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Introduction: Tricyclic anti-depressant (TCA) drugs are widely used to treat
depression, but traditional methods for evaluating their physicochemical
properties can be time-consuming and costly. This study examines how
topological indices can help to predict the properties of TCA drugs, with a
special focus on the role of the hydrogen representation.

Methods: Two molecular configurations were analyzed: one with only explicit
hydrogen and the other including all hydrogen atoms. To assess predictive
performance, linear regression (LR) and support vector regression (SVR)
models were employed.

Results: The results showed that adding all hydrogen atoms showed strong
correlations, especially for polarizability, molar refractivity, and molar volume.
Among the models employed, SVR provided more accurate results. Additionally,
hydrogen representation had a stronger impact on SVR’s predictions.

Discussion: These findings highlight the potential of using machine learning
techniques in quantitative structure-property relationship (QSPR) models for
more efficient and reliable predictions of drug properties.
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1 Introduction

Mental health disorders are a group of psychiatric conditions that can severely impact
an individual’s ability to function in everyday environment, resulting in difficulties with
daily activities, social connections, and behavioral stability (Ejima et al., 2024). Conditions
such as anxiety, addiction, depression, and bipolar disorder are common, with depression
being a particularly pressing public health concern that demands effective treatment options
(Kessler et al., 2007). TCAs rank among the most commonly prescribed medications for
depression, with over 25 million prescriptions written annually in the United States.
However, despite their effectiveness, TCAs are frequently linked in overdose incidents,
with studies showing that they contribute to nearly 25% of overdose-related hospital
admissions at a major medical center (Marshall and Forker, 1982; Vandel et al., 1997).
According to the 2023 NSDUH Report, 22.8% of adults (58.7 million) experienced any
mental illness (AMI) in the past year, and 4.5 million adolescents reported a major
depressive episode, with 20% also experiencing substance use disorders. Suicide remains
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a major worry, with 5.0% of adults having serious thoughts about it,
1.4% making plans, and 0.6% attempting suicide (Health and
Services, 2023). These concerning statistics highlight the critical
importance of prioritising mental health rehabilitation and
preservation. While laboratory-based drug development has
played a key role in advancing treatments for mental health, it is
often resource intensive (Insel et al., 2013). Computational modeling
and predictive techniques offer promising alternatives that are both
cost-effective and resourceful. These approaches not only enhance
traditional drug discovery but also provide accessible and effective
therapy for those with neuropsychiatric disorders.

The process of drug design and discovery is a complex, time-
consuming, and costly. To optimize this process, researchers
have increasingly turned to predictive modeling techniques,
particularly in resource-limited scenarios or during medical
emergencies. One such approach is QSPR modeling, which
predict a drug’s physicochemical properties based on its
molecular structure and descriptors, commonly referred to as
topological indices. Chemical graph theory applies the principles
of graph theory to chemistry by representing molecules as graphs,
where vertices correspond to atoms and edges to chemical bonds
(Thapar et al., 2022). Topological indices, numerical descriptors
derived from these graphs, capture critical structural information
(Gutman and Polansky, 2012; Gutman, 2006). These indices
serve as essential tools in QSPR modeling, as they establish
mathematical relationships between molecular structures and
biological or physicochemical properties, particularly in
pharmaceutical research (Abubakar et al., 2024a). One of the
earliest and most well-known topological indices is the Wiener
Index, introduced in 1947, originally designed to predict the
physical properties of paraffin compounds (Wiener, 1947). In
recent years, topological indices have gained widespread
popularity in QSPR studies, offering a cost-effective and time-
saving alternative to experimental methods. By enabling
researchers to predict key drug properties, identify influential
structural features, and optimize drug candidates, these indices
play a crucial role in accelerating drug development and reducing
reliance on expensive laboratory experiments (Parveen et al.,
2022; Zaman et al., 2023).

The use of topological indices in pharmaceutical research has
significantly increased in recent years, particularly in QSPR
studies. But, most QSPR modeling studies primarily focused on
classical graph-based topological indices and simple regression
models to establish relationships between topological indices and
the physical properties of compounds. A topological index that
exhibits a strong linear correlation with a physical property is
regarded as an effective descriptor for predicting that property
(Zaman et al., 2024; Das et al., 2024; Arockiaraj et al., 2024; Huang
et al., 2024; Hasani and Ghods, 2024). However, when the
relationship between topological indices and physical properties
is non-linear, more advanced approaches like machine learning,
are employed to capture complex patterns and improve predictive
accuracy (Fernández-Blanco et al., 2013; Madugula et al., 2021;
Abubakar et al., 2024b). Zabidi et al. (2021) applied machine
learning to predict HOMO and LUMO, minimizing the need for
computationally expensive DFT calculations. Degree-based
topological indices were employed in QSPR analysis to
establish correlations with these properties and identified

Linear Regression with Moment Balaban Indices as the most
accurate model. Costa et al. (2020) proposed explored a novel
method for QSAR and QSPR modeling through Molecular Graph
Theory, emphasizing molecular fragment contributions. By
combining Molecular Graph Theory, SMILES notation, and
connection table data, they established an efficient method for
fragment identification. Machine learning techniques produced
accurate predictive models, and the study introduced Charming
QSAR and QSPR, a Python tool designed for property estimation
in chemical compounds. Abubakar et al. (2024a) analyzed
neighborhood degree-based topological indices for QSPR
modeling of anti-tuberculosis drugs, employing Support Vector
Regression (SVR) and comparing it to linear regression. The
results demonstrated that SVR as a better predictive tool,
enhancing the understanding of the non-linear
relationship. Author A and others applied QSPR modeling with
neighborhood sum degree topological indices to predict
antibacterial drug properties. SVR outperformed linear
regression, benefiting from feature selection and hyper-
parameter tuning. Marshall and Forker (1982) investigated an
ensemble learning approach for the analysis of mental disorder
drugs. Using neighborhood degree-based indices derived from
SMILES notations, the study identified optimal indices for
predicting key physicochemical properties. Their findings
showed the role of ensemble learning in better prediction
accuracy, particularly for small datasets.

Additionally, it is important to note that none of the cited studies
considered hydrogen atoms in their topological representations,
which may neglect to important contribution to molecular
properties. Furthermore, the all prior work relied on degree-
based topological indices, which capture only local atomic
environments. In our earlier study, the predictive power of
topological indices for drug properties was explored using
regression models along with distance-based indices. However,
the influence of hydrogen configuration was not considered
(Kour et al., 2024). In contrast, our present study demonstrated a
novel comparison of explicit hydrogen and all hydrogen structures,
using distance based indices that effectively capture molecular
branching and spatial arrangement. Benchmarking LR and SVR,
we observed that SVR provided superior accuracy for non-linear
relationships, while LR performed well in strongly linear cases. This
novel approach refines QSAR modeling, demonstrating how
molecular representation influences predictive accuracy and
optimizing regression techniques. The primary objective of this
work is to understand the impact of hydrogen configuration on
the prediction of six physicochemical properties using two
regression techniques. This work aims to evaluate how different
molecular representations impact prediction accuracy across
multiple properties.

The major contributions in this study are:

• A comparative assessment of SVR and LR in handling linear
and non-linear relationships.

• A detailed evaluation of six physicochemical properties using
both molecular representations.

• The demonstration of how distance-based topological indices,
combined with SVR, can enhance property prediction and
serve as practical tool to accelerate early stage drug discovery.
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2 Methodology and data collection

2.1 Drugs analysis

This study focuses on fifteen TCA drugs which have different
molecular structure and clinical importance. Table 1 list their
chemical structures and therapeutic uses, highlighting their role
in treating depression and anxiety.

Two molecular representations, one including explicit
hydrogen only and the other including all the hydrogen, were
analyzed to understand the influence of hydrogen on the
properties of drugs. Figure 1 presents an example of
Fluoxetine, showing its two different configurations-one with
explicit hydrogen and other with all hydrogen. The hydrogen
atoms are highlighted in red color. Six physicochemical
properties listed in Table 2, were obtained from PubChem
(2025) and ChemSpider (2025). These properties help us
understand the thermodynamic and structural characteristics
of these compounds in further computational analyses.

2.2 Topological indices

The study explores the relationship between molecular properties
and atomic arrangements using distance-based topological indices which
are presented in Table 3. Similarly, calculations were performed for
fifteen TCA drugs, analyzed with explicit hydrogen and with all the
hydrogen. The results, presented in Tables 4, 5, provide numerical values
that represent structural connectivity and molecular topology. These
indices were selected due to their ability to capture spatial and str curtal
complexity of the molecules. They effectively encode connectivity and
branching patterns that influence molecular behavior.

Where, d(ya, yb) be the distance between the vertices ya and yb

and D(ya, yb) be the length of the longest path between the vertices
ya and yb.

The formulas for the topological indices remain the same for all the
drugs, but they are calculated in two different ways according to the
representation of hydrogen, one with only explicit hydrogen and other
with all hydrogen. For preprocessing, all drug structure were
standardized and convert into graph-based representations. These

TABLE 1 TCA drugs with their chemical structure and therapeutic uses.

Drugs Abbreviation Chemical
structures

Therapeutic uses

Alprazolam ALP C17 H13 Cl N4 Used to treat generalized anxiety disorder, panic disorder, and off-label for insomnia, premenstrual
syndrome, and depression in adults

Amitriptyline AMT C20 H23 N Used for major depressive disorder, neuro-pathic pain, chronic tension-type headache, migraine
prophylaxis in adults, and nocturnal enuresis in children aged 6+ when other treatments fail

Amoxapine AMX C17 H16 Cl N3 O For relieving depression symptoms in neurotic, reactive, endogenous, and psychotic depression, as well as
depression associated with anxiety or agitation

Buspirone BSP C21 H31 N5 O2 Used to manage anxiety disorders or provide short-term relief from anxiety symptoms

Clomipramine CLM C19 H23 Cl N2 Used for obsessive-compulsive disorder, related conditions, and off-label for depression, chronic pain,
narcolepsy, and autism

Desipramine DSP C18 H22 N2 Relieves symptoms of depressive syndromes, particularly endogenous depression, and manages chronic
peripheral neuropathic pain, anxiety disorders, and ADHD (second or third-line treatment)

Desvenlafaxine DVF C16 H25 N O2 To treat major depressive disorder in adults and is also prescribed off-label for hot flashes in menopausal
women

Diazepam DZM C16 H13 Cl N2 O Used to treat anxiety, muscle spasms, acute alcohol withdrawal, spasticity, and as an adjunct for epilepsy,
with indications for short-term anxiety relief, pre-surgical sedation in adults, and specific seizure episodes
in children

Fluoxetine FLX C17 H18 F3 N O Used for major depressive disorder, obsessive-compulsive disorder, bulimia nervosa, acute panic
disorder, PMDD, and in combination with olanzapine for Bipolar I Disorder-related and treatment-
resistant depression

Imipramine IMP C19 H24 N2 Used to relieve depression symptoms and reduce enuresis in children 6+, with off-label uses for panic
disorders, ADHD, bulimia nervosa, bipolar depression, PTSD, and neuropathic pain

Lorazepam LRZ C15 H10 Cl2 N2 O2 Used for anxiety relief, sedation, and status epilepticus, with off-label uses for alcohol withdrawal, muscle
spasms, insomnia, panic disorder, and more

Nortriptyline NTP C19 H21 N Used to relieve symptoms of major depressive disorder (MDD) and off-label for chronic pain, myofascial
pain, neuralgia, and irritable bowel syndrome

Oxazepam OZP C15 H11 Cl N2 O2 Used to manage anxiety disorders, provide short-term anxiety relief, and treat alcohol withdrawal
symptoms

Protriptyline PTP C19 H21 N Used for the treatment of major depression

Trimipramine TMP C20 H26 N2 Used to treat depression, including cases accompanied by anxiety, agitation, or sleep disturbances
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calculations are performed using Python and its libraries. RDKit is used
to handle the molecular structures, NetworkX helps in creating the
adjacency and distance matrices, and NumPy takes care of the
numerical operations. The input for the molecular structures is
provided in SMILES format—a simple text representation of
molecules. First, molecules from PubChem are converted into
graphs using RDKit. For explicit hydrogen calculation, the skeletal
form of themolecule with Chem.MolFromSmiles (smiles) is used. And,
for all hydrogen, we add explicit hydrogen atoms with Chem.
AddHs(mol) which consider all the hydrogen present in a molecule.

2.3 Regression model

2.3.1 QSPR model
QSPR is a computational model which is used to predict the

physical, chemical, or biological properties of molecules based on
their molecular structure. QSPR models establish a mathematical
relationship between molecular descriptor (topological index) and a
target property (Todeschini and Consonni, 2009).

The formulation of QSPR is represented in Equation 1.

a � f y1, y2, . . . , yn( ) (1)
where, a represents the target property which is a dependent
variable, y1, y2, . . . , yn represents the topological index, and f is
the mathematical function.

2.3.2 Linear regression
Linear regression is a method used to establish the relationship

between a dependent variable and an independent variable by fitting
a straight line (Zaid, 2015).

FIGURE 1
Two configurations of a molecule (Example: Fluoxetine).

TABLE 2 Physicochemical properties of the TCA drugs.

Drugs Boiling
point (BP)

Enthalpy
(E)

Flash
point (FP)

Molar
refractivity (MR)

Polarizability
(P)

Molar
volume (MV)

Alprazolam 509 77.9 261.6 88.2 35 225.6

Amitriptyline 398.2 64.9 174 91.5 36.3 257.8

Amoxapine 469.9 73.2 238 86.8 34.4 228.2

Buspirone 613.9 91.1 325.1 106.8 42.4 310.7

Clomipramine 434.2 69 216.4 93.8 37.2 281.2

Desipramine 407.4 65.9 160.5 84.2 33.4 254.3

Desvenlafaxine 403.8 69.1 193.2 77.8 30.9 236.1

Diazepam 497.4 76.5 254.6 80.9 32.1 225.9

Fluoxetine 395.1 64.5 192.8 79.9 31.7 266.7

Imipramine 403.1 65.4 179.7 88.9 35.3 269.2

Lorazepam 543.6 86.5 282.6 81 32.1 211.2

Nortriptyline 403.4 65.5 194.9 86.8 34.4 242.9

Oxazepam 516.6 83 266.2 76.4 30.3 201.9

Protriptyline 407.7 66 198.3 84.8 33.6 256.5

Trimipramine 411.8 66.4 183.3 93.5 37.1 286.1
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The equation is represented in Equation 2.

u � v + w1x1 + w2x2 +/ + wrxr + e (2)
where u is the dependent variable, x1, x2, . . . , xr are the independent
variables, w1, w2, . . . , wr are the regression coefficients, v is the
intercept term, and e represents the random error.

The following LR model in Equation 3 is employed to construct
a QSPR model.

u � v + w t( ) (3)
where, u represents target property (dependent variable), t
represents topological index (independent variable), v represents
intercept or constant of regression, and w represents regression
coefficient.

2.3.3 SVR theory
Support Vector Machines (SVM), introduced by Vapnik and

others in 1995, are based on the structural risk minimization
principle and statistical learning theory (Vapnik, 2013). SVM has
been successfully applied to a wide range of classification and

regression problems (Cai et al., 2003b; Cai et al., 2003a; Cortes
and Vapnik, 1995; Smola and Schölkopf, 2004; Rao and
Gopalakrishna, 2009). When used for regression, they are called
support vector regression. Traditionally, QSPR models have relied
on LR to predict compound properties because it is simple and
interpretable. However, LR struggles with non-linear data and is
sensitive to unusual data points. SVR addresses these limitations by
effectively capturing non-linear patterns and showing more accurate
and reliable predictions. These advantages make SVR a strong tool
for combining with topological indices in QSPR studies (Awad and
Khanna, 2015; Ardeshir et al., 2021; Baştanlar and Özuysal, 2013;
Yang et al., 2005).

SVR focuses on developing a predictive model between given
input features and their target values. Given a training dataset
A � {(yi, gi)}mi�1, where each input yi ∈ Rd represents a feature
vector with dimension d and gi ∈ R represents the corresponding
target value, the goal is to determine a function f(y) that can
accurately map the approximate value of y to g.

SVR creates a function that is linear in a transformed feature space
but can model complex, non-linear relationships in the original input

TABLE 3 TCA drugs with their chemical structure and therapeutic uses.

Topological index Notation Formula

Wiener Index Wiener (1947) W(G) W(G) � ∑1≤a<b≤nd(ya, yb)

Hyper-Wiener Index Randić (1993) WW(G) WW(G) � ∑1≤a<b≤n
d(ya,yb )+d2(ya,yb )

2

Harary Index Plavšić et al. (1993) H(G) H(G) � ∑1≤a<b≤n
1

d(ya ,yb)

Detour Index Lukovits (1996) D(G) D(G) � ∑1≤a<b≤nD(ya, yb)

Detour Harary Index Fang et al. (2018) DH(G) DH(G) � ∑1≤a<b≤n
1

D(ya,yb )

TABLE 4 Topological indices of the drugs with explicit hydrogen.

Drugs W WW H D DH

Alprazolam 926 2770 81.4698 2845 24.1903

Amitriptyline 882 2780 70.7087 2581 26.2091

Amoxapine 1075 3398 85.8329 3291 25.4936

Buspirone 2514 13028 102.7360 3764 57.3198

Clomipramine 995 3194 78.0429 2861 28.6732

Desipramine 882 2780 70.7087 2581 26.2091

Desvenlafaxine 897 2846 71.6540 1329 46.9409

Diazepam 726 2077 69.4905 1901 24.9069

Fluoxetine 1292 4946 77.8563 1772 54.1895

Imipramine 882 2780 70.7087 2581 26.2091

Lorazepam 1034 3076 86.5452 2601 33.9740

Nortriptyline 882 2780 70.7087 2581 26.2091

Oxazepam 928 2731 80.6476 2362 30.8960

Protriptyline 882 2780 70.7087 2581 26.2091

Trimipramine 979 3081 78.4611 2808 30.3429

TABLE 5 Topological indices of the drugs with all the hydrogen.

Drugs W WW H D DH

Alprazolam 2936 10289 168.8604 7858 68.2119

Amitriptyline 5252 20371 239.9619 12117 126.6943

Amoxapine 3564 12697 193.5572 9689 78.4991

Buspirone 12709 69193 366.6186 18125 244.3614

Clomipramine 5462 21023 250.8310 12557 134.2503

Desipramine 4538 16736 226.4617 10943 114.0553

Desvenlafaxine 4836 17076 248.9564 7008 179.4176

Diazepam 2497 8380 154.1603 5741 71.3523

Fluoxetine 4433 17760 198.7027 6065 148.3364

Imipramine 5462 21023 250.8310 12557 134.2503

Lorazepam 2142 7027 139.4702 5038 62.4229

Nortriptyline 4346 16147 216.0927 10521 106.9993

Oxazepam 2142 7027 139.4702 5038 62.4229

Protriptyline 4267 15583 218.2697 10307 111.5984

Trimipramine 6278 24110 279.5762 14063 156.9178
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space. This is done by applying a non-linear transformation β(y) to
map the input data into a higher-dimensional space where linear
regression can be performed effectively.

The regression function is defined in Equation 4.

f y( ) � WTβ y( ) + q (4)

where:

• W ∈ Rd is the weight vector that defines the orientation of the
regression hyperplane in the feature space,

• β(y) denotes a feature mapping function that projects the
input x into a higher-dimensional space,

• q ∈ R serves as a bias term, shifting the hyperplane’s position
accordingly.

The major goal of the SVR model is to find the weight vector
W and bias q that minimize a combination of two components:
a regularization term, which controls model complexity, and a
loss function, which measures the prediction error. The SVR
optimization minimizes the objective function Equation 5
subject to constraints Equations 6-8.

min
W,q,ζ i ,ζ i*

1
2
‖W‖2 + C∑m

i�1
ζ i + ζ i*( ) (5)

subject to:

gi − W⊤β yi( ) + q( )≤ ϵ + ζ i (6)
W⊤β yi( ) + q( ) − gi ≤ ϵ + ζ i* (7)

ζ i, ζ i*≥ 0 (8)

where:

• The term ‖W‖2 serves as a regularization factor, aiding in
managing the model’s complexity.,

• The parameter C> 0 functions as a regularization parameter,
regulating the balance between model complexity and the
allowance for deviations beyond ϵ,

• The value ϵ≥ 0 defines the epsilon-insensitive zone (epsilon-
tube) where errors within this range are not penalized in the
loss function,

• The slack variables ζ i and ζ i* quantify the extent to which
training samples fall outside the epsilon-tube, allowing the
model to handle data points that do not fit perfectly within
the margin.

In this study, radical basis function (RBF) has been
implemented. The RBF kernel is a kernel that maps data to a
higher dimensional space and is defined in Equation 9.

K yi, yj( ) � exp −α‖yi − yj‖2( ). (9)

where, α is a parameter, which is equal to 1
2γ2 (γ is the free parameter).

FIGURE 2
Correlation heatmap for TCA drugs with explicit hydrogen.
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2.4 Performance evaluation

2.4.1 Coefficient of determination (R2)
In regression analysis, the most commonly used statistic to

assess model performance is the coefficient of determination R2.
It indicates how much of the variation in the response variable is
explained by the model. The value of R2 ranges from 0 to 1, where a
higher R2 signifies a better model fit (Cameron and
Windmeijer, 1997).

The formula for calculating R-squared is defined in Equation 10.

R2 � 1 − ∑ zi − ẑi( )2∑ zi − �z( )2 (10)

where, zi represents the actual value of the dependent variable, ẑi
represents the predicted value from the regression models, and �z
represents the mean of actual values.

2.4.2 Root mean squared error
The Root Mean Squared Error (RMSE) in the dataset is

determined by taking the square root of the mean squared
differences between the observed values and predicted values
(Awad and Khanna, 2015; Sharma, 2005), given in Equation 11.

RMSE �
������������
1
n
∑n
i�1

zi − ẑi( )2
√

(11)

where, n is the number of the observations, zi is the actual value, and
ẑi is the predicted value.

3 Results and discussion

In this study, a QSPR analysis of fifteen TCA drugs has been
performed, to understand their physicochemical properties, which
play an important role in examining their efficacy, stability, and
thermodynamic behavior. The focus is on the correlations between
molecular topological indices and physicochemical properties, and
the impact of hydrogen atoms. SVR and LR models with explicit
hydrogen and all-hydrogen were used to predict the properties based
on topological indices and compared their performances to find the
more accurate model.

3.1 Heatmap analysis

The heatmap analysis, as shown in Figures 2, 3, compares the
correlation between topological indices and physicochemical
properties under two different molecular representations: explicit
hydrogen and all hydrogen. The color intensity shows the strength of
these relationships, darker colors mean a stronger correlation, while
lighter colors mean a weaker one.

FIGURE 3
Correlation heatmap for TCA drugs with all the hydrogen.
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Figure 2, represents the dataset with explicit hydrogen only,
shows a varied correlation pattern. The Harary Index has a strong
correlation with Boiling Point (0.8180) and Flash Point (0.8021), but
its correlation with Molar Refractivity (0.5291), Polarizability
(0.5287), and Molar Volume (0.2315) is weaker. The Wiener and
Hyper-Wiener indices show moderate relationships, especially with
Molar Refractivity (0.6867) and Polarizability (0.6881). The Detour
Harary Index has mostly weak correlations, as indicated by the
lighter shades in the heatmap.

In contrast, Figure 3, where all hydrogen atoms are included, the
correlation pattern appears more consistent. The Detour Index showed
strong correlations for Molar Refractivity (0.9250), Polarizability
(0.9253), and Molar Volume (0.8657). The Harary Index, which had
strong correlations in Figure 1, now has much weaker correlations to
Boiling Point (−0.0166) and Flash Point (−0.0793). The Detour Harary
Index, which mostly has weak correlations, performs better with Molar
Volume (0.8426) in this dataset.

3.2 SVR hyper-parameter tuning

The predictive model was developed using the SVR with the RBF
kernel. The model was trained in Python using the scikit-learn library.
The dataset was split into 80% training and 20% testing for better
accuracy and validation. Hyper-parameter tuning was done to find the
best values of the epsilon (ϵ) and cost (C) parameters, with epsilon
ranging from 0.1 to 0.5 and C values set at 10, 50, 100, 500. The gamma
parameter was adjusted to either “scale” or “auto” based on the
requirement to achieve optimal results. To make the model more
effective, 5-fold cross-validation was employed, where multiple SVR
models were trained with different parameter settings. The best SVR
model was trained using the optimal parameters and evaluated on the
test dataset. The hyper-parameter tuning process was done separately
for each physicochemical property, testing five different topological
indices. The best index for each property was chosen based on the
highest test R2 value. This tuning process helped identify the best SVR
models, leading to more accurate predictions and a stronger QSPR
analysis. The final results, displayed in Table 6, show the best hyper-
parameter values.

3.3 Performance comparison: LR vs. SVR

In Tables 7, 8, R2 and RMSE values for LR and SVR models are
presented for comparison. A higher R2 indicates better accuracy and
lower RMSE indicates few errors. Figures 4, 5 use bar graphs to
visually compare these results. The findings suggest that SVR
generally performs better, especially in all hydrogen model.
However, LR showed better results for molar refractivity and
polarizability, where it achieved much higher R2 values despite
SVR having slightly lower RMSEs but poor R2 scores.

3.4 Comparison of actual vs.
predicted values

It is observed from the earlier results that SVR is better than LR
in term of prediction. In this section, comparison of actual values of

TABLE 8 Comparison for configuration with all hydrogen.

Model Property Best TI R2 RMSE

SVR Boiling Point Detour Harary Index 0.9861 5.8774

Enthalpy Detour Harary Index 0.9754 0.9197

Flash Point Detour Harary Index 0.9469 8.1953

Molar Refractivity Harary Index 0.1 2.7451

Polarizability Harary Index 0.1 0.8444

Molar Volume Detour Harary Index 0.8659 6.5639

LR Boiling Point Hyper-Wiener Index 0.1432 60.1869

Enthalpy Hyper-Wiener Index 0.0938 8.0226

Flash Point Hyper-Wiener Index 0.1019 43.4411

Molar Refractivity Detour Index 0.8557 2.8399

Polarizability Detour Index 0.8562 1.1269

Molar Volume Harary Index 0.8219 12.1539

TABLE 6 Hyper-parameter tuning.

Property With explicit
hydrogen

With all hydrogen

C  Gamma C  Gamma

Boiling Point 50 0.1 Auto 500 0.5 Scale

Enthalpy 10 0.5 Auto 100 0.1 Scale

Flash Point 50 0.5 Auto 500 0.2 Scale

Molar Refractivity 10 0.5 Auto 10 0.5 Auto

Polarizability 10 0.5 Auto 500 0.5 Auto

Molar Volume 50 0.5 Auto 50 0.1 Scale

TABLE 7 Comparison for configuration with explicit hydrogen only.

Model Property Best TI R2 RMSE

SVR Boiling Point Harary Index 0.9681 8.8991

Enthalpy Harary Index 0.9853 0.7121

Flash Point Harary Index 0.9441 8.4131

Molar Refractivity Detour Index 0.1 2.9608

Polarizability Detour Index 0.1 0.8141

Molar Volume Harary Index 0.6308 10.8922

LR Boiling Point Harary Index 0.6692 37.3973

Enthalpy Harary Index 0.6223 5.1795

Flash Point Harary Index 0.6433 27.3783

Molar Refractivity Detour Index 0.6303 4.5457

Polarizability Detour Index 0.6253 1.8190

Molar Volume Hyper-Wiener Index 0.3662 22.9301
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drug properties, along with the predicted values from the SVRmodel
and LR model, using both the explicit hydrogen and all-hydrogen
are presented. Overall, the predicted values follow the actual trends
closely, demonstrating the strong predictive capability of SVR for
most cases.

• For boiling point (Figure 6), the all-hydrogen model with SVR
closely matches actual values, especially for Amoxapine,
Buspirone, Desipramine, Desvenlafaxine, and Diazepam,
where the explicit hydrogen model shows large errors. For
Clomipramine and Oxazepam, both explicit hydrogen and all
hydrogen models with SVR perform equally. In the case of
Nortriptyline, both SVR and LR work well but only with the
explicit hydrogen model.

• For enthalpy (Figure 7), SVR with both explicit hydrogen and
all hydrogen predicts accurately for most drugs, except
Alprazolam, Clomipramine, Fluxoetine, and Lorazepam.

However, for Buspirone, SVR with all hydrogen and LR
with explicit hydrogen both models work similarly.

• For flash point (Figure 8), the all-hydrogen model with SVR
performs best for most drugs, but the explicit hydrogen model
is just as effective for Amoxapine and Oxazepam. The explicit
hydrogen model with LR also performed well for few drugs
like Buspirone, Desvenlafaxine and Nortriptyline.

• For molar refractivity (Figure 9), SVR with both explicit
hydrogen and all hydrogen model performed well for most
of the drugs, except Alprazolam, Buspirone and Imipramine.
However, LR with all-hydrogen also showed good accuracy
for Amitriptyline, Amoxapine, Fluoxetine, Oxazepam, while
for Nortriptyline, LR worked well with both models.

• For polarizability (Figure 10), the all-hydrogen model provides
good accuracy with SVR and LR, while the explicit hydrogen
did not perform well with most of the drugs. However, for

FIGURE 4
Comparison of R2 values.

FIGURE 5
Comparison of RMSE values.
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Amoxapine and Nortriptyline, the explicit hydrogen model
still works well.

• For molar volume (Figure 11), SVR with both explicit and all-
hydrogen models performs well, but the explicit hydrogen
model is more accurate. LR with the all-hydrogen model also
shows good performance for a few drugs.

These results show that molecular representation plays a key role
in prediction accuracy. Both models perform well, but SVR with all-
hydrogen model consistently provides more precise and accurate
predictions, making it a better option for predicting drug properties.

LR shows moderate performance, with occasional improvements
when paired with explicit hydrogen models. This study underscores
how including hydrogen in molecular structures enhances
prediction accuracy.

It is evident that the SVR model generally outperformed the LR
model, achieving higher R2 and RMSE lower values, especially in
capturing non-linear relationships through its use of kernel
functions. This allows SVR to capture complex patterns in
understanding the properties of the drugs. However, for certain
properties, the LR model performs comparably or even better,

FIGURE 7
Actual vs. predicted values for enthalpy.

FIGURE 6
Actual vs. predicted values for boiling point.
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suggesting linear correlations in those specific cases. SVR works well
with small datasets, reducing the chance of overfitting while still
giving strong predictions. Overall, because most of the data is non-
linear and the drug structures vary, SVR is the better choice for
predicting the physicochemical properties of the TCA drugs.
However, LR can still be useful for properties that show a more
linear relationship.

The findings of this study carry significant practical implications
and offer a clear path for improving predictive modeling in drug

discovery. It demonstrated the value of using machine learning
techniques with chemically informative indices. Accurate prediction
of properties is essential in the early stages of pharmaceutical
development, where reliable estimation can guide compound
selection. Such a framework can significantly reduce the need of
time and cost experiment. Moreover, the ability to predict multiple
molecular properties with high accuracy supports faster decision
making in structure-activity relationship analysis. Overall, the
proposed methodology offers a data-driven tool for better drug

FIGURE 9
Actual vs. predicted values for molar refractivity.

FIGURE 8
Actual vs. predicted values for flash point.
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discovery pipeline by streamlining the evaluation of molecular drugs
based on their predicted properties.

4 Conclusion

While SVR outperformed LR in most cases, LR also
demonstrated strong performance for certain properties like
molar refractivity and polarizability, making it valuable for

understanding linear relationships between topological indices
and specific molecular properties. These findings highlight the
advantages of combining machine learning with topological
indices for better drug property predictions and can guide future
research and development of anti-depressant compounds. This
study aims to predict the physicochemical properties of TCA
drugs using a QSPR model that combines distance-based
topological indices, SVR, and a traditional LR model. Two
molecular configurations were analyzed: one with explicit

FIGURE 11
Actual vs. predicted values for molar volume.

FIGURE 10
Actual vs. predicted values for polarizability.
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hydrogen only and the other including all hydrogen. The results
showed that including all hydrogen atoms led to stronger
correlations, especially for properties like polarizability, molar
refractivity, and molar volume. SVR outperformed LR in most of
the cases, showing higher R2 values and lower RMSE. This highlights
that SVR is better at making predictions, notably when dealing with
small-sized datasets. Hyper-parameter tuning played a key role in
improving accuracy, making SVR a strong choice for predicting
TCA drug properties.

In conclusion, adding all hydrogen atoms and using SVR has
shown to be an effective approach for predicting the physicochemical
properties of TCA drugs. It also helps in understanding the relationship
between distance-based topological indices and molecular properties.
While SVR outperformed LR in most cases, LR still worked well for
some properties, such as molar refractivity and polarizability. This
makes LR useful for understanding simple linear relationships between
topological indices and specific molecular properties. These findings
highlight the advantages of combining machine learning with
topological indices for better drug property predictions and can
guide future research and development of anti-depressants
compounds. Future work could explore additional molecular
configurations and different modeling techniques could to
predictions more precise.
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