very high High High High

Graphene oxide Easy surface modification, synergistic effects High Extremely high High Medium

Carbon quantum dots Fluorescence properties, low detection limit Extremely high High High Low

Carbon aerogel 3D porous structure, high loading capacity Medium Medium Medium High

Nanodiamond Chemical stability, biocompatibility Medium High Extremely high Extremely high

Graphdiyne High electrical conductivity and unique pore structure Extremely high Extremely high Medium High

Carbon nanofibers 3D network structure, easy surface functionalization Medium Medium High Medium

TABLE 8 Effect of different carbon nanomaterials on the electron transfer rate of glucose sensors.

Material Influence mechanism Main limitations

Carbon nanotubes One-dimensional conductive channels: π-π
conjugation effect of tubular structure provides
direct electron transfer pathway, lower interfacial

resistance

High aspect ratio: enhanced contact area with
enzymes, promotes direct electron transfer

(DET) for glucose oxidase (GOx)

Poor dispersibility, potential biotoxicity

Graphene Ultra-high electrical conductivity: 2D
honeycomb structure of sp2 hybridized carbon
atoms creates continuous electron channels, high
electron mobility, significantly shortens electron

transfer path

Large specific surface area (2,630 m2/g): exposes
more active sites, enhances loading efficiency of
enzymes or catalysts, promotes interfacial charge

transfer

Reduced number of active sites due to interlayer
stacking

Graphene oxide Surface functional groups: oxygen-containing
groups (-OH, -COOH) enhance immobilization

of biomolecules (e.g., enzymes) but block
conductivity

Reduction treatment (rGO): restoration of part
of the sp2 structure by thermal or chemical
reduction, significant increase in electrical
conductivity (close to 80% of graphene)

Reduction treatment is required to restore
conductivity

Carbon aerogel 3D porous network: high porosity (>90%)
shortens ion diffusion paths, facilitates

electrolyte penetration, and reduces charge
transfer impedance

Conductive backbone: graphene or carbon
nanotubes reinforced 3D structure provides

continuous electron transport paths

Complex preparation process

Carbon quantum
dots

Quantum size effect: small size (<10 nm)
provides high surface activity but low

conductivity, need to be compounded with
conductive substrates (e.g., GO, CNTs)

Fluorescence-electrochemical synergy: enhanced
catalytic efficiency through light-induced

electron transfer

Need to compound with conductive substrate to
compensate for conductivity

TABLE 9 Comparison of typical cases of synergies.

Carbon nanomaterials Enzyme modification strategies Performance enhancement References

Graphene Covalent modification of Gox by pyrene moiety Extended detection range to 0.01–50 mM, 3-fold increase in
sensitivity

Liu et al. (2013)

Multi-walled carbon nanotubes Covalent immobilization of Gox by amino
groups

Sensitivity 53.5 μA-mM-1-cm-2, 2-week activity retention 86% Hyun et al. (2015)

Carbon quantum dots Electrostatic adsorption of Gox Detection limit 0.223 mM, significant biocompatibility Hu et al. (2020)

Graphyne Fe2+ co-loading with Gox Linear range 5–160 μM, R2 = 0.998 Liu et al. (2019)
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miniaturization and integration of equipment (laboratory
sensors rely on bulky electrochemical workstations, while
commercial equipment requires integrated signal
processing modules).

9 Outlook for future applications of the
glucose oxidase electrode

Most of the current research is still based on standard solutions
or simulated samples, and the validation of real blood samples needs
to be further optimized for immunity (e.g., ascorbic acid, uric acid,
etc.) and long-term stability. Future studies need to focus on the
validation of sensor performance in real complex samples (e.g.,
whole blood, food extracts) and the development of portable devices
in combination with miniaturization techniques tomeet the needs of
clinical diagnosis and immediate testing (POCT). At the same time,
there are many issues to be faced to realize the utility of glucose
oxidase electrodes as follows. Existing carbon nanomaterials (e.g.,
graphene, carbon nanotubes) may trigger an inflammatory response
upon long-term skin contact, so encapsulating materials that are
flexible, breathable, and biologically inert, such as polyurethane-
nanofibrillar cellulose composite membranes, need to be developed.
At the same time, surface functionalization techniques (e.g., PEG
modification) are used to reduce the immunogenicity of the
materials, thus further improving their biocompatibility. Second,
wearable devices need to adapt to sweat pH fluctuations, mechanical
deformation and temperature changes to ensure sensor stability in
dynamic environments. Meanwhile, continuous glucose monitoring
requires the integration of multiple sensors (e.g., pH, temperature
compensation modules), but the energy consumption of
nanomaterial devices limits miniaturization, so multimodal data
synchronization needs to be optimized to balance energy
consumption.
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