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Trypanosoma cruzi is the cause of Chagas disease (CD), a major health issue that
affects 6–7 million individuals globally. Once considered a local problem,
migration and non-vector transmission have caused it to spread. Efforts to
eliminate CD remain challenging due to insufficient awareness, inadequate
diagnostic tools, and limited access to healthcare, despite its classification as a
neglected tropical disease (NTD) by the WHO. One of the foremost concerns
remains the development of safer and more effective anti-Chagas therapies. In
our study, we developed a standardized and robust machine learning-driven
QSAR (ML-QSAR) model using a dataset of 1,183 Trypanosoma cruzi inhibitors
curated from the ChEMBL database to speed up the drug discovery process.
Following the calculation of molecular descriptors and feature selection
approaches, Support Vector Machine (SVM), Artificial Neural Network (ANN),
and Random Forest (RF) models were developed and optimized to elucidate
and predict the inhibition mechanism of novel inhibitors. The ANN-driven QSAR
model utilizing CDK fingerprints exhibited the highest performance, proven by a
Pearson correlation coefficient of 0.9874 for the training set and 0.6872 for the
test set, demonstrating exceptional prediction accuracy. Twelve possible
inhibitors with pIC50 ≥ 5 were further identified through screening of large
chemical libraries using the ANN-QSAR model and ADMET-based filtering
approaches. Molecular docking studies revealed that F6609-0134 was the
best hit molecule. Finally, the stability and high binding affinity of F6609-0134
were further validated by molecular dynamics simulations and free energy
analysis, bolstering its continued assessment as a possible treatment option
for Chagas disease.
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1 Introduction

Chagas disease (CD), caused by the protozoan parasite
Trypanosoma cruzi, was diagnosed for the first time in humans in
1909 (Abras et al., 2022; Rassi et al., 2010; Rassi et al., 2012). CD has
shifted from a regional to a global health concern, spreading beyond
vector-borne transmission. T. cruzi infection can occur through blood
transfusion, organ transplantation, congenital transmission, and
laboratory accidents (Carbajal-de-la-Fuente et al., 2022). Among
these, congenital transmission is particularly alarming, affecting both
endemic regions (with vectors) and non-endemic areas (without
vectors), making it a growing public health threat worldwide
(Carbajal-de-la-Fuente et al., 2022). CD affects 6–7 million people
globally, mainly in Latin America.Withmigration, CD has spread from
rural to urban areas and beyond endemic regions, posing a growing
global health challenge. In 2010, WHO classified CD as a neglected
tropical disease (NTD) and later included it in the 2021–2030 roadmap
for elimination. Managing NTDs remains challenging, especially in
non-endemic regions, due to low awareness, limited diagnostic
guidelines, and resource redirection during the COVID-19 pandemic
(Fraundorfer, 2024; Kiehl et al., 2023). These factors, along with
healthcare inaccessibility for vulnerable groups, threaten progress
toward 2030 targets. Control efforts focus on vector control and
screening, as no vaccine exists. The complex immunology and
chronic nature of CD hinder vaccine development, making
prevention and early detection crucial in combating the disease
(Sarabi Asiabar et al., 2024). The currently approved drugs,
Benznidazole and Nifurtimox, are effective but associated with
severe toxicity due to their nitro groups, which generate reactive
metabolic radicals (Kannigadu and N’Da, 2020; Trovato et al., 2020).
This leads to adverse effects such as mutagenicity, genotoxicity, and
carcinogenicity, limiting their long-term therapy (Kannigadu andN’Da,
2020). Given these challenges, the search for safer and more selective
therapeutic alternatives has gained at this momentum. Since the 1990s,
researchers have focused on sterol 14α-demethylase (CYP51) inhibitors,
which is a crucial target in the sterol biosynthesis pathway of parasite
(Choi et al., 2014; Lepesheva et al., 2011; Patterson and Fairlamb, 2019).
These inhibitors offer greater selectivity and potentially reduced toxicity,
making them promising candidates for improved CD treatment.
However, clinical development of these compounds remains
challenging, requiring further optimization to balance efficacy and
safety. CYP51, a key enzyme in sterol biosynthesis, is essential for
parasite survival, making it a promising drug target. Azoles like
posaconazole and ravuconazole inhibit CYP51 by interacting with its
heme iron, offering potential for selective treatment (Lepesheva et al.,
2007; Parker et al., 2014; Rabelo et al., 2017). Other targets include
cruzipain, pyrophosphate enzymes, and trypanothione reductase,
though many inhibitors have shown high toxicity. Despite extensive
research, benznidazole and nifurtimox remain the only FDA-approved
drugs. Recent studies suggest piperazine analogues of fenarimol as safer
alternatives, highlighting the need for novel and less toxic therapies
(Mazzeti et al., 2021; Salomao et al., 2016; Zobi and Algul, 2025). The
new derivatives with amide, sulfonamide, aromatic, carbamate, and
carbonate substituents were evaluated for their ability to inhibit T. cruzi
in vitro and showed very promising results (Keenan et al., 2013; Keenan
and Chaplin, 2015).

Despite 2 decades of research, no more effective and less toxic
therapeutic alternatives have been identified, and existing drug

combinations remain under clinical evaluation (Cheesman et al.,
2017; Harrison et al., 2020). Cheminformatics and molecular
modelling offer a valuable approach, providing cost-effective
solutions compared to traditional drug discovery methods (Baldi,
2010; Bayat Mokhtari et al., 2017; Siddiqui et al., 2025). QSAR is a
statistical approach that correlates molecular descriptors with
biological activity, aiding in the prediction of compounds with
more effectiveness (Naithani and Guleria, 2024; Patel et al., 2014;
Winkler, 2002). In this study, we developed a robust 2-dimensional
machine learning QSAR model using a dataset of T. cruzi inhibitors
from the ChEMBL database (https://www.ebi.ac.uk/chembl/) to
predict biological activity. The model was trained on multiple
molecular descriptors to establish a robust structure-activity
relationship, enabling accurate activity predictions for new
compounds. To further validate potential candidates, we
performed virtual screening using molecular docking to assess
binding affinity within the target site. The top-ranked
compounds were further subjected to molecular dynamics
simulations to evaluate their stability and interactions over time,
ensuring their potential effectiveness as novel T. cruzi inhibitors.

2 Materials and methods

2.1 Data curation

To construct a machine learning-driven quantitative structural
activity relationship model (ML-QSAR), we retrieved a dataset of
1,183 T. cruzi inhibitors along with their chemical structures as
Simplified Molecular Input Line Entry System (SMILES) and
biological data as maximum inhibitory concentration (IC50)
values from the ChEMBL database (https://chembl.gitbook.io/
chembl-interface-documentation/web-services). The data curation
was carried out using chembl web resource client Python module.
To ensure a normalized scale for the ML-QSAR model as well as to
reduce variability in data analysis, the IC50 values were converted to
pIC50, i.e., negative logarithm (base 10) of IC50.

2.2 Molecular descriptor calculation and
feature selection

We used padelpy (https://github.com/ecrl/padelpy), a Python
wrapper of the PaDEL-descriptor software, to calculate 1,024 CDK
fingerprints and 780 atom pair 2D fingerprints (Yap, 2011) for the
retrieved 1,183 inhibitors. Following the descriptor calculation step,
we further implemented variance threshold scores and Pearson
correlation analysis-based selection (correlation coefficient >0.9)
to eliminate the constant and highly correlated features,
respectively, from both the fingerprint datasets.

2.3 ML-QSAR model development and
evaluation

We used an 80:20 split ratio for generating the training and test
datasets for both fingerprints. We implemented Support Vector
Machine (SVM), Artificial Neural Network (ANN), and Random
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Forest (RF) ML algorithms to develop individual QSAR models for
each of the fingerprint datasets using the scikit-learn (https://scikit-
learn.org/stable/) Python programming library (Breiman, 2001;
Goel et al., 2023; Utkin, 2019). For the SVM model, we
implemented the radial basis function (RBF) kernel to capture
the non-linear relationships between the molecular fingerprints
and biological activity. Additionally, the model was optimized for
C (regularization) and gamma (kernel coefficient) parameters. In
case of the ANN-driven QSAR model, we implemented a
feedforward neural network (FNN) with one hidden layer. We
also tuned the number of neurons, activation function (ReLU),
and optimizer (Adam) for the ANN model. For the RF-driven
QSAR model, an ensemble of decision trees was used along with
a feature bagging technique to enhance the predictive power of the
model. Additionally, we also optimized the number of estimators
(trees), the depth of trees, and the minimum samples per split.

Following the development of the initial model, we further
performed principal component analysis (PCA) to assess the
distribution of compounds and detect potential outliers in both
training and test datasets. PCA was applied to transform the high-
dimensional descriptor space into principal components, retaining
maximum variance in a low-dimensional space. The first two
principal components were further visualized using a scatter plot to
inspect cluster formation as well as to detect points deviating from the
main distribution. Molecules falling outside the main data clusters were
detected as outliers and were removed from further modeling.

Following outlier detection and removal, we further trained the
model using grid-based hypertuning and cross-validation metrics
using SVM, ANN, and RF algorithms. To determine the best-
performing models, we computed a diverse set of statistical
metrics for each model: root mean squared error (RMSE), mean
squared error (MSE), mean absolute error (MAE), Pearson
Correlation coefficient, and 10-fold cross-validation metrics. The
model with the lowest RMSE, MSE, and MAE values while retaining
a high Pearson Correlation Coefficient was selected as the optimal
QSAR model for predicting the inhibition mechanism.

2.4 Feature elucidation of the ML-QSAR
model for rational drug-design

To further enhance the interpretability of the ML-QSAR models
for both the fingerprints, we further implemented different feature
importance analysis techniques like Variance Importance in
Projection Analysis (VIP), Correlation Matrix Analysis, and
Shapley Additive Explanations (SHAP) (https://shap.readthedocs.
io/en/latest/) analysis (Nohara et al., 2022). For the VIP plot analysis,
we computed the Partial Least Squares Regression (PLSR) method to
rank descriptors based on their contribution to the model (Cao et al.,
2017). For Correlation Matrix analysis, a pairwise correlation matrix
was generated to identify the positively and negatively correlated
molecular fingerprints for both models. For SHAP analysis, we
individually computed SHAP values for each fingerprint to
interpret how each molecular fingerprint influenced the pIC50

values across the datasets. Additionally, we also did cluster
analysis for both highly active (pIC50≥7) and weak inactive
molecules (pIC50≤4) using Tanimoto Coefficient-based similarity
analysis (https://github.com/MunibaFaiza/tanimoto_similarities).

This clustering approach helped in identifying shared molecular
features among compounds demonstrating strong or weak
inhibition activity. To further enhance the interpretability of the
clustering approach, we employed a WordCloud (https://pypi.org/
project/wordcloud/) approach to visualize the most frequently
occurring molecular features among the two groups.

2.5 Machine learning-driven chemical
library screening

To further pave the path for the discovery of novel andmore effective
drug candidates, we implemented a two-dimensionalmultiplexmodeling
to screen large chemical libraries.We curated anAntiprotozoal Screening
Compound Library of 8,200 molecules from the Life Chemicals database
(https://lifechemicals.com/screening-libraries/targeted-and-focused-
screening-libraries/antiprotozoal-library). We then implemented the
first layer of virtual screening approach, i.e., pharmacokinetic and
toxicophore analysis of the molecule library through the
ChemBioServer 2.0 (https://chembioserver.vi-seem.eu/). We initially
screened the molecules through Lipinski’s Rule of Five, Veber’s Rule,
and Ghose’s Filter using the ChemBioServer 2.0. Following this, we again
used the ChemBioServer 2.0 to utilize the toxiphore analysis approach to
screen out the toxic molecules (Karatzas et al., 2020). The screened
molecules were then subjected to the second layer of virtual screening,
i.e., activity prediction and screening using our previously developedML-
QSAR for both themolecular feature datasets, i.e., CDKand atom2Dpair
fingerprints.

2.6 Molecular docking

On the aforementioned conformations, molecular docking
studies were performed to investigate residue interactions and
binding energy scores of lead molecules from chemical library
screening. For the current investigation, the drug target, cruzain
enzyme from T. cruzi (PDB ID: 1ME3) (Huang et al., 2003) was
retrieved from the protein data bank (https://www.rcsb.org/) with a
superior resolution of 1.2 Å, bearing a co-crystallized ligand.Missing
residues were restored with the glide after the existing ligands were
removed and hydrogen atoms were added. The co-crystallized
ligand has been redocked to the active site of the 1ME3 to
ascertain the docking parameters. Molecular docking employed a
three-step approach that comprised protein energy reduction using
the Protein Preparation Wizard (PPW) tool, optimization, and pre-
processing to create protein crystal structures. LigPrep was utilized
to create the ligands, guaranteeing accurate assignment of atom
types and protonation states at pH 7.4 ± 1.0. Hydrogen atoms were
added, and the structures underwent bond ordering. Then, using the
Receptor grid generating tool (Kumar et al., 2024; Rampogu et al.,
2018), a grid was created at the binding pocket coordinates (x, y, z)
and aligned with a co-crystallized ligand.

2.7 Molecular dynamics simulation (MDS)

The “Desmond V 7.2 package” (Schrodinger 2022-4) has been
used to conduct MDS to examine how the solvent system affects the
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structure of the protein-ligand complex. The simulations were done
on a Dell Inc. Precision 7,820 Tower running Ubuntu 22.04.1 LTS
64-bit and outfitted with an Intel Xeon (R) Silver 4210R processor
and an NVIDIA Corporation GP104GL (RTX A 4000) graphics

processing unit. The docked complex’s MDS (F6609-0134-1ME3)
was performed using the OPLS4 force field. For MDS, the complex is
positioned in the middle of an orthorhombic cubic box. After adding
SPC water molecules and buffers, the protein atom and the edge of

FIGURE 1
(A,B) represent regression plots for the training and test datasets for the best CDK fingerprint-driven ANN-QSARmodel, respectively; (C,D) represent
regression plots for the training and test datasets for the best atom 2D pair fingerprint-driven RF-QSAR model.

TABLE 1 Statistical metrics of all the generated CDK fingerprint-driven QSAR models. Best model is in bold.

Algorithm Train
RMSE

Test
RMSE

CV
RMSE

Train
MSE

Test
MSE

Train
MAE

Test
MAE

Train
pearson

Test
pearson

Initial models

RF 0.2659 0.5986 0.6908 0.0707 0.3583 0.1943 0.4607 0.9656 0.7630

SVM 0.4449 0.5887 0.6682 0.1980 0.3465 0.2755 0.4493 0.8845 0.7735

ANN 0.1512 0.7272 0.8266 0.0229 0.5288 0.0868 0.5614 0.9875 0.6872

Final models (hypertuned and outliers removed)

RF 0.3413 0.5692 0.6824 0.1165 0.3240 0.2518 0.4417 0.9441 0.7985

SVM 0.4827 0.6345 0.7237 0.2330 0.4026 0.3029 0.4835 0.8641 0.7415

ANN (best
model)

0.1675 0.6168 0.7870 0.0280 0.3804 0.0915 0.4842 0.9846 0.7683
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the box are separated by 10 Å using the NPT ensemble. Together
with counterions like Na+ and Cl-injected to randomly neutralize
the system, the boundary condition box volume has also been
calculated depending on the complex type. To assess domain
correlations, a study of the protein-ligand interaction, root mean
square deviation (RMSD), and root mean square fluctuation
(RMSF) was conducted over all Cα atoms during the 200 ns MD
simulation (da Costa et al., 2022; Maliyakkal et al., 2024).

3 Results and discussion

3.1 ML-QSAR model development

Following the removal of constant features and highly correlated
features using variance threshold and correlation-based feature
elimination approaches, we retained 533 molecular features for
the CDK fingerprint Dataset, and 25 molecular features for the

TABLE 2 Statistical metrics of all the generated atom 2D pair fingerprint-driven QSAR models. Best model is bold.

Algorithm Train
RMSE

Test
RMSE

CV
RMSE

Train
MSE

Test
MSE

Train
MAE

Test
MAE

Train
pearson

Test
pearson

Model (default parameters)

RF (best
model)

0.4763 0.6249 0.7472 0.2269 0.3905 0.3335 0.4990 0.8609 0.7381

SVM 0.6141 0.6925 0.7331 0.3771 0.4795 0.4222 0.5514 0.7549 0.6655

ANN 0.4851 0.7449 0.8031 0.2354 0.5548 0.3392 0.5731 0.8595 0.6319

Model (hypertuned)

RF 0.4846 0.6237 0.7415 0.2348 0.3891 0.3446 0.5007 0.8561 0.7397

SVM 0.7839 0.8239 0.8147 0.6145 0.6788 0.5964 0.6568 0.5404 0.4691

ANN 0.4639 0.6992 0.8298 0.2152 0.4888 0.3047 0.5444 0.8671 0.6698

Model (hypertuned and outliers removed)

RF 0.5438 0.6383 0.7162 0.2958 0.4074 0.4112 0.5185 0.7929 0.6925

SVM 0.6314 0.6979 0.7286 0.3987 0.4870 0.4554 0.5593 0.6877 0.6008

ANN 0.5910 0.7095 0.7697 0.3493 0.5034 0.4489 0.5630 0.7479 0.6044

FIGURE 2
Representation of top 20 features from VIP plot (A) and Pearson correlation plot (B) for the CDK fingerprint-driven ANN-QSAR model.
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atom pair 2D fingerprint dataset. Following this, we followed an 80:
20 split for both fingerprint datasets before model development,
individually for the two fingerprint datasets. The split resulted in
946 molecules in the training set and 237 molecules in the test set.
We further implemented SVM, ANN, and RF-based ML algorithms
using the generated training and test datasets to develop individual
ML-QSARs for two different molecular features, i.e., CDK and atom
2D pair fingerprint datasets.

For the CDK fingerprint model, the ANN-driven QSARmodel was
found to show the best statistics and model accuracy for the initial run.
The model demonstrated a Pearson correlation coefficient of
0.9874 and 0.6872, RMSE of 0.1511 and 0.7271, MSE of 0.0228 and
0.5287, and MAE of 0.0.086 and 0.5614, for training and test datasets,
respectively. Following the initial model run, we further implemented
PCA analysis to detect the outliers in the datasets. The PCA-based
clustering revealed that 119 molecules from both the training and test
datasets deviated significantly from the main cluster and were classified
as outliers. These molecules were removed from both the training and
test datasets before final model deployment. Following outlier removal,
we optimized hyperparameters for all 3 ML algorithms using
randomized search cross-validation. For the RF model, we set the
n_estimators between 100 and 700, the max_depth range between
10 and 30, and the min_sample_split range between 2 and 6. For the
SVM model, we optimized the C value between 1 and 100, the gamma
value range between 0.01 and 0.0001, the epsilon value between
0.01 and 0.2, and kernel type as “rbf,” “poly,” “sigmoid.” Lastly, for

the RFmodel, we optimized hidden layer size to [(128,64), (256,128,64),
(512,256,128)], set activation functions to “relu” and “tanh”, and solver
to “adam” and “sdg.” For the RF model, the learning rates and
maximum iterations were kept in the range of 0.001–0.1 and
1,000–2,000, respectively. Even after hyperparameter optimization,
the ANN model demonstrated the best performance for the CDK
fingerprints by demonstrating a Pearson correlation coefficient of
0.9845 and 0.7683, RMSE of 0.1674 and 0.6167, MSE of 0.028 and
0.3804, and MAE of 0.0915 and 0.4842, for the training and test
datasets, respectively. Additionally, it demonstrated a 10-fold cross-
validation of 0.7870. Overall, it was evident that the hypertuned CDK
fingerprint-driven ANN-QSAR shows the best accuracy and robustness
among all the trained models (Figure 1; Table 1).

For the atom 2D fingerprint model, the RF-driven QSAR model
was found to show the best statistics and model accuracy for the
initial run. The model demonstrated a Pearson correlation
coefficient of 0.86088 and 0.73814, RMSE of 0.47631 and
0.62489, MSE of 0.22687 and 0.39084, and MAE of 0.33354 and
0.49899, for the training and test datasets, respectively. Additionally,
the 10-fold cross-validation for the initial run of the RF-QSAR
model was performed. Following the initial model run, we further
implemented PCA analysis to detect the outliers in the datasets. The
PCA-based clustering revealed that 118 molecules from both the
training and test datasets deviated significantly from the main
cluster and were classified as outliers. These compounds were
removed from both the training and test datasets before final

FIGURE 3
Representation of top features from SHAP analysis (A) and outlier analysis through PCA plot (B) for the CDK fingerprint-driven ANN-QSAR model.
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model deployment. Following outlier removal, we optimized
hyperparameters for all 3 ML algorithms using randomized
search cross-validation. We kept the same hyperparameters for
the 3 ML algorithms that we implemented previously for the
CDK fingerprint-based QSAR models. Even after hyperparameter
optimization, the RF model demonstrated the best performance for
atom 2D pair fingerprints by demonstrating a Pearson correlation
coefficient of 0.79293 and 0.69248, RMSE of 0.5438 and 0.63825,
MSE of 0.2957 and 0.4073, and MAE of 0.4111 and 0.5184, for
training and test datasets, respectively. Additionally, it demonstrated
a 10-fold cross-validation of 0.7161. Since there was a reduction in
the statistical robustness of the outlier-driven hypertuned model, we
implemented the same hyperparameter optimization on the original
dataset without outlier removal. We observed that even though the
RF algorithm performed better than the outlier-driven hypertuned
RF model, it still demonstrated low accuracy and robustness as
compared to the initial RF-QSAR model with default parameters.
Thereby, we concluded that the initial RF-QSAR model without
outlier analysis demonstrated the best performance for the atom 2D
pair fingerprint dataset (Figure 1; Table 2).

3.2 Feature elucidation of the ML-QSAR
model for rational drug-design

To further interpret the top 20 significant features ML-QSAR
model for rational design of novel and more efficient inhibitors, we

implemented VIP plot, correlation matrix, and SHAP analysis. For
the CDK fingerprint-driven ANN QSAR, we observed that
fingerprints, like FP101, FP64, FP480, FP980, and FP35,
demonstrated high variance threshold scores in VIP plot analysis,
suggesting that the presence of these features in the inhibitor
molecule might lead to an increase in biological activity (pIC50

value). We also observed that fingerprints, FP84, FP109, and FP645,
showed low variance threshold scores in the VIP plot, thereby
suggesting they might have a negative relationship with biological
activity. However, to build a suggestive narrative as to whether these
fingerprints in the VIP plot are positively or negatively correlated,
we further investigated them through a Pearson correlation matrix
and SHAP analysis. Through Pearson correlation matrix analysis,
we observed that FP480, FP980, and FP35 demonstrated positive
correlation scores towards biological activity, whereas FP84, FP109,
and FP645 demonstrated negative correlation scores towards
biological activity. Furthermore, from SHAP analysis, it was
evident that fingerprints FP480, FP980, and FP64 demonstrated
high feature value, thereby suggesting that their presence would lead
to an increased pIC50 value, whereas on the other hand fingerprints
FP84, FP109, and FP645, demonstrated negative SHAP values,
suggesting the fact that their presence would lead to a decrease
in pIC50 value. Additionally, we did a molecular feature-driven
Tanimoto clustering analysis of the high-activity and low-activity
molecules of the QSAR dataset. The cluster analysis of the high
activity molecules further validated the presence of fingerprints such
as FP480, FP64, FP980, and FP35, which were already visualized by

FIGURE 4
Representation of the top 20 features from VIP plot (A) and Pearson correlation plot (B) for the atom 2D pair fingerprint-driven RF-QSAR model.
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Pearson correlation and SHAP analysis plots as positively correlated
features. Furthermore, the cluster analysis of the low activity
molecules of the QSAR dataset further validated the presence of
fingerprints such as FP84, FP109, and FP645, which were already
labelled as negatively correlated by the Pearson correlation matrix
and SHAP analysis (Figures 2, 3, 6).

For the atom 2D pair fingerprint-driven RF-QSARmodel, it was
evident that features AD2D91 (presence of N-N at topological
distance 2), AD2D705 (presence of C-O at topological distance
10), AD2D336 (presence of O-O at topological distance 5),
AD2D169 (presence of N-N at topological distance 3), AD2D102
(presence of O-O at topological distance 2), AD2D248 (presence of
N-O at topological distance 4), and AD2D13 (presence of N-N at
topological distance 1), demonstrated high variance threshold scores
through the VIP plot analysis. We also observed that molecular
features like, AD2D92 (presence of N-O at topological distance 2),
AD2D704 (presence of C-N at topological distance 10), AD2D12
(presence of C-X at topological distance 1), AD2D247 (presence of
N-N at topological distance 4), AD2D326 (presence of N-O at
topological distance 5), AD2D170 (presence of N-O at
topological distance 3), AD2D482 (presence of N-O at
topological distance 7), AD2D626 (presence of C-N at
topological distance 9), AD2D404 (presence of N-O at
topological distance 6), AD2D325 (presence of N-N at

topological distance 5), AD2D549 (presence of C-O at
topological distance 8), AD2D627 (presence of C-O at
topological distance 9), and AD2D403 (presence of N-N at
topological distance 6) demonstrated moderate to low variance
threshold score through VIP plot analysis. To further investigate
the nature of the correlation of the VIP plot-derived features, we
conducted a Pearson correlation matrix and SHAP analysis.
Through the Pearson correlation matrix analysis, it was evident
that fingerprints AD2D91, AD2D169, AD2D704, AD2D626, and
AD2D12 demonstrated positive correlation with high biological
activity, whereas fingerprints AD2D170, AD2D248, AD2D326,
AD2D92, AD2D102, AD2D325, and AD2D705 demonstrated
moderately positive correlation with biological activity.
Additionally, the Pearson correlation matrix also demonstrated
that fingerprints, AD2D549, AD2D403, AD2D13, AD2D627,
AD2D336, AD2D404, and AD2D482 showed negative correlation
with biological activity. For SHAP analysis, it was observed that
AD2D91, AD2D169, AD2D170, and AD2D12 demonstrated higher
SHAP values, suggesting their positive impact on biological activity,
whereas AD2D13, AD2D248, AD2D336, and AD2D705 showcased
negative SHAP values, thereby demonstrating their negative impact
on biological activity. We also did a molecular feature-driven
Tanimoto clustering analysis of the high-activity and low-activity
molecules of the QSAR dataset. We observed that positively

FIGURE 5
Representation of top features from SHAP analysis (A) and outlier analysis through PCA plot (B) for the atom 2D pair fingerprint-driven RF-
QSAR model.
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FIGURE 6
Representation of top features through Tanimoto similarity-driven cluster analysis of highly active (A) and low active molecules (B) from the CDK
fingerprint dataset; highly active (C) and low active (D) molecules from the atom 2D pair fingerprint dataset.

TABLE 3 Top 12 hit molecules bioactivity prediction scores using our previously developed ML-QSAR models.

Name Predicted_pIC50_a2d_fp Predicted_pIC50_cdk_fp Predicted_pIC50_cumulative

F2207-0115 4.9917 6.9805 5.9861

F2207-0102 5.2784 6.6665 5.9725

F6548-1609 5.1616 6.6195 5.8906

F6548-3996 5.3880 6.1246 5.7563

F6609-0134 5.9258 5.5255 5.7256

F6619-3684 5.9071 5.4719 5.6895

F2014-0155 5.5000 5.8509 5.6754

F6609-0164 5.5789 5.7068 5.6428

F3222-1452 4.9646 6.2789 5.6217

F0507-2033 6.8440 4.313 5.5785

F1872-0526 4.5384 6.6049 5.5716

F0676-0414 6.8440 4.2031 5.5236
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correlated features such as AD2D549, AD2D102, AD2D336,
AD2D92, AD2D248, AD2D404, AD2D704, AD2D170, AD2D403,
AD2D626, AD2D12, and AD2D326 from the Pearson correlation
matrix and SHAP analysis were also found to be present in the
cluster analysis of highly active molecules of the dataset. On the
other hand, molecular features like AD2D480, which were labelled
to be negatively correlated to biological activity in both SHAP and
Pearson correlation matrix analysis, were found to be significantly
present in cluster analysis of low activity molecules of the QSAR
dataset (Figures 4–6).

3.3 Machine learning-driven chemical
library screening

We initially screened the Antiprotozoal Screening Compound
Library of 8,200 molecules from the Life Chemicals database using
the combination of Lipinski’s Rule of Five, Veber’s Rule, and
Ghose’s Filter through the ChemBioServer 2.0. A total of
133 molecules that passed through this filtration step were
further subjected to toxiphore analysis. A total of 93 out of
133 molecules were found to pass the toxicophore analysis
study. Following this, we further predicted the biological
activity (pIC50 value) of the 93 molecules using our previously
developed CDK fingerprint-driven RF-QSAR and atom 2 days pair
fingerprint-driven ANN-QSAR model. We then calculated the
cumulative of the predicted biological activities for each
molecule from both models to identify the most promising
inhibitor. To streamline the drug discovery process further, we
identified 12 molecules with pIC50 ≥ 5 (Table 3).

3.4 Molecular docking

Molecular docking studies were conducted to have a better
understanding of the lead compound’s binding processes. Lead
compounds found by virtual screening coupled with the
1ME3 protein, and the docking procedure was confirmed using
native ligands. We also did a comparative docking analysis with the
native ligand P10 (PubChem CID: 5289091). P10 molecule has
already been experimentally tested as an active against T. cruzi
(BioAssay AID: 977610; BioAssay AID: 1811). In the previous study
on the 3D crystal structure of 1ME3, inhibitors were found to form a
strong hydrogen bond with His159, part of the canonical catalytic

triad (Cys25, His159, Asn175). The P2-position phenylalanine fits
into the hydrophobic S2 pocket formed by Leu67, Ala133, and
Leu157, with Glu205 rotating to accommodate the side chain. The
inhibitor backbone is stabilized by hydrogen bonds with Gly66 and
Asp158, along with key water-mediated interactions. Additionally,
the nitrogen atom of inhibitors shows potential interaction with the
hydroxyl group of Ser61. The compounds mentioned in Table 4
have docking scores (XP mode) for 1ME3 ranging
from −3.843 to −6.352 kcal/mol. With a docking score
of −6.352 kcal/mol, F6609-0134 had the highest binding affinity
of all of them, whereas the co-ligand received a value of −6.023 kcal/
mol (Table 4). F6609-0134 established a hydrogen connection with
Leu157, more precisely with the NH atom of the pyrimidine ring,
according to an analysis of the 2-D and 3-D interaction
map. Hydrophobic interactions were also noted with Asp158,
Gly160, Glu205, Leu67, Met68, Cys25, Trp26, Thr59, Ser61, and
Ser64 (Figure 7). Furthermore, the lead chemical demonstrated
hydrogen bonding with significant residues, as previously
reported in the literature and discussed above regarding the
binding pocket (Durrant et al., 2010; Rampogu et al., 2018;
Rogers et al., 2012; Wiggers et al., 2013; Huang et al., 2003). The
discovered hits may be promising lead candidates for the therapy of
Chagas disease, as the lead compound had lower binding energies
and higher docking scores than the reference compounds.

3.5 Molecular dynamics

To investigate the flexibility and stability of the docked complex
of F6609-0134 at the binding site of the 1ME3 protein in biological
situations, MD simulations were performed. We also performed a
comparative MD analysis of our hit molecule against P10 molecules
(co-crystallized native ligand). MD trajectories were used to
calculate protein-ligand interactions as well as RMSD and RMSF.
Figure 8 shows a number of analyses of the MD trajectory data for
the F6609-0134-1ME3 complex.

3.5.1 Root mean square deviation
According to RMSD Figure 8, the Cα atoms of the protein in

connection with F6609-0134 and co-ligand had RMSD values
ranging from 0.83 to 1.80 Å and 0.74 to 1.52 Å, respectively.
This suggests that the ligand-protein complex remained stable
throughout the simulation. Except for a slight variation observed
between 120 and 130 ns, the protein’s RMSD remained constant

TABLE 4 Docking score of 1ME3 with lead molecules from virtual screening, and native ligand. Best docking score is in bold.

Compound Docking score (kcal/mol) Compound Docking score (kcal/mol)

F2207-0115 −5.052 F6609-0164 −4.842

F2207-0102 −4.368 F3222-1452 −5.252

F6548-1609 −3.843 F0507-2033 −5.389

F6548-3996 −4.236 F1872-0526 −4.864

F6609-0134 −6.352 F0676-0414 −5.479

F6619-3684 −3.868 Co-ligand −6.023

F2014-0155 −4.94
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throughout the simulation, and the co-ligands did not differ all that
much. Based on the complex’s predicted trajectory, the RMSD
values of its Cα atoms demonstrated the stability of the protein-
ligand complex in a dynamic environment. A higher RMSD value
indicates unfolding for protein Cα atoms, whereas a smaller value
indicates compactness. The modest change in the backbone RMSD
further supported the equilibration of the protein-ligand
combination. The difference between the highest and lowest

RMSD values represented the backbone deviation. In summary,
the total RMSD of the F6609-0134-1ME3 complex remains
consistent and dependable in a fluctuating environment.

3.5.2 Root mean square fluctuation
The flexibility of the protein system was measured during the

simulation using the RMSF of each amino acid residue. The RMSF
plot showed that differences in N-terminal residues were more

FIGURE 7
2-D and 3D interaction of Lead compound F6609-0134 with binding pocket of 1ME3.
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noticeable. During the simulation, it was discovered that the co-
ligand and compound F6609-0134 interacted with amino acids
19 and 18, respectively, of 1ME3. With a few exceptions
(Figure 8; Table 5), all of these interacting residues had RMSF
values smaller than 1 Å. Certain amino acid residues in the protein-
ligand complex are essential for the stability of dynamic processes.
The RMSF parameter, which is derived from the MD simulation
trajectories, measures the deviation of individual amino acids from
the reference or native structure. The RMSF visualization facilitates
comprehension of the remaining vibrations in the F6609-0134-
1ME3 complex. This finding suggests a solid binding of the lead
medication with minor conformational changes within the binding

pocket of the target protein, since the main chain and active site
residues only slightly varied.

3.5.3 Protein ligand contact analysis
The most prevalent contact types, as determined by MD

simulations, were hydrophobic, hydrogen bonding, and polar
(water-mediated hydrogen bonding). According to a protein-
ligand contact research, Leu67, Ala133, Glu156, Leu157, Asp158,
and Glu205 strongly contacted F6609-0134. The simulation results
show that compound F6609-0134, Leu167, Gln156, Leu157, Asp157,
and Glu205 can stabilize 1ME3 protein because the particular
contact is sustained for over 40% of the simulation time

FIGURE 8
Analysis of the inhibitor-ligand complex usingMD simulation: RMSD plot (co-crystallized ligand RMSD is shown in orange, and RMSDof F6609-0134
is shown in green); RMSF plot (co-crystallized ligand RMSF is shown in orange, and RMSF of F6609-0134 is shown in green); and analysis of protein-ligand
contacts of the MD trajectory of the F6609-0134-1ME3 complex.

TABLE 5 Amino acid contacts with the ligand and their RMSF value.

Compound Amino acids that come into contact with ligands and their RMSF (Å)

F6609-0134 Trp26 (0.44 Å), Asp60 (2.02 Å), Ser64 (0.89 Å), Gly65 (0.89 Å), Gly66 (0.63 Å), Leu67 (0.57 Å), Met68 (0.48 Å), Asn69 (0.50 Å), Asn70
(0.57 Å), Ala133 (0.43 Å), Ser155 (1.61 Å), Glu156 (1.18 Å), Gln156 (0.76 Å), Leu157 (0.62 Å), Asp158 (0.9 Å), Leu201 (0.48 Å), Glu204

(0.56 Å), and Glu205 (0.48 Å)

Co-ligand Gln19 (0.46 Å), Cys25 (0.37 Å), Trp26 (0.39 Å), Thr59 (0.81 Å), Asp60 (0.55 Å), Ser61 (0.65 Å), Cys63 (0.47 Å), Ser64 (0.54 Å), Gly65 (0.48 Å),
Gly66 (0.42 Å), Leu67 (0.42 Å), Met68 (0.38 Å), Asn70 (0.44 Å), Ala133 (0.39 Å), Ala136 (0.46 Å), Leu157 (0.49 Å), Asp158 (0.55 Å), His159

(0.36 Å), and Trp177 (0.49 Å)
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FIGURE 9
Secondary structure element (SSE) distribution plotted against residue index for 1ME3. The SSE composition across each trajectory frame
throughout the simulation for 1ME3.

FIGURE 10
PCA of F6609-0134-1ME3 protein-ligand complex.

Frontiers in Chemistry frontiersin.org13

Maliyakkal et al. 10.3389/fchem.2025.1600945

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1600945


(Figure 8). Comparing the ligand’s 2-D interaction during docking
(Figure 9) with the subsequent simulation reveals similar
interactions. The Figure 7 simulation result for compound
F6609-0134 indicates that it forms a hydrogen bond with amino
acid Leu157, which may indicate that it can stabilize the binding
pocket of 1ME3.

3.5.4 Protein secondary structure elements
The comparative analysis of secondary structure elements (SSE)

in the 1ME3 protein highlights notable differences in structural
organization and stability over a 200 ns molecular dynamics (MD)
simulation. The SSE histogram plots reveal that 1ME3 consistently
exhibits prominent α-helices (in red) and β-strands (in blue) across
its residue indices. This continuous and broader distribution of
secondary structures reflects a well-organized and stable protein
conformation. As shown in Figure 9, 1ME3maintains an overall SSE
content of 40.54%, comprising 19.45% α-helices and 21.09% β-
strands. These values indicate a slightly more ordered and stable
secondary structure. Furthermore, the SSE timeline plots (Figure 9)
confirm that 1ME3 preserves its secondary structure throughout the
simulation, with minimal structural deviations. Overall, the data
suggest that the 1ME3 protein retains its structural integrity and
demonstrates marginally enhanced conformational stability, as
evidenced by higher SSE content and reduced fluctuations during
the MD simulation.

3.5.5 Principal component analysis (PCA)
Throughout the simulation, the PCA method was used to

examine the protein’s conformational distribution and large-
scale collective motions within the protein-ligand complex.
Using the Desmond script (trj_essential_dynamics.py),
Essential Dynamics (ED) analysis calculated the primary
components of Cα atoms to anticipate the dynamic behavior
of the protein. Except for PC1 and PC2 negative modes, phase-
space projection along PC1 showed a consistent conformational
distribution. RMSD, RMSF, and PCA values derived from MD

simulation trajectories verified the stability of the
F6609–0134–1ME3 complex in dynamic states (Figure 10).

3.5.6 Molecular mechanics/generalized born
surface area (MM-GBSA)

The free binding energy of the ideal molecule, F6609-0134, which
exhibited the highest docking score and predicted activity, was analyzed
based on its molecular dynamics (MD) simulation frames. Over a
0–200 ns MD trajectory, the total average binding energies were
calculated as follows: ΔG Bind (−39.84 kcal/mol), ΔG Bind H-bond
(−0.67 kcal/mol), ΔG Bind Lipo (−14.81 kcal/mol), and ΔG Bind vdW
(−38.96 kcal/mol). Analysis of these values, as presented in Table 6,
indicates that ΔG Bind and ΔG Bind vdW contributed most
significantly to the overall binding energy, emphasizing the role of
van der Waals interactions in molecular stability.

Stable van der Waals contacts with important amino acid
residues were found by analyzing the ΔG Bind vdW values for
F6609-0134 interactions with the protein complex. It was discovered
that the binding energies derived from MM-GBSA computations
based on MD simulation trajectories and docking investigations
were consistent. Interestingly, the molecule’s low free binding energy
suggested that it had a high affinity for the receptor. These results
support F6609-0134’s potential as a promising inhibitor by
indicating that it interacts strongly with 1ME3.

4 Conclusion

Trypanosoma cruzi causes Chagas disease, a neglected tropical
illness that continues to pose a serious threat to world health because
of the lack of effective treatments and medication resistance. The
potential of machine learning-driven QSAR modeling to speed up
the drug discovery process for Chagas disease is demonstrated in this
work. Themodel exhibiting the highest predictive accuracy among those
assessed was the ANN-based QSAR model utilizing CDK fingerprints.
The stability and high binding affinity of F6609-0134 were confirmed

TABLE 6 Free binding energies of the molecule F6609-0134 shown through MM-GBSA.*

MD snapshot (ns) ΔG bind ΔG bind H-bond ΔG bind lipo ΔG bind vdW

0 −42.53 −0.44 −19.28 −41.31

20 −44.91 −0.32 −12.51 −44.77

40 −48.29 −0.65 −11.28 −43.58

60 −36.16 −0.09 −14.18 −43.65

80 −43.75 −0.28 −16.17 −44.75

100 −31.46 −1.30 −12.02 −27.83

120 −38.84 −1.05 −14.46 −34.12

140 −40.92 −0.10 −19.65 −41.10

160 −42.44 −0.86 −17.16 −39.31

180 −35.11 −1.33 −13.02 −37.02

200 −33.87 −1.00 −13.20 −31.12

Average −39.84 −0.67 −14.81 −38.96

*kcal/mol.
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using molecular docking studies and molecular dynamics simulations,
which further substantiated its selection as a possible lead molecule.
According to these findings, F6609-0134 is a promising therapeutic
option for Trypanosoma cruzi that needs more experimental support.
The molecule should be manufactured or purchased commercially to
enhance its potential as an anti-Chagas agent, and thorough in vitro
tests aimed at T. cruzi should be used to evaluate its effectiveness. In the
end, these follow-up investigations will promote its development as a
treatment candidate for Chagas disease by confirming its trypanocidal
efficacy and offering crucial information on cytotoxicity, selectivity, and
mechanism of action.
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