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Flavonoids are natural organic compounds that are derivatives of
diphenylpropane. This group of polyphenols can be found in multiple natural
sources and they exhibit a variety of biological effects. Despite the wide array of
beneficial properties, the development of drugs based on these compounds is
hindered by their low bioavailability. Although the substantial body of information
available on strategies to enhance the solubility and bioavailability of flavonoids,
this knowledge remains fragmented. Therefore, the aim of this study was to
consolidate and systematize scientific data on methods for increasing the
solubility and bioavailability of flavonoid compounds without changing their
initial molecular structures. Throughout the investigation, it was determined
that the most prevalent methods for increasing solubility and bioavailability
include co-crystallization, formation of phospholipid and inclusion complexes,
and the creation of nanostructures. Although there were no pronounced
differences observed in enhancing solubility, the impact of these methods on
pharmacokinetic parameters was established. It was found that the production of
inclusion complexes and nanostructures leads to the greatest increase in the area
under the pharmacokinetic curve by an average of 4.2 and 3.7 times, respectively.
The least effect was noted for phytosomes, where this parameter for themodified
forms exceeded the initial value by only 1.7 times. Phospholipid complexes
exhibited a longer average half-elimination time than all other modifications,
achieving a 2.1-fold increase. For nanostructures and micelles, a substantial
increase in maximum concentration of the active substance in blood plasma
was observed, reaching an average of 5.4 times for both types of modifications.
During the systematization and generalization of the data, a high level of
heterogeneity in solubility assessment methods across various studies was
revealed, complicating comparisons of original data obtained by different
researchers. The findings of this review are crucial for researchers
investigating the bioavailability of flavonoid compounds and will facilitate the
selection of the most effective methods based on the desired outcomes for
solubility and bioavailability.
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1 Introduction

Flavonoids are natural organic compounds that are derivatives
of diphenylpropane. This group of polyphenols can be found in
multiple natural sources, including fruits (Ellwood et al., 2019),
vegetables (Ahmed and Eun, 2018), berries (Whyte et al., 2019), tea
(He et al., 2021), and a large number of medicinal plants
(Tungmunnithum et al., 2018; Wang et al., 2018; Roy et al.,
2022). Flavonoids exhibit a variety of biological effects, including
anti-hepatotoxic (Gul et al., 2022), anti-ulcer (Zhang et al., 2020),
and anti-inflammatory activities (Maleki et al., 2019; Al-Khayri
et al., 2022), as well as wound healing properties (Carvalho et al.,
2021; Zulkefli et al., 2023; Svotin et al., 2025). Several researchers
claim that the anti-inflammatory effects of certain flavonoids result
from the inhibition of interleukins (IL-1β, IL-6 and IL-8) and tumor
necrosis factor TNF-α (Zaragozá et al., 2020). Possible mechanisms
for the wound healing activity of flavonoids include their
involvement in the regulation of the MAPKs and NF-kB
signaling pathways (Lu et al., 2021; Ding et al., 2023). Flavonoid-
related compounds, specifically isocoumarins, have been shown to
exhibit anti-inflammatory activity by inhibiting enzymes involved in
the leukotriene and prostaglandin pathways (Ramanan et al., 2016).
Additionally, they may modulate neuronal functions through
interaction with the neurotrophin receptor TrkB (Sudarshan
et al., 2019). Furthermore, these compounds are potent
antioxidants, capable of trapping free radicals (Masuoka et al.,
2012; Tumilaar et al., 2024).

Many flavonoids are optically active compounds due to the
presence of chiral carbon atoms in the benzopyranone ring.
However, most researchers do not adequately address the issue of
the stereochemistry of these substances. Nevertheless, this factor can
lead to variations in the physicochemical, pharmacokinetic,
pharmacodynamic, and pharmacological properties of various
active pharmaceutical ingredients (APIs). Some scientists suggest
that the lack of data regarding the stereochemistry of flavonoids may
contribute to incomplete information about their safety and efficacy
(Terekhov et al., 2024).

Despite the wide array of beneficial properties exhibited by
flavonoids, the development of drugs based on these compounds
is hindered by their low bioavailability. According to

biopharmaceutical classification system (Charalabidis et al., 2019),
bioavailability is influenced by the solubility of the compound in
water and its permeability through the cell membrane. Most
flavonoids demonstrate poor solubility in water at room
temperature, which limits their bioavailability. In light of their
pronounced biological effects, this limitation raises the important
issue of how to enhance the solubility of this group of compounds.

An extensive search for methods to enhance the solubility and
bioavailability of flavonoids is essential. Currently, variations in
solubility in both polar and non-polar solvents are reported,
depending on the specific structure of the flavonoid. The
presence of a double bond in the ring C (Figures 1A, B),
influences solubility, which is further affected by the number of
hydroxyl groups in ring B. Additionally, the position of ring B within
the benzopyranone structure plays a critical role. When methoxy
groups are present in ring B, a decrease in flavonoid solubility is
observed, regardless of the solvent used. Conversely, the existence of
a single bond between the C2 and C3 atoms in ring C contributes to
increased overall solubility, while the introduction of an OH group
at C3 reduces solubility in water (Zhang H. et al., 2017). It is
important to note that modifications in the chemical structure of
these compounds may correlate with changes in biological activity.
Consequently, there has been a growing interest among researchers
in exploring strategies to enhance solubility without changing the
original structure of flavonoids.

In addition to the physico-chemical properties of flavonoids,
their bioavailability is also influenced by various other factors,
including the dosage form of the drug (Stielow et al., 2023),
physiological conditions (Dima et al., 2024), intestinal enzymes
(Dima et al., 2020) and microflora (Kan et al., 2022). Moreover,
low concentrations of flavonoids in blood plasma and their affinity
for albumin hinder absorption (Naeem et al., 2022).

Despite the substantial body of information available on
strategies to enhance the solubility and bioavailability of
flavonoids, this knowledge remains fragmented. Therefore, it is
crucial to systematize scientific information in this domain to
identify new avenues for future pharmaceutical development.

The aim of this study was to consolidate and systematize
scientific data on methods for increasing the solubility and
bioavailability of flavonoid compounds without changing their

FIGURE 1
General structure: (A) flavonoids; (B) isoflavonoids.
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initial molecular structures. Throughout this work, the main
research question is to identify the most commonly encountered
methods and evaluate their effectiveness in enhancing bioavailability
by improving the solubility and permeability of the
original flavonoids.

2 Methods

2.1 Search strategy

The following review was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Page et al., 2021). To perform
the literature search, the Google Scholar database was used. The
following terms were applied: “flavonoid AND (solubility OR
permeability) AND -review”. The search was conducted on
publications published no earlier than 2010.

2.2 Data processing

Two reviewers (AS and SO) independently and simultaneously
performed an initial search and screening of articles by reading their

tittles and abstracts to form the reference list. In case of
disagreements, they were resolved by another author (RT).

Then, two authors (AS and SO) performed the data extraction of
main texts, tables, figures, and Supplementary Material from the
selected articles. The following data were in focus of the reviewers:
method which used to increase bioavailability, initial and resulting
solubility in water, multiplicity of solubility increase, initial and
resulting apparent permeability, multiplicity of permeability
increase, and main pharmacokinetic parameters. The sum of
extracted outcomes was placed in Google Sheets. A complete
consensus in the accumulated data was reached without further
disagreements.

The result of the systematic analysis is presented as
narrative synthesis.

3 Results

3.1 General outlook on scientific landscape

The literature indexed in MEDLINE was utilized to construct a
bibliometric network based on query “flavonoid AND (solubility OR
permeability) AND (NOT review)” in PubMed (Figure 2A). The
term “flavonoid” was excluded from the network.

FIGURE 2
Bibliometric network on request “flavonoid AND (solubility or permeability) NOT review” in PubMed: (A) general view of network; (B) co-occurrence
terms for “solubility”; (C) co-occurrence terms for “biological availability”. Created by VOSviewer (Van Eck and Waltman, 2010; Van Eck and Waltman,
2011; Waltman and Van Eck, 2013).
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The size of the bubbles corresponds to the frequency of term
mentions. The pseudocolor scale, ranging from blue to yellow
reflects the novelty of articles from 2010 to 2024. It is evident
that the primary connection to flavonoids is with the terms
“animals” and “solubility”. Recently, research in this area has
increasingly focused on the study of antioxidant properties (Yang
et al., 2024), regulation of gene expression (Bai et al., 2024; Parafati
et al., 2024), and chitosan (Liu et al., 2025).

Figure 2B illustrates the interest in flavonoid solubility and
related terms. It is apparent that scientists have recently shown a
growing interest in the possibility of obtaining nanoparticles derived
from flavonoids. Concurrently, considerable attention is given to
plant extracts and quercetin as an individual component. Moreover,
studies are being conducted on the antioxidant activity associated
with solubility.

Figure 2C depicts the relationship between bioavailability and
related terms. Over the past 6 years, connections have been observed
between bioavailability and nanoparticles (Wahnou et al., 2024),
indicating a strong interest among researchers in developing similar
structures based on flavonoids. An important aspect is the study of
oral bioavailability of flavonoids.

3.2 Process of collection and selection of
the studies

The initial results of the search identified 17,000 articles in
Google Scholar. After the first screening, 16,283 articles were
excluded because they did not meet the inclusion criteria based
on their titles and abstracts. In the subsequent review, 455 articles

were eliminated for the following reasons: chemical modifications of
flavonoids that resulted in the formation of new covalent bonds and
the absence of solubility investigations. After reviewing the full texts,
an additional 218 articles were excluded for the following reasons:
reliance on phase solubility studies, measurement of solubility in
organic solvents, and a lack of apparent permeability (Papp) values
when the study was associated with permeability evaluation.
Consequently, the review included 44 articles that passed through
all stages of selection. The collection and selection process is
illustrated in the PRISMA flow diagram (Figure 3).

3.3 General overview of the included articles

Since 2010, there has been a steady increase in the number of
publications on this topic, rising from 3 in the period of 2010–2012 to
13 in both 2019–2021 and 2022–2024 (Figure 4). During the
2010–2012 timeframe, the primary focus was on the synthesis of
various nanostructures; however, by 2022–2024, their representation
within the total number of publications has considerable decreased.
Additionally, there has been a notable rise in publications on the
synthesis of cocrystals, increasing from 10.00% in 2016–2018 to
30.75% in 2022–2024. Inclusion complexes have garnered
substantial attention from researchers since the period of
2013–2015. Over the past 6 years, there has been a decline in the
proportion of phospholipid complexes among the methods aimed at
enhancing the bioavailability of flavonoids. Recently, an increase in
the diversity of modification techniques has been observed.

Among the primary groups of flavonoids, isoflavones have attracted
considerable attention year after year, comprising 38.40% of all modified

FIGURE 3
PRISMA flowchart of the search and selection process of the articles.
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structures in 2022–2024 (Figure 5). Although there was a surge of interest
in flavones during 2013–2021, no information regarding their
modification was identified for the period of 2022–2024. Over the last
decade, a greater diversity of flavonoid groups has emerged compared to
previous years. Moreover, 15 different flavonoids were identified in the
selected articles (Figure 6).

3.4 Qualitative synthesis

The solubility of the modified objects received attention in
39 articles. Seventy-five distinct modifications were described. For
the convenience of graphically representing this data, log10 of the
multiplicative increase in the solubility of the obtained objects was

FIGURE 4
Methods used to increase the bioavailability of flavonoids included in this systematic review (% shows the proportion of the total in a given column).

FIGURE 5
Flavonoids groups included in this review (% shows the proportion of the total in a given column).
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used (Figure 7). All original solubility data are presented in the
Supplementary Table S1.

Nine articles described and characterized 18 new flavonoid
cocrystals with improved water solubility. The primary co-
formers were nitrogen-containing heterocyclic compounds,

including piperazine (Wang et al., 2023; Wang et al., 2024 Z.),
nicotinamide (Cui et al., 2019; Ren et al., 2019), isonicotinamide
(Bhalla et al., 2019; Ren et al., 2019), theobromine (Bhalla et al.,
2019), cytosine (Chadha et al., 2017; Bhalla et al., 2019), caffeine (Cui
et al., 2019; Luo et al., 2019; Ren et al., 2019), piperine (Liu et al.,

FIGURE 6
Structures of flavonoids from included articles.
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2022), isoniazid (Luo et al., 2019), and thiamine (Chadha et al.,
2017). Some cocrystals were formed by combining flavonoids with
amino acids such as lysine (Garbiec et al., 2023), arginine (Garbiec
et al., 2023), and proline (Ren et al., 2019). The greatest increase in
solubility was observed for cocrystals of genistein with proteinogenic
amino acids lysine and arginine (Garbiec et al., 2023). In contrast,
myricetin cocrystals with caffeine exhibited a 2-fold decrease of
solubility in pure water (Ren et al., 2019).

Two articles described solid dispersions based on the flavonoids
genistein (Qiu et al., 2024) and quercetin (Kakran et al., 2011) with
the addition of polyvinylpyrrolidone or pluronic® F127. Qiu et al.
(2024) achieved a solubility increase of over 2000 times for a 1:9 (w/
w) dispersion.

The greatest number of solubility modifications (27) was
represented by inclusion complexes, as detailed in 13 articles.
These modifications primary involved various cyclodextrins and
their derivatives, including (2-hydroxypropyl)-β-cyclodextrin
(Wang et al., 2014; Yang et al., 2016; Wu et al., 2017b; Lima
et al., 2019; Fenyvesi et al., 2020; Zafar et al., 2021; De Gaetano
et al., 2023), γ-cyclodextrin (Inoue et al., 2022), amino-modified β-
cyclodextrin (Deng et al., 2017), β-cyclodextrin (Kakran et al., 2011;
Yang et al., 2016; Zhang Y. et al., 2017; Fenyvesi et al., 2020; Xu et al.,
2023), sulfobutylether-β-cyclodextrin (Fenyvesi et al., 2020; De
Gaetano et al., 2023), and random methyl-β-cyclodextrin
(Fenyvesi et al., 2020). Additionally, some modifications were
achieving using cycloamylose (Jeong et al., 2023) and lecithin
(Zhang Y. et al., 2017).

Five articles reported the preparation of new flavonoid-
phospholipid complexes with improved water solubility. The

most notable increase was observed with kaempferol, which
achieved a remarkable solubility enhancement of 216.70-fold
(Zhang et al., 2015). A slightly lower increase was observed for
isorhamnetin (Zou et al., 2022) and baicalein (Zhou et al.,
2017), with enhancements of 122-fold and 55.45-fold,
respectively. Additionally, a substantial increase
(10.70 times) was noted for the phospholipid complex of
quercetin (Singh et al., 2012). The smallest increase
(2.54 fold) was demonstrated by the modification of luteolin
(Khan et al., 2014).

Nanostructures were presented by 10 modifications in eight
articles. The following objects were obtained:
daidzein–phospholipid complex loaded into lipid nanocarriers
(Zhang et al., 2011); nanoparticles with fisetin (Chen et al.,
2020), quercetin (Kakran et al., 2011), luteolin (Wang et al.,
2019), and apigenin (Wu et al., 2017a); nanosuspension with
morin (Jangid et al., 2020) and naringenin (Singh et al., 2018);
nanofibers of myricetin (Lin et al., 2023). The greatest increase in
water solubility (more than 2600-fold) was exhibited by myricetin
nanofibers produced with the addition of (2-hydroxypropyl)-β-
cyclodextrin and polyvinylpyrrolidone in various ratios (Lin
et al., 2023).

The enhancement of solubility through the formation of
phytosomes were addressed in 2 publications. The authors
(Metkari et al., 2023) successfully increased the solubility of
naringenin by 7.16 times using a fraction of non-GMO soybean
lecithin enriched with phosphatidylcholine (LS-75). Additionally,
phytosomes containing apigenin (Telange et al., 2017) were created,
demonstrating a 36.77-fold increase in solubility.

FIGURE 7
Multiplicity of solubility increase (each color shows a separate publication).
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TABLE 1 Permeability of modified and native forms of flavonoids.

Group of
flavonoids

Compound Method of
increasing
permeability

Permeability
model

Initial apparent
permeability, ×10–6 cm/s

Resulting apparent
permeability, ×10–6 cm/s

Multiplicity of
permeability
increase

References

Isoflavones Genistein (GEN) Micelle formation Caco-2 6.33 ± 0.49 (AP-BL) 7.82 ± 0.38 1.24a Shen et al. (2018)

8.65 ± 0.51 (BL-AP) 8.29 ± 0.44 0.96a

Micelle formation (GEN-
F – 1.2 mg/mL;

GEN-L – 1.6 mg/mL)

Caco-2 5.28 ± 0.49 (AP-BL) 8.23 ± 0.35 (GEN-L) 1.56 Ding et al. (2019)

7.97 ± 0.36 (BL-AP) 8.46 ± 0.43 (GEN-F) 1.06

7.59 ± 0.56 (GEN-L) 0.95

Cocrystallization with lysine
(LYS) and arginine (ARG)

Cell-free permeation
model

4.28 ± 0.95 0.90 ± 0.02 (GEN – LYS) 0.21a Garbiec et al.
(2023)

1.13 ± 0.03 (GEN – ARG) 0.26a

Inclusion Complex with
RAMEB, HP-β-CD, β-CD,

and γ-CD

Caco-2 1.70 ± 0.10 17.10 ± 3.70 (GEN – β-CD) 10.00a Daruházi et al.
(2013)

17.10 ± 3.50 (GEN – HP-β-CD) 10.00a

6.50 ± 1.70 (GEN – RAMEB) 3.82a

28.50 ± 1.70 (GEN – γ-CD) 16.76a

Daidzein (DDZ) Inclusion Complex with
RAMEB, HP-β-CD, β-CD,

and γ-CD

Caco-2 11.90 ± 1.90 31.40 ± 4.10 (DDZ – β-CD) 2.64a Daruházi et al.
(2013)

21.70 ± 9.10 (DDZ – HP-β-CD) 1.82a

24.30 ± 7.30 (DDZ – RAMEB) 2.04a

16.20 ± 1.30 (DDZ – γ-CD) 1.36a

Flavones Baicalein Micelle formation Caco-2 1.05 ± 0.08 (AP-BL) 1.93 ± 0.19 1.84a Shen et al. (2019)

0.97 ± 0.10 (BL-AP) 1.85 ± 0.13 1.91a

Phospholipid complex
(BaPC), matrix dispersion
based on phospholipid
complex (BaPC-MD)

Caco-2 10.1 11.60 (BaPC) 1.15a Zhou et al. (2017)

15.30 (BaPC-MD) 1.51a

Apigenin Micelle formation Caco-2 5.32 ± 0.51 6.76 ± 0.56 1.27 Zhang et al.
(2017c)

Chrysin Inclusion Complex RAMEB Caco-2 2.32 4.65 (1:1 with RAMEB) 2.00a Fenyvesi et al.
(2020)

11.00 (1:2 with RAMEB) 4.74a

avalues were calculated by the authors of current review; (CD, cyclodextrin; RAMEB, random methyl-β-cyclodextrin; HP-β-CD, 2-hydroxypropyl beta-cyclodextrin; AP, apical side; BL, basolateral side).
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The only mention regarding an enhancement in solubility
involved the lyophilization of a flavonoid solution derived from
organic solvents (Terekhov et al., 2022). The flavanonol
dihydroquercetin exhibited water solubility increases of 4.41-fold
for the aqueous ethanol and 3.06-fold for the acetonitrile
lyophilizates, respectively.

A single article detailed an increase in solubility achieved by
forming baicalein micelles with glycyrrhizic acid (You et al., 2021).
The resulting micelles demonstrated a 4606-fold increase in
solubility.

The permeability of the obtained modifications was assessed
using Caco-2 cell culture in 7 articles, while 1 publication described
cell-free permeation model. In 3 of these studies, the permeability
assessment was conducted alongside solubility studies, while in 5 of
them it was carried out separately. However, permeability studies
were conducted only for two classes of flavonoids: flavones and
isoflavones. Micelles (Zhang Z. et al., 2017; Shen et al., 2018; 2019;
Ding et al., 2019) and inclusion complexes (Daruházi et al., 2013;
Fenyvesi et al., 2020) were most frequently studied modifications in
terms of permeability. The permeability of cocrystals (Garbiec et al.,
2023) and phospholipid complexes (Zhou et al., 2017) was reported
only once each. Most modifications increased permeability by no
more than 2-folds, but the inclusion complex with daidzein
(Daruházi et al., 2013) achieved 31.40-fold increase (Table 1).

Pharmacokinetic data were also extracted from articles that
reported on the solubility or permeability of modifications, when
available. Four primary pharmacokinetic parameters were analyzed:
the area under the pharmacokinetic curve (AUC), maximum
concentration of the active substance in blood plasma (Cmax),

time to reach maximum concentration (Tmax) and half-
elimination time (T1/2). All modifications demonstrated an
increased AUC (Figure 8). The greatest improvements in this
parameter were observed in inclusion complexes and
disassembled nanostructures, with average increases of 4.2 and
3.7 times, respectively. The least effect was noted for phytosomes,
where the AUC of the modified forms exceeded the initial value by
only 1.7 times. For nanostructures and micelles, a substantial
increase in Cmax of the active substance was observed, reaching
an average of 5.4 times for both types of modifications. The
production of solid dispersions and phytosomes exerted the least
influence on this parameter, resulting in increases of 1.3 and
1.6 times, respectively. Additionally, phospholipid complexes
exhibited a longer average T1/2 than all other modifications,
achieving a 2.1-fold increase. The remaining methods did not
show a consistent effect on this pharmacokinetic parameter.
None of the methods studied had a notable effect on Tmax,
although a slight increase was observed for phytosomes
(1.4 times). A decrease in this parameter was recorded for
nanostructures and phospholipid complexes, with reductions of
0.4 and 0.6 times relative to the initial time, respectively. All
original pharmacokinetic data are presented in the
Supplementary Table S2.

4 Discussion

A comprehensive analysis of the scientific landscape enabled the
identification of several trends regarding the modification of the

FIGURE 8
The average multiplicity of the main pharmacokinetic parameters of modified forms in comparison with native flavonoids.
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biopharmaceutical properties of flavonoids in recent years.
Considerable attention has been paid to their solubility, as some
scientists assert that low solubility in water at room temperature
constitutes one of the main obstacles to their application in
pharmaceutical practice. Additionally, the objects generated
through these modifications are characterized by a range of
physicochemical and biological analytical methods. This allows
not only for the evaluation of their structures but also for the
acquisition of data regarding their bioavailability. Another
important aspect is the strong connection to the term
“antioxidants”, because natural polyphenolic compounds are
natural inhibitors of free radicals. Consequently, they may be
utilized in the treatment of oxidative stress (Dhas and Mehta,
2021; Hassan et al., 2022), an area that has recently garnered
considerable attention in the scientific community.

The cocrystallization method has demonstrated a considerable
positive effect in enhancing the bioavailability of flavonoids.
Combining ease of implementation with effectiveness in
increasing water solubility, it is regarded as one of the most
promising avenues for further investigation (Dutt et al., 2020).
Several scientists propose that the increased solubility of these
structures, compared to the initial substances, is attributable to
the “spring and parachute” phenomenon (Bavishi and
Borkhataria, 2016). The resulting cocrystals are supramolecular
heterosynthons formed through non-covalent interactions among
the components (Raheem Thayyil et al., 2020). This method is
considered one of the most promising for enhancing the solubility
and bioavailability of oral drugs (Emami et al., 2018; Li et al., 2021;
Chhatbar et al., 2025). It is widely employed in modifying the
biopharmaceutical properties of polyphenolic compounds, not
only in the pharmaceutical industry (Dal Magro et al., 2021; Bu
et al., 2023b; Lee et al., 2023), but also in the food industry
(Chezanoglou and Goula, 2021; Dias et al., 2021; Irigoiti et al.,
2021). Some studies have utilized the cocrystallization process for
the subsequent joint separation of a racemic compound mixture
(Zhou et al., 2021) and for enhancing the stability of moisture-
sensitive drugs (Dhondale et al., 2023). Interestingly, there is a case
in which this modification resulted not in an increase, but rather in a
decrease in solubility (Ren et al., 2019). The authors attribute this
effect to the enhanced stability of myricetin cocrystals with caffeine,
resulting from the low solubility of the coformer. A similar decrease
in solubility was observed for compounds of other chemical classes,
such as the antifungal drug 5-fluorocytosine. (Bu et al., 2023a). In the
case of using ferulic acid as a coformer, a decrease in solubility was
noted due to the formation of a rigid S-shaped module, which
possesses hydrophobic properties and reduced polarity. Other
factors that influence the solubility of cocrystals include lattice
energy and solvation free energy. For instance, in the case of the
matrine modification (Wang Y. et al., 2024), it has been
demonstrated that as solvation free energy increases, the
solubility of cocrystals in water decreases. When assessing
pharmacokinetics, it has been established that cocrystals can
significantly increase the AUC and Cmax, while having minimal
impact on T1/2 and Tmax. This makes the obtained compounds
particularly interesting when there is a need to enhance the
bioavailability of a drug without affecting the rate of onset of the
therapeutic effect or its elimination from the body. Compared to
other methods, cocrystallization results in a relatively modest

increase in solubility, typically not exceeding 10 fold. However,
cocrystallization has successfully produced compounds with the
most pronounced increases in solubility when compared to the
original compounds, particularly in the case of genistein cocrystals
with lysine. Regarding its impact on pharmacokinetic parameters,
cocrystallization demonstrates a moderate effect on the
enhancement of AUC and Cmax compared to other methods.

The solid dispersion method is extensively employed in the
pharmaceutical industry to improve the solubility and bioavailability
of APIs (Tran et al., 2019; Gaber et al., 2022; Bajaj et al., 2023),
although it has proven unpopular for flavonoids (only 2 articles).
This method has found broad application in modifying the
biopharmaceutical parameters of APIs (Bhujbal et al., 2021;
Rusdin et al., 2024). During the development of the final
product, it is possible to reduce particle size and agglomeration,
enhance wettability, and alter the physical state of the substance
(Janssens and Van Den Mooter, 2009). These improvements
potentially lead to enhanced solubility and bioavailability. There
are two primary approaches to obtaining solid dispersions: solvent
evaporation-based andmelting-based methods. The former includes
techniques such as spray drying (Singh and Van Den Mooter, 2016;
Ha et al., 2021; Weecharangsan and Lee, 2024), electrospraying
(J. Hogan and Biswas, 2008), fluidized bed technology (Kwon et al.,
2019), supercritical fluids (Qi et al., 2015), and spray-freeze-drying
(Leuenberger, 2002). Melting-based methods comprise hot-melt
extrusion (Patil et al., 2016; Gusev et al., 2022; Terenteva et al.,
2024), KinetiSol® (Hughey et al., 2012), three-dimensional (3D)
printing (Awad et al., 2019), and microwave heating (Hempel et al.,
2020). Among these, the most well-known and widely utilized in
laboratory and industrial settings are spray drying and hot-melt
extrusion. Despite the substantial increase in solubility achieved
through the solid dispersion method, its impact on the overall
bioavailability of flavonoids was not particularly pronounced. The
AUC increased on average 2-fold compared to the initial
compounds. This was accompanied by a slight decrease in the
T1/2 and lack of influence on Cmax and Tmax. These data indicate
the potential of this method in cases where it is necessary to
accelerate the onset of a drug’s therapeutic effect while
simultaneously enhancing its bioavailability. Compared to other
methods, the production of solid dispersions has a limited impact on
the primary pharmacokinetic parameters, with the exception of T1/2,
which shows a reduction.

Interestingly, the method of producing inclusion complexes has
gained widespread acceptance as a means to improve the solubility
and bioavailability of flavonoids. These structures are formed with
cyclic oligosaccharides such as cyclodextrins (CDs), cycloamylose,
and its modifications (Allahyari et al., 2025). The ability of CDs to
enhance solubility is attributed to their dual structure. Their internal
cavity is lipophilic and capable of encapsulating molecules that are
poorly soluble in polar solvents through the formation of hydrogen
bonds. Meanwhile, the external surface is hydrophilic, ensuring the
water solubility of the resulting complexes (Gandhi et al., 2020).
Methods for obtaining such structures include co-precipitation
(Hoque et al., 2022; Betlejewska-Kielak et al., 2023), kneading
(Martins et al., 2020), the supercritical carbon dioxide method
(Antipova et al., 2024), grinding (Hoque et al., 2022), microwave
irradiation (Bin Jardan et al., 2023), and spray drying (Imam et al.,
2022; Soares et al., 2023). Each method is characterized by its own
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technology, advantages and disadvantages (Cid-Samamed et al.,
2022; Drannikov et al., 2022). For flavonoids, this approach
significantly enhanced both water solubility and permeability
through cellular membranes. This led to the fact that the AUC
for inclusion complexes of flavonoids increased on average by
4.2 times compared to the initial substances. This was
accompanied by an increase in Cmax by approximately 3 times.
These values represent the highest enhancements among all
methods considered, indicating a strong potential for modifying
the biopharmaceutical properties of polyphenols. Furthermore, for
the described inclusion complexes, the rate of reaching Tmax

remained virtually unchanged when compared to the initial
compounds. These modifications exhibited the most pronounced
improvement in solubility and bioavailability compared to all the
methods studied, as indicated by the highest average AUC value
across all modifications.

Another interesting set of results emerged from analyzing
publications discussing various phospholipid complexes with
flavonoids. There are few methods (Kuche et al., 2019) to
prepare these structures for improve biopharmaceutical
parameters of different APIs and plant extracts: solvent
evaporation (Qiu et al., 2021; Liu et al., 2023), co-grinding
(Wang et al., 2020), mechanical dispersion (Patil et al., 2024), the
supercritical fluid process, co-solvent lyophilization, and anti-
solvent precipitation (Saini et al., 2022). Although the increase in
solubility achieved through this method was less than that attained
with other approaches, its effect on pharmacokinetic parameters was
quite pronounced. The average increase in AUC reached 3.2 times,
falling short of the nanostructure and inclusion complex methods
(3.7 and 4.2 times, respectively) while being approximately equal to
that of micelles. The Cmax increased by 3.0 times, which ranked just
behind micelles and nanostructures (5.4 times, respectively).
Additionally, the relative increase in T1/2 was the largest among
all the methods described for enhancing bioavailability and
solubility, reaching 2.1 times. A decrease in Tmax of nearly 2-fold
was also observed. This positions this method as promising for the
development of dosage forms that require prolonged release of the
active substance based on flavonoids. The similar effect of
phospholipid complexes enabled the development of a sustained-
release formulation of dehydroandrographolide succinate for the
treatment of respiratory diseases (Chen et al., 2025).

The results of the bioavailability assessment of various
nanostructures showed the expected results. A significant increase
in AUC and Cmax (3.7 and 5.4 times, respectively) was observed,
which is attributed to the increased surface area of the
nanostructures compared to other objects. This enhancement
leads to a greater completeness of absorption of the active
substance and accelerates the process: Tmax decreased by more
than 2 times compared to the initial flavonoids. Thus, it can be
concluded that various nanostructures may be a preferable choice
for developing fast-acting drugs with high bioavailability. This was
exemplified by albendazole, an antiparasitic agent, where solid lipid
nanoparticles demonstrated a very rapid release of the active
substance, as well as a significant increase in permeability into
echinococcal cysts (Movahedi et al., 2017). The effects of
increased bioavailability when obtaining nanostructured materials
are also manifested at the molecular-genetic level. For instance,
nanofiber frames made of polyvinyl alcohol filled with flaxseed

extract exhibited a significant increase in the expression of genes
that are osteogenic markers (Abdelaziz et al., 2024). This effect of
nanostructures can be explained by the reduction in the size of the
active substance particles during their production (Leuenberger,
2002). This reduction leads to a larger surface area and results in the
aforementioned changes in solubility, bioavailability, and the
biological effects of nanostructured forms. In our study, this
modification method demonstrated the most pronounced
increase in Cmax, while the average AUC ranked second,
following the inclusion complex. Furthermore, the major decrease
in Tmax was observed among all the methods analyzed.

Despite the fact that phytosomes are one of the types of
phospholipid complexes, this review has chosen to categorize
them as a separate group due to their unique characteristics,
which involve covalent or hydrogen bonding between the shell
and the encapsulated phytocomponent (Kuche et al., 2019; Lu
et al., 2019). Because of this feature, these structures did not
show a substantial increase in several pharmacokinetic
parameters: AUC, Cmax, T1/2 (1.7, 1.6, and 1.1 times,
respectively). However, these modifications showed the greatest
increase in Tmax, suggesting potential for developing dosage
forms with prolonged release of the active substance. Moreover,
this modification method has recently been the subject of active
research for the treatment of various types of cancer (Banerjee et al.,
2025; Zhao et al., 2025). Unfortunately, the number of studies
investigating the use of this method for individual flavonoids has
been insufficient to fully evaluate their impact on the parameters
under study. A significant number of publications have focused on
researching medicinal plant extracts and the production of
phytosomes derived from them.

The method of lyophilization without the addition of excipients
to enhance the solubility and bioavailability of flavonoids has proven
to be unpopular. This method is widely used to improve the
solubility and bioavailability of various APIs (Taldaev et al.,
2023). One of the factors contributing to alterations in solubility
and pharmacokinetic parameters is the change in the morphology of
the substance and the increase in surface area during lyophilization.
Moreover, this method is utilized for the production of various
nanostructured materials and liposomal forms for drug delivery
(Fonte et al., 2016; Franzé et al., 2018).

The method of obtaining micelles has been employed quite
infrequently. However, several articles have focused not on
solubility, but rather on permeability (Zhang Z. et al., 2017; Shen
et al., 2019). The differing polarities within micellar structures
facilitate the incorporation of poorly soluble molecules, thereby
enhancing their solubilization and increasing the solubility of
such compounds (Vinarov et al., 2018). It is important to note
that the formation of micellar and phospholipid complexes, as well
as phytosomes, are similar processes from a physical chemistry
perspective. Nevertheless, we have chosen to categorize them into
three distinct groups to maintain the established terminology used
by the authors of the included articles.

One of the primary obstacles to systematizing information on
methods for enhancing the solubility of various flavonoid
modifications lies in the large differences in the methodologies
employed in these analyses. Specifically, the variables such as
temperature, pH value, dissolution medium, analysis duration,
and methods of quantitative determination exhibited considerable
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variation. Heterogeneity in the conditions and methods used for
solubility analysis could led to influence the final outcome of
determining the solubility of the resulting objects. This variability
hindered the possibility of directly comparing results across different
studies and necessitated the exclusion of publications that did not
provide information on the solubility of the original compound or
the solubility enhancement factor. Consequently, it seems essential
to standardize the solubility determination method, for instance,
utilizing high-performance liquid chromatography. Moreover, there
is a paucity of research dedicated to examining the permeability of
the modified flavonoids, which limits the potential for comparing
the methods described in this article. The main challenge is that
most studies have employed four established methods
(cocrystallization, the formation of phospholipid and inclusion
complexes, and the generation of nanostructures), leaving
relatively little information available on other techniques.

Despite these challenges, we have compiled and summarized the
literature regarding methods for enhancing the solubility and
bioavailability of flavonoids, and have assessed the comparative
effects of various techniques on the pharmacokinetic parameters
of the resultant compounds. This information will prove valuable for
scientists investigating the bioavailability of this group of
natural compounds.

5 Conclusion

This review was conducted to summarize and systematize
scientific data regarding the enhancement of solubility and
bioavailability of flavonoids without changing their molecular
structure. Throughout the investigation, it was determined that
the most prevalent methods for increasing solubility and
bioavailability include co-crystallization, formation of
phospholipid and inclusion complexes, and the creation of
nanostructures. Although there were no pronounced differences
observed in enhancing solubility, the impact of these methods on
pharmacokinetic parameters was established. Notably, the greatest
average increase in AUC was recorded for various complexes,
micelles, and nanostructures, which are the most promising for
further study in the field of increasing the bioavailability of
flavonoids. The most effective methods for increasing the Cmax of
the active substance in blood plasma were identified as
nanostructured forms and micelles. No pronounced effect of the
methods on excretion processes was established, while the rate of
achieving the maximum concentration of drugs decreased for
nanostructures and phospholipid complexes. During the
systematization and generalization of the data, a high level of
heterogeneity in solubility assessment methods across various
studies was revealed, complicating comparisons of original data
obtained by different researchers. Taking this into account, it would
be beneficial to conduct a comparative analysis of the methods and
conditions used to assess solubility in order to identify the most
universal parameters for determining solubility across various
flavonoids. It is also possible that similar discrepancies may be
observed in the case of other groups of compounds, which
necessitates further investigation. Another potential avenue for

future scientific research in this field is to investigate the
feasibility of integrating various methods to produce products
with specific biopharmaceutical parameters. The findings of this
review are crucial for researchers investigating the bioavailability of
flavonoid compounds and will facilitate the selection of the most
effective methods based on the desired outcomes for solubility and
bioavailability.
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