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Elevated levels of haptoglobin are commonly observed in conditions
characterised by an increased erythrocyte sedimentation rate which are
acute-phase reactants. These conditions include infection, trauma,
inflammation, hepatitis, amyloidosis, collagen diseases, lymphoma, leukaemia,
as well as obstructive and biliary diseases. However, no significant drugs are
currently available to manage these conditions, making therapeutic intervention
crucial effectively. In this study, we performed an extensive screening of the
DrugBank database against the human haptoglobin protein (PDB ID: 4X0L) using
High-Throughput Virtual Screening (HTVS), Standard Precision and Extra
Precision (XP) docking methods, followed by pose processing with Molecular
Mechanics Generalised Born Surface Area (MM/GBSA) calculations. This led to the
identification of five potential inhibitors: L-histidinol phosphate (DB03997),
L-gluconic acid (DB04304), 4-bromo-3-(carboxymethoxy)-5-(4-
hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), 3-O-methylfructose
(DB02438), and glutamine hydroxamate (DB02446), with docking scores
ranging from −7.96 to −5.58 kcal/mol and MM/GBSA scores
between −26.23 and −1.00 kcal/mol. The study also included Density
Functional Theory computations and pharmacokinetic profiling to assess
these compounds’ suitability further, revealing promising results. Additionally,
we conducted molecular interaction fingerprint analysis, revealing key residues
involved in interactions, including 10LYS (Basic), 8LEU (non-polar), 7ASP (Acidic),
and 7THR (Polar), indicating a mixed interaction profile. A 5 ns WaterMap analysis
was used to identify optimal hydration sites and interaction patterns. Moreover, a
100 ns molecular dynamics (MD) simulation using the TIP3P water model in the
NPT ensemble confirmed the stability of the protein-ligand complexes, with
acceptable deviations, fluctuations, and intermolecular interactions. MM/GBSA
calculations on the simulation trajectories supported these findings by providing
binding free energy and complex energy estimations for all protein-ligand
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complexes. Although these findings provide compelling computational evidence
for haptoglobin inhibition, experimental studies must confirm its effectiveness
before human use.
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1 Introduction

Haptoglobin (Hp) is a crucial glycoprotein synthesised
predominantly in the liver and secreted into the plasma, where it
plays an essential role in haemoglobin (Hb) scavenging, immune
modulation, and various inflammatory pathways (Schaer et al.,
2014; Delanghe et al., 2024). It is a key component of the acute-
phase response, acting as a protective mechanism against oxidative
damage caused by free haemoglobin released from erythrocytes
during haemolysis. Hp is encoded by the HP gene, which
exhibits polymorphism, primarily classified into three primary
phenotypic forms: Hp1-1, Hp2-1, and Hp2-2. These phenotypic
variations influence its biological functions and its interaction with
other biomolecules (Montecinos et al., 2019; Roh et al., 2025).
Haptoglobin forms a stable complex with free haemoglobin,
rapidly cleared from circulation via CD163-mediated endocytosis
in monocytes and macrophages (Schaer et al., 2006). This
mechanism is crucial in preventing oxidative stress and tissue
damage that would otherwise result from the peroxidative
activity of free heme. Hp also modulates inflammation by
regulating immune responses and influencing cytokine release,
contributing to its relevance in several physiological and
pathological conditions (Skytthe et al., 2020; Delanghe et al.,
2024). The pathways involving haptoglobin are intricately linked
to its haemoglobin-binding function and its broader implications in
immune responses. The Hp-Hb complex formation triggers a
cascade of cellular and molecular events leading to endocytosis
and lysosomal degradation of the complex in macrophages
(Nielsen and Moestrup, 2009). This process prevents the
generation of free heme and iron-mediated oxidative stress. The
binding of haptoglobin to haemoglobin induces conformational
changes that enhance its recognition by CD163, a scavenger
receptor expressed in monocytes and macrophages (de Oliveira
et al., 2022). Once internalised, the complex is degraded in
lysosomes, and the iron component is stored within ferritin or
exported via ferroprotein. This pathway plays a significant role in
iron homeostasis, preventing iron overload and associated toxicity
(Galy et al., 2024). Additionally, haptoglobin has been implicated in
modulating inflammatory pathways through its interaction with
various cytokines and immune cells. It can suppress prostaglandin
synthesis, inhibit neutrophil migration, and modulate the activity of
Toll-like receptors (TLRs), thereby regulating innate immunity.
Furthermore, its involvement in lipid metabolism and high-
density lipoprotein (HDL) function suggests a broader role in
cardiovascular health and disease pathogenesis (Knutson, 2017;
Singh et al., 2025).

In blood circulation, haptoglobin is a critical scavenger protein,
ensuring free haemoglobin does not exert toxic effects on vascular
integrity. During intravascular haemolysis, red blood cells rupture

and release haemoglobin into circulation, where it can undergo
oxidation and generate reactive oxygen species (ROS) (Van Avondt
et al., 2019; Orrico et al., 2023). The binding of Hp to Hb neutralises
these oxidative effects and facilitates the complex’s rapid clearance,
thus protecting endothelial cells from oxidative damage.
Haptoglobin also interacts with coagulation pathways, influencing
clot formation and fibrinolysis. It has been shown to affect platelet
function and the activity of coagulation factors, thereby modulating
thrombotic and haemorrhagic tendencies. Additionally, haptoglobin
plays a vital role in trauma and accidents, where massive haemolysis
can lead to systemic inflammation, disseminated intravascular
coagulation (DIC), and multi-organ failure (Gbotosho et al.,
2021). By sequestering free haemoglobin, haptoglobin mitigates
these complications and contributes to haemostatic balance.
Trauma-related inflammation refers to the systemic inflammatory
response triggered by physical injury, such as trauma from
accidents, burns, or surgeries (Brøchner and Toft, 2009). This
inflammation can lead to multiple physiological changes,
including the elevation of several acute-phase proteins, among
which haptoglobin is a key player. The body’s response to
trauma involves a complex cascade of immune and metabolic
reactions to repair tissue damage and prevent infection. One of
the most commonly measured indicators of systemic inflammation
is the erythrocyte sedimentation rate (ESR), a clinical test that
measures the rate at which red blood cells settle at the bottom of
a test tube (Tishkowski and Gupta, 2020). Elevated ESR values
indicate increased systemic inflammation, often observed in
response to trauma and other inflammatory conditions.
Haptoglobin is upregulated during trauma-induced inflammation
as part of the acute-phase response, which is triggered by the release
of inflammatory cytokines such as interleukins and tumour necrosis
factor-alpha (TNF-α) (Tishkowski and Gupta, 2020). In this context,
the relationship between haptoglobin and ESR is significant: as an
acute-phase protein, haptoglobin levels rise in response to systemic
inflammation, which often parallels the increase in ESR levels. Both
markers indicate the extent of tissue injury and the body’s
inflammatory response. The binding of haptoglobin to free
haemoglobin, released during red blood cell lysis, further reduces
oxidative damage andmodulates the inflammatory process. Elevated
haptoglobin levels are thought to correlate with ESR in trauma-
related inflammation, serving not only as an indicator of
inflammation but also play a protective role by preventing
oxidative stress and tissue damage. These interactions are central
to the immune response following trauma, and a better
understanding of this relationship can provide insight into the
potential therapeutic applications of haptoglobin modulators in
managing inflammation following traumatic events (Baxter-
Parker, 2019). During inflammatory states, its levels increase as
part of the acute-phase response, helping to modulate excessive
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immune activation and tissue damage. Haptoglobin’s role extends to
pathological conditions such as lymphoma and leukaemia, where its
expression and function are altered due to disease progression
(Wang et al., 2021). Aberrant haptoglobin levels can be a disease
status and prognosis biomarker in haematological malignancies.
Increased serum haptoglobin levels have been observed in various
cancers, including lymphoma and leukaemia, reflecting its role in
the tumour microenvironment (Delanghe et al., 2024). Haptoglobin
has increasingly been recognised for its involvement in cancer
biology. Elevated levels of haptoglobin are commonly observed in
various malignancies, including lymphoma, leukaemia, and solid
tumours such as breast, prostate, and colorectal cancers (Naryzny
and Legina, 2021). The role of haptoglobin in malignancy is
multifaceted, influencing both tumour progression and the
microenvironment. One of the primary functions of haptoglobin
in cancer is its interaction with the immune system. Haptoglobin
modulates inflammatory responses, which are crucial in the
pathogenesis of cancer. In particular, haptoglobin’s anti-
inflammatory effects can suppress immune surveillance, aiding in
tumour immune evasion. It has been shown that haptoglobin can
alter cytokine profiles in the tumour microenvironment, promoting
tumour growth and metastasis (Lu et al., 2016). For example, in
lymphoma and leukaemia, high levels of haptoglobin correlate with
poor prognosis, potentially due to its role in suppressing anti-
tumour immune responses and fostering an immunosuppressive
environment. Additionally, haptoglobin has been implicated in
angiogenesis, the process by which new blood vessels form to
supply the growing tumour with nutrients and oxygen (Lu et al.,
2016). By modulating the balance of reactive oxygen species (ROS)
in the tumour microenvironment, haptoglobin can influence
endothelial cell function and blood vessel formation, facilitating
tumour growth and metastasis (Costa et al., 2014). Moreover,
haptoglobin’s role in iron metabolism, particularly its ability to
scavenge free haemoglobin, may also contribute to iron homeostasis
in tumour cells, providing the conditions for uncontrolled cell
proliferation. Given these multifaceted roles, haptoglobin is
increasingly considered a potential malignancy biomarker and
therapeutic target (Costa et al., 2014). Modulating haptoglobin
activity by enhancing its protective functions or inhibiting its
pro-tumourigenic effects holds promise for improving cancer
therapies. It is believed to influence immune evasion,
angiogenesis, and tumour proliferation by modulating cytokine
networks and oxidative stress responses. The interaction between
haptoglobin and the immune system is particularly interesting in
leukaemia, where immune suppression and altered inflammatory
responses contribute to disease progression (Schaer et al., 2014).
Additionally, changes in haptoglobin expression in malignant
conditions can affect iron metabolism and erythropoiesis, further
complicating disease pathology (Dobryszycka, 1997).

The necessity for a drug candidate that binds to haptoglobin
arises from its pivotal role in haemoglobin clearance, immune
regulation, and inflammatory modulation. Targeting haptoglobin
could offer therapeutic benefits in conditions characterised by
excessive haemolysis, such as sickle cell disease, haemolytic
anaemias, and autoimmune haemolytic conditions (Bulters et al.,
2018). In these disorders, the overwhelming release of free
haemoglobin exceeds the binding capacity of endogenous
haptoglobin, leading to oxidative stress and endothelial

dysfunction (Gáll et al., 2019). A drug stabilising or enhancing
haptoglobin function could improve clearance and reduce oxidative
damage. Additionally, modulating haptoglobin activity has potential
therapeutic implications in inflammatory and immune-mediated
diseases. Given its influence on cytokine networks, a targeted
therapeutic could be designed to either enhance or inhibit
specific haptoglobin interactions, offering new treatment
strategies for conditions such as sepsis, chronic inflammatory
diseases, and even cancer (Telen et al., 2019). Furthermore,
haptoglobin-targeted therapies could play a role in cardiovascular
diseases, where oxidative stress and inflammation contribute to
atherosclerosis and thrombosis. Developing haptoglobin-targeting
drugs requires a deep understanding of its structural and functional
properties. Small molecules, peptides, or monoclonal antibodies that
bind to haptoglobin could be designed to modulate its interactions
with haemoglobin, immune receptors, or coagulation factors
(Mantovani et al., 2022). The potential to engineer haptoglobin-
mimetic molecules or recombinant haptoglobin variants with
enhanced haemoglobin-binding capacity is an exciting avenue for
therapeutic development. Understanding haptoglobin
polymorphisms and their influence on drug efficacy will also be
crucial in developing personalised therapeutic strategies (Ciccolini
et al., 2011). Given its relevance in multiple physiological and
pathological processes, haptoglobin represents a promising target
for future drug discovery efforts, with implications spanning
haematology, immunology, oncology, and cardiovascular
medicine (Dunphy et al., 2021). By leveraging advances in
structural biology, bioinformatics, and AI-driven drug design,
novel therapeutic approaches targeting haptoglobin could offer
significant clinical benefits in managing haemolytic,
inflammatory, and malignant disorders—currently, no widely
approved therapeutic drugs precisely target haptoglobin (Hp) for
clinical use (Delanghe et al., 2024). Moreover, while haptoglobin is
being explored as a therapeutic target in conditions such as
haemolytic anaemias, sepsis, and cardiovascular diseases, there is
still insufficient understanding of how specific modulation of
haptoglobin activity could be leveraged to improve clinical
outcomes. The challenge lies in designing therapies that
selectively target haptoglobin’s pathological roles, such as its
involvement in immune modulation and oxidative stress, without
affecting its crucial physiological functions in haemoglobin
scavenging and iron homeostasis. This gap in knowledge
underscores the need for more refined drug discovery approaches
and deeper mechanistic insights into haptoglobin’s diverse
biological roles. Despite the promising therapeutic potential of
haptoglobin modulation in various pathological conditions, a
significant knowledge gap remains in understanding the precise
molecular mechanisms through which haptoglobin influences
disease progression. While its role in haemoglobin scavenging,
immune regulation, and inflammation is well-documented, the
development of specific, targeted therapies remains challenging
due to a lack of detailed mechanistic insights into how
haptoglobin’s interactions with other molecules can be modulated
for therapeutic purposes. Additionally, the variation in haptoglobin
phenotypic forms complicates the design of universal therapeutic
agents, necessitating a more personalised approach to drug
development. As such, further research is needed to unravel the
exact role of haptoglobin in disease states and to identify effective
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strategies for targeting haptoglobin specifically without disrupting
its critical physiological functions. Computational techniques, such
as molecular docking and simulation studies, offer promising
avenues to bridge this knowledge gap by enabling a systematic
exploration of potential haptoglobin-targeting compounds.
Integrating structural data, ligand interaction profiles and
pharmacokinetic modelling provides valuable insights into
protein-ligand complexes’ binding dynamics and stability,
essential for identifying viable drug candidates. As demonstrated
in this study, such computational workflows can expedite the
identification of haptoglobin inhibitors, paving the way for
experimental validation and, ultimately, the development of novel
therapeutic agents. In Japan, plasma-purified haptoglobin has been
utilised since 1985 to protect the kidneys from haemoglobin-
induced toxicity in conditions like extracorporeal circulation,
massive transfusion, and thermal injury (Wang and Bellomo,
2017). Additionally, haptoglobin-conjugated nanoparticles and
liposomes are under development for targeted drug delivery to
inflamed tissues or cancer sites, aiming to maximise therapeutic
efficacy while minimising systemic adverse effects (Aram et al.,
2022). Furthermore, by fine-tuning immune responses, monoclonal
antibodies that modulate haptoglobin function are being
investigated as potential treatments for inflammatory and
autoimmune diseases. These developments suggest a growing
interest in harnessing haptoglobin pathways for therapeutic
purposes, although such interventions are not yet standard
clinical practice (He et al., 2022).

In this study, we performed the molecular docking of the
complete DrugBank library against human haptoglobin and
identified some crucial drug candidates. The candidates were

then taken for the interaction fingerprints to determine the
interaction pattern. We also performed the study’s DFT and
pharmacokinetics to understand the identified compounds better.
The study was extended to the WaterMap, MD simulation and
MM\GBSA to better understand the protein-ligand complexes’
suitability and stability.

2 Methods

In this study, we have performed several studies on data
collection, processing, docking, interaction fingerprints, DFT,
pharmacokinetics, WaterMap, MD Simulation, binding free
energy computations, and many more. We have plotted the
workflow in Figure 1 to make it clearer. Further, the detailed
methods are as follows-

2.1 Protein and ligand data collection and
preparation

Protein preparation before docking is a crucial step to ensure
accurate molecular interactions. It involves retrieving the protein
structure from databases like PDB, removing water molecules,
adding missing hydrogen atoms, optimising bond orders, and
correcting protonation states based on physiological pH. Energy
minimisation is performed to relieve steric clashes and stabilise the
structure. Ligands, cofactors, and non-essential molecules are
removed unless required for docking. Finally, the prepared
protein is saved in an appropriate format for molecular docking

FIGURE 1
The study’s workflow shows data collection to identify potent drug candidates and validate them with WaterMap, MD Simulation, and binding free
energy computations.

Frontiers in Chemistry frontiersin.org04

Al Khzem and Ahmad 10.3389/fchem.2025.1611972

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1611972


simulations (Ahmad et al., 2023a; Famuyiwa et al., 2023; Ahmad
et al., 2024b; Ahmad et al., 2025a). The structure of the human
haptoglobin-haemoglobin complex (PDB ID: 4X0L) protein was
downloaded from the RCSB-PDB database (https://www.rcsb.org/)
that has chain A, B, and C of the Protein, Ligands, Solvents, metals/
ions, and other heteroatoms, and prepared using the protein
preparation workflow (PPW) in the Schrödinger’s Maestro (v.
2022-2) (Maestro, 2022; Release, 2022f; Ahmad et al., 2025b). In
the PPW, we capped the termini, filled in the missing side chains,
reassigned all bond orders, created disulphide and zero bond orders
to metals, filled in the loops using Prime, and generated the het states
using Epik at pH 7.4 ± 2 (Jacobson et al., 2004; Shelley et al., 2007;
Maestro, 2022). We further optimised the H-bond by sampling
water orientation, using crystal symmetry, minimising the hydrogen
of altered species, and using PROPKA (Olsson et al., 2011; Maestro,
2022). For the minimisation, we used the OPLS4 forcefield, all atoms
tomax 0.30Å RMSD and deleted water beyond 5Å to het-atoms after
preparation, and we kept only the longest chain of the protein, which
is chain C that was further used for the generating the grid
(Jorgensen and Tirado-Rives, 1988; Maestro, 2022).

Ligand data collection and preparation involve retrieving ligand
structures from databases like PubChem, ChEMBL, DrugBank, or
ZINC or designing novel molecules using cheminformatics tools.
The structures are optimised by assigning proper bond orders,
tautomeric states, and stereochemistry. Energy minimisation uses
force fields like MMFF94 or AMBER to achieve a stable
conformation (Ahmad et al., 2022a; Ahmad et al., 2023b; Ahmad
et al., 2024a). Protonation states are adjusted based on physiological
pH, and partial atomic charges are assigned. Finally, the ligand is
converted into a docking-compatible format (Ahmad et al., 2022b;
Ahmad et al., 2023c; Ahmad and Raza, 2023). We downloaded the
DrugBank ligand database for this study and prepared them with the
LigPrep tool in Schrödinger’s Maestro (v.2022-2) (Maestro, 2022;
Release, 2022d). In LigPrep, we kept filtering the compounds with
more than 500 atoms, used OPLS4 force field and ionisation to
generate the possible states at target pH 7 ± 2, and utilised the Epik
classic and Desalt to generate tautomers (Jorgensen and Tirado-
Rives, 1988; Shelley et al., 2007; Maestro, 2022). The stereoisomers
computations were kept retaining the specified chiralities and
generating at most 32 per compound, and the output file was
written in SDF format for further use. The prepared ligand
library was further used for direct docking as it has proper
coordinates.

2.2 Molecular docking and pose
processing studies

Receptor grid generation in docking defines the binding site for
ligand placement and scoring. It involves selecting the target
protein’s active site based on co-crystallised ligands, known
functional residues, or blind docking predictions. Grid
dimensions are optimised to encapsulate key interaction regions
while avoiding excessive flexibility loss. Force fields like OPLS,
AMBER, or CHARMM refine grid parameters, ensuring accurate
electrostatic and van der Waals potential mapping (Jorgensen and
Tirado-Rives, 1988; Al Khzem et al., 2024; Maestro, 2022). Properly
generated grids enhance docking precision by restricting ligand

sampling to relevant binding pockets (Ban et al., 2018; Ahmad
et al., 2024c). In this study, we generate the grid on complete protein
for blind docking using the Receptor Grid Generation tool in
Schrödinger’s Maestro (v.2022-2), where we kept the scaling
factor of one and partial cutoff of 0.25 (Maestro, 2022; 2022e).
In the site tab, we kept displaying the box, specified ‘all’ residues to
generate the grid on the centroid of the protein, adjusted the box to
fit properly on the protein, and kept all advanced settings without
disturbing it (Maestro, 2022; Release, 2022e). Molecular docking
studies are pivotal in identifying new drug candidates by predicting
the binding affinity and interaction patterns between small
molecules and target proteins. The process begins with protein
and ligand preparation, followed by grid generation to define the
binding site. Docking algorithms, such as AutoDock, Glide, or
GOLD, explore ligand conformations and binding modes within
the active site. Scoring functions rank the docked poses based on
binding energy and intermolecular interactions, including hydrogen
bonding, hydrophobic contacts, and electrostatic forces. High-
affinity candidates undergo further refinement through molecular
dynamics simulations and binding free energy calculations to
validate stability and specificity. The top-ranked compounds are
shortlisted for in vitro and in vivo validation, bridging
computational predictions with experimental drug discovery
efforts. For the docking studies, we used the Glide in
Schrödinger’s Maestro (v.2022-2), where we docked the
compounds in multiple phases to save computational cost using
the Virtual Screening Workflow (VSW) (Maestro, 2022; Release,
2022b). In the VSW panel, we browsed the prepared ligand library
and kept generating unique properties of each compound and
filtered them using the QikProp and Lipinski’s rule, skipped the
preparation panel and browsed the protein’s generate grid in the
receptor tab (Maestro, 2022; QikProp, 2022). We kept using Epik
state penalties for docking in the docking panel and wrote
interaction scores for residues within 12Å of the grid centre
(Shelley et al., 2007; Maestro, 2022). The scaling factor was kept
to 1, the partial charge cutoff was 0.15, and docking was done using
high throughput virtual screening (HTVS), standard precision
docking (SP), and extra precise docking (XP) (Maestro, 2022;
Release, 2022b). In the HTVS, all 100% of compounds left after
filtering were passed and after screening, 50% passed to SP and then
screened and passed the top 50% to XP, where it was extensively
docked while generating four poses per compound and 100% passed
for the pose filtering with Prime-Molecular Mechanics Generalised
Born Surface Area (MM\GBSA) (Al Khzem et al., 2025a). The
complexes were further analysed and exported to CSV for further
analysis, and the top five complexes were further analysed and taken
for further study.

2.3 Interaction fingerprints computations

Molecular Interaction Fingerprints (MIFs) are computational
descriptors that identify and analyse interaction patterns between
ligands and target proteins in molecular docking and structure-
based drug design. MIFs encode key molecular interactions such as
hydrogen bonds, hydrophobic contacts, π-π stacking, salt bridges,
and van der Waals forces into a compact numerical or binary
format. By systematically comparing ligand binding profiles,
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MIFs help cluster, rank, and optimise drug candidates based on their
similarity to known inhibitors’ interactions. They also assist in
identifying conserved binding motifs across multiple docking
poses or protein families (Tripathi et al., 2022; Al Khzem et al.,
2025b). Advanced fingerprinting techniques, such as
pharmacophore-based fingerprints and machine learning-driven
MIF analysis, enhance drug discovery by predicting structure-
activity relationships (SAR) and guiding lead optimisation. The
MIF computations were performed using the Interaction
Fingerprint tool in Schrödinger’s Maestro (v.2022-2), where we
first selected the receptor-ligand complexes option and any
contact types and did not perform the alignment as all protein
cases were similar and generated the fingerprints without disturbing
any advanced settings (Maestro, 2022). The interaction pattern was
exported in a matrix plotted for further analysis. In the matrix, we
plotted the count of interacting residues with names, the count of
ligand interactions to identify which residues have better docking
potential and chosen any contact types, and colour the main plot to
determine the N to C terminal of the proteins and removed the non-
interacting residues and displayed the docking scores for further
analysis (Maestro, 2022).

2.4 Pharmacokinetics and density functional
theory computations

Pharmacokinetics (PK) in drug design involves studying a drug
candidate’s absorption, distribution, metabolism, and excretion
(ADME) to assess its efficacy and safety. A well-optimised PK
profile ensures the drug reaches its target at therapeutic
concentrations without causing toxicity. Absorption determines
how efficiently the drug enters systemic circulation, influenced by
solubility and permeability. Depending on plasma protein binding
and molecular properties, distribution assesses how the drug
disperses in tissues (Lipinski, 2004; Famuyiwa et al., 2023).
Metabolism, primarily occurring in the liver via cytochrome
P450 enzymes, transforms the drug into active or inactive
metabolites. Excretion through renal or biliary pathways
determines drug clearance and half-life. Computational and
experimental PK studies, including in silico ADMET predictions
and in vivo pharmacokinetic assays, help optimise drug candidates
by improving bioavailability, minimising off-target effects, and
ensuring optimal dosing regimens. The pharmacokinetics
profiling of all five identified compounds was performed using
the QikProp tool in Schrödinger’s Maestro (v.2022-2) and kept
Lipinski’s rule as a filter to have better screening, and these were
further compared for all compounds with standard values of the tool
(Chandrasekaran et al., 2018; Maestro, 2022; QikProp, 2022).

Density Functional Theory (DFT) is a quantum mechanical
computational method used to study the electronic structure of
molecules and materials. DFT plays a crucial role in drug design,
optimising molecular geometries, calculating electronic properties,
and predicting reactivity and intermolecular interactions. It provides
insights into molecular orbital energies (HOMO-LUMO gap),
charge distribution, dipole moments, and binding affinities,
aiding in the rational design of potent drug candidates
(Perepichka and Bryce, 2005). DFT is widely employed to
understand ligand-protein interactions at the atomic level,

helping predict binding modes and stability. It is instrumental in
modelling covalent inhibitors, redox-active drugs, and metallodrugs
by accurately describing electron density changes upon binding
(Karwasra et al., 2022). The method also assists in calculating
molecular electrostatic potential (MEP) maps, essential for
identifying pharmacophoric regions. Based on system complexity,
different functionals, such as B3LYP, M06–2X, and ωB97XD, and
basis sets like 6-31G** and def2-TZVP. Despite its high accuracy,
DFT can be computationally demanding for large biomolecular
systems, requiring hybrid approaches like QM/MM (quantum
mechanics/molecular mechanics) for efficient drug discovery
applications. The DFT computations for all five complexes were
performed using the Jaguar module in the Optimisation panel of
Schrödinger’s Maestro (v.2022-2) (Bochevarov et al., 2013; Maestro,
2022; Release, 2022c). The compound was selected from the
workspace, and the 6-31G basis set along with the Becke, 3-
parameter, Lee-Yang-Parr with D3 dispersion correction (B3LYP-
D3) theory was used for DFT (Witte et al., 2017; Maestro, 2022). The
spin treatment was automatic, and Time-Dependent DFT (TDDFT)
was performed for excited states with a grid density of medium. A
three-body dispersion correction was applied with all applicable
dispersion-corrected functionals. The Self-Consistent Field (SCF)
accuracy level was set to “Quick,” with atomic overlap as the initial
guess (Carbó and Riera, 2012; Maestro, 2022). The convergence
criteria were maintained at 48 iterations, with an energy change
threshold of 5 × 10−5 Hartree (Ha) and Root Mean Square (RMS)
density matrix changes of 5 × 10−6. The Direct Inversion in the
Iterative Subspace (DIIS) convergence scheme was applied
(Hamilton and Pulay, 1986; Maestro, 2022). The optimisation
was performed with a maximum of 100 steps, with a switch to
analytic integrals near convergence and Schlegel Guess for the initial
Hessian matrix (Schlegel, 2011; Maestro, 2022). Surfaces
computations were carried out for electrostatic potential, average
local ionisation energy, non-covalent interactions, electron density,
spin density, and Molecular Orbitals (MO) for Highest Occupied
Molecular Orbital (HOMO) to Lowest Unoccupied Molecular
Orbital (LUMO) transitions, ranging from HOMO to
LUMO+0 for Alpha and Beta states, as well as Natural
Transition Orbitals (NTOs) for excited states (Perepichka and
Bryce, 2005). The solvation model used was the Poisson-
Boltzmann Finite element (PBF) solvent model, with water as the
solvent, and optimisation was conducted in the gas phase. The
output was written for proper analysis, and the QuantumMechanics
(QM) convergence monitor was used to analyse various energies for
all five ligands.

2.5 WaterMap calculations

WaterMap is a computational method used to analyse the
thermodynamic properties of water molecules in protein binding
sites, playing a crucial role in rational drug design. It identifies and
quantifies the energetics of water molecules in the active site by
evaluating their free energy, entropy, and enthalpy contributions.
Since water molecules mediate ligand-protein interactions,
understanding their displacement and retention can optimise
drug binding and potency (Kaczor et al., 2024). WaterMap
simulations, based on MD simulation, categorise water molecules
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as either stable (structurally integral) or unstable (high-energy,
displaceable). Displacing high-energy waters with hydrophobic
ligand groups can enhance binding affinity while stabilising key
water molecules can improve ligand specificity. This approach helps
structure-based drug design (SBDD), particularly for optimising
lead compounds, refining docking poses, and guiding fragment-
based drug discovery. By providing insights into hydration
energetics, WaterMap assists in designing drugs with improved
solubility, bioavailability, and target selectivity, ultimately
contributing to developing more effective therapeutics with
optimised binding interactions (Ahmad and Raza, 2023; Kaczor
et al., 2024). The WaterMap calculation was performed using the
WaterMap-Perform Calculation panel in Schrödinger’s Maestro
(v.2022-2), where we selected the ligand in the workspace and
kept retaining the ligand and analysed the waters within 10Å of
selected atoms (Bowers et al., 2006; Maestro, 2022; Release, 2022a).
We kept truncating the protein for the simulation setup, using the
OPLS4 force field and treating existing waters as solvents (Jorgensen
and Tirado-Rives, 1988; Maestro, 2022). The simulation setup was
kept to 5ns, did not return any trajectories, and kept the calculation
job running on GPU. After the completion of the job, we used the
WaterMap-examine results panel in Schrödinger’s Maestro (v.2022-
2), where we went with the Analyse workspace option and then
analysed the results where we computed various energies, including
the enthalpy, entropy, free energy, overlap factor, distance andmany
other energy levels of the complexes (Bowers et al., 2006; Maestro,
2022). We exported the CSVs for further analysis and ligand
interaction diagrams in 2D and 3D for better interactions and
hydration site estimations.

2.6 Molecular dynamics simulation and
binding free energy computations

Molecular Dynamics (MD) simulation is a computational
technique used to study the dynamic behaviour of biomolecules,
such as proteins, DNA, and ligands, over time at an atomic level. In
drug design, MD simulations help evaluate ligand-protein
interactions, stability, binding affinity, and conformational changes
under physiological conditions. By solving Newton’s equations of
motion for each atom, MD simulations provide insights into
biomolecular flexibility, hydration effects, and energy landscapes.
MD simulations start with system preparation, including solvation,
charge neutralisation, and force field assignment (e.g., CHARMM,
AMBER, OPLS) (Soares et al., 2003). The system undergoes energy
minimisation, equilibration (NVT/NPT ensembles), and production
runs, typically ranging from nanoseconds to microseconds. Key
analyses include root-mean-square deviation (RMSD) for structural
stability, root-mean-square fluctuation (RMSF) for flexibility,
hydrogen bonding, solvent-accessible surface area (SASA), and
binding free energy calculations (MM-PBSA/MM-GBSA). MD
simulations refine docking results by confirming ligand stability,
identifying water-mediated interactions, and predicting allosteric
binding sites. They also aid in lead optimisation, drug resistance
studies, and personalised drug design by modelling mutations and
drug-target adaptations, making them essential in modern
computational drug discovery. In this study, we performed the
MD Simulation using Desmond Package in Schrödinger’s Maestro

(v.2022-2) available from https://www.deshawresearch.com/
resources.html, which conducts the whole analysis in three parts
starting from building the system file, production run and analysing
the trajectories (Bowers et al., 2006; Maestro, 2022; Release, 2022a).
The system builder tool in Schrödinger’s Maestro (v.2022-2) was used
to prepare the system file where we used the predefined model TIP3P
and boundary conditions in orthorhombic condition with 10 × 10 ×
10 Å in buffer and showed the boundary box (Mark and Nilsson,
2001; Maestro, 2022). The ion and salt placement were excluded with
20 Å and neutralises the complexes by adding 0Na+, 0 Na+, 1Na+,
2Na+, 0Na+, 0Na+ in haptoglobin in complex with L-histidinol
phosphate (DB03997), L-Gluconic Acid (DB04304), 4-bromo-3-
(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid
(DB07197), 3-O-Methylfructose (DB02438), and Glutamine
hydroxamate (DB02446), and uses the OPLS4 forcefield and kept
the job running to prepare the system file to run the MD Simulation
jobs (Jorgensen and Tirado-Rives, 1988; Maestro, 2022). The
production jobs were kept for the 100ns after loading the complex
file, where we kept the recording interval of 100 ps, which recorded a
total of 1,000 frames per complex. TheNPT ensemble class was kept at
300 K temperature and 1.01325 bar pressure, and the model was
relaxed before the production run (McDonald, 1972; Maestro, 2022).
Further, we also kept running the analysis job, which generated the.
eaf file for analysis with the Simulation Interaction Diagram tool used
for exporting the figures and data for further detailed analysis (Bowers
et al., 2006; Maestro, 2022).

Molecular Mechanics Generalised Born Surface Area
(MM\GBSA) is a widely used end-point free energy calculation
method applied to MD simulation trajectories for evaluating ligand
binding affinities. It balances accuracy and computational efficiency,
making it a preferred approach for refining docking results and
validating ligand-protein interactions. In MM\GBSA, the total
binding free energy (ΔGbind) is computed as the difference
between the free energy of the complex and the sum of the free
energies of the unbound protein and ligand. In MM\GBSA, the total
binding free energy (ΔGbind) is computed as:

ΔGbind �Gcomplex - (Gprotein + Gligand)

where G represents the free energy of each molecular state. The total
free energy is derived from the sum of molecular mechanics energy,
which includes bonded, electrostatic, and van der Waals
interactions, solvation-free energy contributed by the polar
component from the Generalised Born (GB) model and the non-
polar component from solvent-accessible surface area (SASA), and
optionally, the entropic contribution. Following an MD simulation,
MM\GBSA is applied to extract snapshots from the equilibrated
phase of the trajectory, typically using molecular dynamics engines
like AMBER, GROMACS, or Schrödinger’s Prime MM\GBSA
module (Yadav et al., 2022; Maestro, 2022). The method is
instrumental in refining docking results by incorporating
solvation and entropic contributions, assessing ligand stability by
evaluating retention in the binding pocket over time, and predicting
binding affinity by providing scores that correlate well with
experimental data. Additionally, MM\GBSA helps study the
impact of protein mutations on drug binding, making it a
valuable tool in drug resistance studies. When combined with
MD simulations, MM\GBSA enhances the accuracy of
computational drug discovery by offering detailed insights into
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ligand-protein binding energetics and guiding the selection and
optimisation of potent drug candidates. We used a custom python
script (mmgbsa.py) to run the MM\GBSA on all five complexes’
trajectories in Schrödinger’s Maestro (v.2022-2) (Tuccinardi, 2021;
Maestro, 2022) using the bash script where first we called the
Schrödinger run in the environment and then executed the
python file by the following commands-

export SCHRODINGER � /opt/Schrödinger-2022-2/
SCHRODINGER/run thermal mmgbsa.py desmond md job

NAME-out.cms

After MM\GBSA jobs, we analysed various energies, including
the binding free energy and total complex energy and plotted the
Figure to make energies clear for 0 to 1,000 frames (Wang et al.,
2019; Tuccinardi, 2021; Maestro, 2022).

3 Results

The molecular docking studies have resulted in many promising
compounds, however, after careful analysis, we identified L-histidinol
phosphate (DB03997), L-Gluconic Acid (DB04304), 4-bromo-3-
(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid
(DB07197), 3-O-Methylfructose (DB02438), and Glutamine
hydroxamate (DB02446) as the best compounds for haptoglobin
that further were validated with many analysis. The detailed analysis
for each step is as follows-

3.1 Protein structure analysis and validation

The protein preparation results from the Schrödinger Maestro
PPW provide a comprehensive analysis of the energetic parameters
associated with the system, offering critical insights into its
structural stability, molecular interactions, and force field
contributions. The system’s total energy was recorded
at −3.52993 × 103 kcal/mol, representing the molecular system’s
combined potential and kinetic energy contributions. Since the total
kinetic energy was 0.00000 kcal/mol, indicating the system was in a
minimised state without dynamic motion, as expected during the
initial stages of structural refinement. The total potential energy, also
recorded as −3.52993 × 103 kcal/mol, reflects the sum of all
molecular interactions contributing to the stability of the
prepared protein structure. The system’s temperature was noted
as 0.000 K, indicating that the energy minimisation process was
performed at a static state without the influence of thermal
fluctuations, ensuring that the calculations reflected a fully
optimised structure under a vacuum or implicit solvent model.
The bond stretch energy was calculated at 262.462 kcal/mol
among the bonded interaction components, reflecting the energy
required to maintain bond lengths near their equilibrium values as
defined by the applied force field. At 1.21983 × 103 kcal/mol, the
angle bending energy represents the strain energy associated with
deviations from ideal bond angles. The torsion angle energy was
computed as 861.749 kcal/mol, accounting for the rotational strain
energy within flexible dihedral angles of the protein, which is critical
for evaluating the conformational preferences of secondary structure

elements. Interestingly, the restraining energy for torsions was
0.00000 kcal/mol, signifying that no additional constraints were
imposed on dihedral angles, allowing for natural conformational
flexibility. Non-bonded interactions are crucial in determining the
protein’s stability, particularly van der Waals (Lennard-Jones)
interactions and electrostatic contributions. The 1,4 Lennard-
Jones energy, which quantifies the non-bonded steric interactions
between atoms separated by three covalent bonds, was 2.49605 ×
103 kcal/mol, indicating significant steric repulsion and attraction
forces within short-range molecular contacts. The 1,4 electrostatic
energy, computed as 1.18138 × 103 kcal/mol, reflects the Coulombic
interactions between atoms separated by three bonds, influencing
the protein’s dipole alignment and local charge distribution. The
Lennard-Jones energy, representing overall van der Waals
interactions across the entire system, was −5.81707 × 103 kcal/
mol, with the large negative value indicating a strong stabilising
effect due to favourable dispersion forces between non-bonded
atoms. Similarly, the electrostatic energy was −3.76839 ×
103 kcal/mol, which accounts for the long-range Coulombic
interactions and charge-charge stabilisation effects within the
protein. The hydrogen bond energy, recorded at 0.00000 kcal/
mol, suggests that explicit hydrogen bonding interactions were
either negligible or implicitly incorporated within the force field’s
electrostatic treatment, whichmay depend on the solvationmodel or
minimisation settings. These energy components provide a detailed
assessment of the prepared protein’s structural integrity and
interaction potential. The significant contributions from angle
bending and torsion energy highlight the importance of proper
dihedral conformations, while the dominant negative electrostatic
and Lennard-Jones energies confirm that the protein structure is
well-optimised for molecular docking or further computational
studies. These parameters collectively ensure the protein is in a
low-energy, stable state, suitable for downstream applications such
as molecular docking, molecular dynamics simulations, or ligand
binding studies.

The protein descriptor analysis for haptoglobin provides a
detailed evaluation of its physicochemical, structural, and
energetic properties. Aggregation propensity is captured through
AGGRESCAN_Nr_hotspots (7) and AGGRESCAN_a3v_value
(0.003574713), indicating a relatively low aggregation tendency.
The amino acid composition (Aa_Composition: 1,479.6) and
comparison with SwissProt (1,488.49) reveal the general residue
distribution within the protein and its alignment with standard
protein databases. Amino acid flexibility (Aa_Flexibility_VTR:
259.508) provides insights into the conformational adaptability of
the protein backbone. Hydrophobicity and solvent accessibility
parameters are essential for understanding protein stability and
interactions. The total solvent-accessible surface area (All_SASA:
12,215.727 Å2) indicates the overall exposure of residues to the
solvent. The hydrophobic surface areas (All_Hydrophobic_SASA:
502.119 Å2, All_Hydrophilic_SASA: 0.45075598 Å2) highlight the
balance between hydrophilic and hydrophobic interactions that
influence protein folding and stability. The hydrophobic patch
energy (All_Hydrophobic_Patch_Energy: 397.444 kcal/mol)
quantifies the stabilisation effect of hydrophobic residues, while
positive and negative patch energies (All_Positive_Patch_Energy:
3,496.422 kcal/mol, All_Negative_Patch_Energy: 3,012.522 kcal/
mol) illustrate the distribution of charge patches across the
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protein surface. Electrostatic properties play a critical role in protein
function and interactions. The dipole moment (All_Dipole_Moment:
554.217 Debye) signifies the charge distribution asymmetry, influencing
molecular recognition. The formal charge (All_Formal_Charge: 7.05E-
13 eV) indicates near-neutrality, while the apparent charge (Apparent_
Charge_eV: 2.39E-13 eV) suggests minimal net charge effects in
physiological conditions. The zeta potential (All_Zeta_Potential:
2.38E-12 mV) gives insights into colloidal stability and aggregation
tendencies. Secondary structure propensities provide insights into the
folding characteristics of haptoglobin. The alpha-helix content, as
predicted by Chou-Fasman (259.82), Deleage-Roux (260.787), and
Levitt (263.52), indicates a stable helical structure. Similarly, beta-
sheet content (Chou-Fasman: 264.6, Deleage-Roux: 261.625, Levitt:
258.86) reveals a well-balanced sheet composition. Beta-turn
tendencies (252.75–252.82) and coil content (Coil_Deleage_Roux:
257.664) further support the structural complexity. Protein
compactness and shape are inferred from the moment of inertia
values (Inertia_X: 0.902, Inertia_Y: 0.930, Inertia_Z: 1.115) and
radius of gyration (33.06 Å), which indicate a relatively compact
structure. Atomic contact energy (−477.181 kcal/mol) suggests
favourable intra-protein interactions, crucial for maintaining
structural integrity. The hydrophobicity indices (Kyte-Doolittle:
−77.6, Janin: −36.6, Eisenberg: 11.26) confirm that haptoglobin
exhibits a moderately hydrophilic nature. Charge-based properties
include total negative SASA (Total_negative_SASA: 1,491.4 Å2) and
total positive SASA (Total_positive_SASA: 1,574.1 Å2), which indicate a

balanced distribution of charged residues. The net charge (Net_Charge_
model_based: 2.32, Net_Charge_propka_based: 1.20) suggests a slight
positive charge under physiological conditions, which could impact its
interaction with negatively charged molecules. Other key descriptors
include molecular weight (33,366 Da), refractivity (22,658), and
sedimentation coefficient (2.16E-13 Svedbergs), providing insights
into protein mass, optical properties, and potential behaviour in
solution. The hydrophobic patch size (Avg_Size_Hyd_Patches:
143.01, Max_Size_Hyd_Patches: 379.72) quantifies hydrophobic
clustering, which is relevant for ligand binding and self-assembly.
This comprehensive descriptor analysis confirms that haptoglobin is
a structurally stable, hydrophilic protein with well-balanced secondary
structure elements, moderate aggregation propensity, and defined
charge distribution. These properties are crucial for understanding
its biological function, interactions, and potential modifications for
biotechnological or therapeutic applications. Further, in Figure 2, we
show the original downloaded structure and prepared clean structures
with ligand binding site in 3D format, as well as Ramachandran Plot for
the prepared protein to clarify the structural understanding.

3.2 Molecular docking analysis

The molecular docking study Haptoglobin protein (PDB ID:
4X0L) was performed, revealing several promising results. However,
five of the best ligands were selected for a detailed study. The

FIGURE 2
Showing the (A) downloaded haptoglobin structure in 3D, (B) prepared clean structure of haptoglobin with marked ligand binding site (white box),
and (C) Ramachandran Plot for the Prepared structure of the protein.
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docking results provide insights into the binding affinities, hydrogen
bonding interactions, salt bridges, and overall stability of the ligand-
protein complexes. The docking simulation of haptoglobin with
L-histidinol phosphate resulted in a docking score of −7.96 kcal/mol
and an MMGBSA binding free energy of −26.23 kcal/mol. The
ligand formed two hydrogen bonds with ASN203 and
ASP378 residues through its N + H3 atom. Additionally, two salt
bridges were established between the ASP378 residue and the N +
H3 atom and between the LYS378 residue and the phosphorus atom
of L-histidinol phosphate. The high negative binding energy
indicates a strong and stable interaction. L-gluconic acid
exhibited a docking score of −7.74 kcal/mol and an MMGBSA
binding free energy of −19.09 kcal/mol. The ligand formed five
hydrogen bonds with ASN203, ASP378, and LYS378 residues via
two OH atoms, while the ARG286 residue interacted with the ligand
through an oxygen atom. A salt bridge interaction was also observed
between the ARG286 residue and the oxygen atom of L-Gluconic
acid. The multiple hydrogen bonds contribute significantly to the
ligand’s stability within the binding site. Haptoglobin Complex with
4-Bromo-3-(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-
2-Carboxylic Acid (DB07197) exhibited a docking score
of −6.92 kcal/mol and an MMGBSA binding free energy
of −4.12 kcal/mol. Hydrogen bond interactions were established
between THR200, SER376, and ARG286 residues with the OH and
O atoms of the ligand. Additionally, a π-cation interaction was
observed between the benzene ring and LYS379 residue, and a salt
bridge was formed between ARG286 and the oxygen atom of the
ligand. A π-cation interaction suggests possible stabilisation through
electrostatic and hydrophobic interactions. The docking analysis of
haptoglobin with 3-O-Methylfructose in Linear Form showed a
docking score of −6.16 kcal/mol and an MMGBSA binding free
energy of −10.97 kcal/mol. This ligand formed five hydrogen bonds
with THR200, ASN203, and ASP378 residues via three OH atoms
and LYS379 residue through the oxygen atom of the ligand. The
relatively lower docking score and binding energy suggest moderate
interaction strength with the protein. Glutamine hydroxamate
exhibited the lowest docking score of −5.57 kcal/mol and an
MMGBSA binding free energy of −1.00 kcal/mol, indicating a
weak binding affinity. The ligand formed four hydrogen bonds,
involving ASN203 and ASP378 residues with the N + H3 atom,
ASP378 residue with the NH atom, and THR200 and
SER376 residues with the OH atom. Two salt bridges were also
formed between ASP378 and LYS379 residues with the ligand’s N +
H3 atom and oxygen atom. The weak binding energy suggests this
ligand may not have a strong therapeutic potential for
haptoglobin targeting.

The docking analysis of human haptoglobin (PDB ID: 4X0L)
with five different ligands provides insights into their binding
affinities, hydrogen bond interactions, and stability within the
protein’s active site. Among the tested ligands, L-Histidinol
Phosphate (DB03997) demonstrated the highest docking score
(−7.96 kcal/mol) and the most stable binding free energy
(−26.23 kcal/mol), suggesting strong binding interactions
facilitated by hydrogen bonds and salt bridges. Similarly,
L-Gluconic Acid (DB04304) exhibited a relatively high docking
score (−7.74 kcal/mol) and significant stability (−19.09 kcal/mol),
owing to multiple hydrogen bonds and a salt bridge with ARG286.
These results suggest that these ligands could be promising

candidates for haptoglobin-targeted applications. Conversely,
Glutamine Hydroxamate (DB02446) showed the weakest docking
score (−5.57 kcal/mol) and the least favourable MMGBSA binding
free energy (−1.00 kcal/mol), indicating poor binding stability. The
moderate binding of 3-O-Methylfructose (DB02438) and 4-Bromo-
3-(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-
Carboxylic Acid (DB07197) suggests that while they form
multiple interactions, their overall binding strengths are not as
robust as L-Histidinol Phosphate or L-Gluconic Acid. Hydrogen
bonding played a crucial role in stabilising the ligand-protein
interactions, with ASN203, ASP378, and LYS378 emerging as key
residues across multiple ligands. Additionally, salt bridges involving
ASP378 and ARG286 were observed in several cases, contributing to
enhanced ligand binding stability. A π-cation interaction in
DB07197 with LYS379 indicates a potential stabilising force via
electrostatic interactions. Further experimental validation, including
molecular dynamics simulations and biochemical assays, would be
necessary to confirm their potential as drug candidates for
haptoglobin-related therapeutic applications. Furthermore,
detailed results for each energy level are shown in Table 1 and
Figure 3 for the 3D and 2D docking poses to clarify what bonds and
residues are involved in the interactions.

3.3 Molecular interaction pattern analysis

The molecular interaction fingerprint analysis of the docked
poses revealed the key residues contributing to the binding of five
ligands to human haptoglobin. The identified residues belong to
diverse categories, including positively charged (basic), negatively
charged (acidic), polar uncharged, non-polar (hydrophobic), and
aromatic amino acids, each playing a distinct role in ligand
recognition, stability, and affinity. Basic Residues during the
interactions were–Lysine (LYS) (10 occurrences) and Arginine
(ARG) (2 occurrences). Lysine (LYS), appearing in significant
abundance (10 occurrences), highlights the strong electrostatic
attraction between the protein and negatively charged or polar
ligand groups. LYS contains a positively charged ε-amino group,
which readily forms salt bridges and hydrogen bonds with
carboxylate (-COO-) and phosphate (-PO4

2-) groups from the
ligands. This suggests that haptoglobin favours interactions with
anionic ligands or those possessing electronegative atoms. The high
frequency of lysine also implies its stabilising role by forming long-
range electrostatic interactions that contribute to ligand retention.
Arginine (ARG), present in two instances, plays a complementary
role due to its guanidinium group, which can form strong bidentate
hydrogen bonds and π-cation interactions with aromatic moieties of
the ligands. Acidic Residues during the interactions were–Aspartic
Acid (ASP) (7 occurrences). Aspartic acid, a negatively charged
residue at physiological pH, frequently contributes to salt bridge
formation with positively charged amine groups on the ligands. The
significant occurrence of ASP residues (7 counts) highlights its role
in stabilising ligands that contain positively charged nitrogen
groups, such as protonated amines (–NH3

+). ASP also
participates in hydrogen bonding, further reinforcing ligand
binding. Polar Uncharged Residues during the interactions
were–Threonine (THR) (7 occurrences), Asparagine (ASN)
(5 occurrences), and Serine (SER) (3 occurrences). Polar residues
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such as THR, ASN, and SER are heavily involved in hydrogen bond
interactions, particularly with hydroxyl (-OH), amide (-CONH2), or
carboxyl (-COOH) groups from the ligands. Threonine (THR)
(7 occurrences) is often involved in hydroxyl-mediated hydrogen
bonding, contributing to ligand orientation and specificity.
Asparagine (ASN) (5 occurrences) plays a similar role, especially

in interactions with backbone carbonyl groups. Serine (SER)
(3 occurrences) can also establish side-chain hydrogen bonds,
further enhancing ligand stability within the binding pocket.
Non-polar (Hydrophobic) Residues during the interactions
were–Leucine (LEU) (8 occurrences), Alanine (ALA)
(4 occurrences), and Glycine (GLY) (4 occurrences).

TABLE 1 Showing the DrugBank IDs with docking scores, XP scores, MM\GBSA scores (all in Kcal/mol) andmany other scores generated during the docking
studies.

PDB ID DrugBank IDs State Penalty Docking Score XP GScore XP HBond

4X0L DB03997 2.11 −7.96 −10.07 −1.51

4X0L DB04304 0.00 −7.74 −7.74 −3.73

4X0L DB07197 0.00 −6.92 −6.92 −2.00

4X0L DB02438 0.00 −6.16 −6.16 −2.81

4X0L DB02446 0.00 −5.58 −5.58 −1.91

PDB ID DrugBank IDs MMGBSA dG Bind Complex Energy ligand efficiency sa ligand efficiency ln

4X0L DB03997 −26.23 −10371.73 −1.37 −2.19

4X0L DB04304 −19.09 −10257.00 −1.40 −2.17

4X0L DB07197 −4.12 −10307.71 −0.91 −1.71

4X0L DB02438 −10.97 −10230.23 −1.11 −1.73

4X0L DB02446 −1.00 −10300.29 −1.13 −1.64

FIGURE 3
Showing the Docking Poses in 3D and 2D for haptoglobin in complex with (A) L-histidinol phosphate (DB03997), (B) L-Gluconic Acid (DB04304), (C)
4-bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), (D) 3-O-Methylfructose (DB02438), and (E) Glutamine
hydroxamate (DB02446), and the legend is provided to make the bond and residues types more clear.
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Hydrophobic residues such as LEU, ALA, and GLY contribute to
hydrophobic pocket formation, which is crucial for ligands with
non-polar moieties. Leucine (LEU), appearing 8 times, is a major
hydrophobic interaction contributor, helping to create a favourable
van der Waals environment for non-polar ligand regions. Alanine
(ALA) and glycine (GLY) provide structural flexibility to the binding
site, which may assist in accommodating different ligand
conformations. Aromatic Residues during the interactions
were–Tyrosine (TYR) (5 occurrences) and Phenylalanine (PHE)
(2 occurrences). Aromatic residues such as TYR and PHE are
essential for π–π stacking and hydrophobic interactions with
planar and aromatic ligand structures. Tyrosine (TYR)
(5 occurrences) can also engage in hydrogen bonding through its
hydroxyl (-OH) group, making it versatile in ligand recognition.
Phenylalanine (PHE) (2 occurrences) mainly contributes to
hydrophobic stabilisation and π-interactions with ligand rings.
The fingerprint analysis of haptoglobin-ligand complexes reveals
that positively charged lysine residues (LYS) dominate ligand
binding, suggesting a strong preference for interacting with
negatively charged or polar ligands. Additionally, aspartic acid
(ASP) residues frequently engage in electrostatic and hydrogen
bonding interactions, highlighting their importance in stabilising
positively charged ligand groups. Hydrophobic residues such as
LEU, ALA, and PHE contribute to non-polar interactions, while
TYR, THR, ASN, and SER residues play crucial roles in hydrogen
bonding and ligand orientation, and in Figure 4, we have plotted the
whole fingerprints. These findings provide valuable insights into the
molecular determinants governing ligand affinity and specificity for
haptoglobin, which can be leveraged in drug design and
optimisation strategies.

3.4 Density functional theory and
pharmacokinetics analysis

The Density Functional Theory (DFT) calculations for the five
molecules, DB03997, DB04304, DB07197, DB02438, and DB02446,
were performed using the B3LYP-D3 functional within the Jaguar
program in Schrödinger, employing the 6-31G** basis set in a
solvated environment (Bochevarov et al., 2013; Maestro, 2022).
All molecules were treated as singlet states with a spin
multiplicity of one. The optimisation calculations led to different
convergence categories, with DB03997 reaching category 1,
DB04304 at category 2, and both DB07197 and
DB02438 converging at category 4. The number of canonical
orbitals varied significantly among the molecules, ranging from
215 for DB02446 to 373 for DB07197, reflecting their differing
electronic structures. The gas-phase energies spanned
from −1,042.5006 au for DB03997 to −3,923.0454 au for
DB07197, with the solution-phase energies exhibiting a similar
trend, slightly lowered due to solvation effects, leading to
solvation energies that were highest in magnitude for DB07197
(−198.37 kcal/mol), followed by DB04304 (−67.64 kcal/mol),
DB03997 (−37.55 kcal/mol), DB02438 (−18.75 kcal/mol), and
DB02446 (−17.00 kcal/mol). These variations indicate differing
levels of stabilisation upon solvation. The Frontier molecular
orbital energies provided insights into the electronic
characteristics of these molecules. The highest occupied
molecular orbital (HOMO) energy values ranged
from −0.2604 au for DB02438 to −0.2140 au for DB07197,
whereas the lowest unoccupied molecular orbital (LUMO)
energies exhibited values between −0.0518 au for DB07197 and

FIGURE 4
Showing the molecular interaction fingerprints of the docked poses of haptoglobin in complex with L-histidinol phosphate (DB03997), L-Gluconic
Acid (DB04304), 4-bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), 3-O-Methylfructose (DB02438), and
Glutamine hydroxamate (DB02446). The upper bar shows the residues forming the interactions with its counts, and the right side bars show the count of
ligand interaction with Haptoglobin, while the N to C terminal in the main plot is shown with different colours.
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0.0324 au for DB04304. The HOMO-LUMO gap, which signifies the
chemical reactivity and stability, was the largest for DB04304 and the
smallest for DB07197, indicating that DB07197 may be the most
reactive among the studied molecules. The vibrational frequency
analysis revealed that DB03997 and DB07197 exhibited negative
frequencies of −102.19 cm-1 and -1,396.09 cm-1, respectively,
suggesting possible saddle points or non-stationary
configurations, whereas the other molecules had their lowest
vibrational frequencies in positive values, indicating stable,
optimised structures. The highest vibrational frequencies were
consistent among all molecules, between 3,563.94 cm-1 and
3,731.21 cm-1. Thermodynamic properties calculated at
298.15 K and 1 atm further illustrated these molecules’ stability
and entropy-driven behaviour. The zero-point energies ranged from
106.61 kcal/mol for DB02446 to 140.66 kcal/mol for DB02438, with
entropy values spanning from 101.35 cal/mol/K for DB02446 to
126.44 cal/mol/K for DB07197, indicating that DB07197 possesses
the most disordered state at room temperature. Enthalpy values
were found to be the highest for DB07197 (10.57 kcal/mol) and the
lowest for DB02446 (7.47 kcal/mol), whereas free energy values
followed a similar trend, suggesting that DB07197 has the most
favourable thermodynamic stability. Internal energy and heat
capacity values showed a consistent pattern, with
DB07197 exhibiting the highest heat capacity (62.95 cal/mol/K),
indicative of greater molecular flexibility. The natural logarithm of
the partition function (ln(Q)) was also the highest for DB07197
(45.79 kcal/mol), correlating with its increased conformational
entropy. Electrostatic potential (ESP) analysis provided valuable
insights into charge distribution, revealing that DB07197 exhibited
the most negative ESP minimum (−238.72 kcal/mol) and a highly
negative ESP mean (−135.33 kcal/mol), suggesting strong electron-
withdrawing regions, whereas DB03997 had a more balanced ESP
distribution with a mean value of 2.01 kcal/mol. The ESP balance
values were nearly negligible for DB04304 and DB07197, indicating
highly polarised charge distributions, whereas DB03997, DB02438,
and DB02446 exhibited more balanced charge dispersion. The ESP
local polarity was the highest for DB07197 (50.96 kcal/mol),
implying that this molecule has the most localised charge
separation. The average local ionisation energy values further
reinforced these electronic characteristics. The minimum ALIE
ranged from 196.85 kcal/mol for DB03997 to 230.56 kcal/mol for
DB02438, whereas.

The maximum ALIE values were highest for DB03997
(382.57 for DB04304 (343.44 kcal/mol). The ALIE mean values
were relatively consistent, with DB02446 having the highest average
(280.74 kcal/mol) and DB07197 the lowest (246.33 kcal/mol),
suggesting that DB07197 may exhibit a slightly lower ionisation
threshold. Variance in ALIE was the highest for DB03997, implying
greater fluctuation in ionisation potential across the molecule. The
average absolute deviation from the mean ALIE followed a similar
kcal/mol) and lowest trend, reinforcing the electronic heterogeneity
of DB03997. DFT results (Figure 5) highlight stability, reactivity, and
electronic properties in the five studied molecules, with
DB07197 displaying the highest reactivity and charge separation,
while DB03997 exhibited the most pronounced variations in
electrostatic and ionisation characteristics.

The pharmacokinetic properties of L-histidinol phosphate,
L-Gluconic Acid, 4-Bromo-3-(carboxymethoxy)-5-(4-

hydroxyphenyl)thiophene-2-carboxylic acid, 3-O-Methylfructose
in linear form, and Glutamine hydroxamate were assessed against
standard values to determine their drug-likeness and potential for
human absorption (detail in Table 2). The number of rule-of-five
violations, which predicts oral bioavailability, was zero for all
compounds except L-Gluconic Acid, which had one violation,
aligning with the acceptable maximum of four. Similarly,
compliance with the rule of three, relevant for fragment-based
drug design, was maintained across all molecules except 3-O-
Methylfructose in linear form, which did not meet the criteria.
The molecular weight of all compounds fell within the standard
range of 130.0–725.0 Da, with the highest being 373.174 Da for the
thiophene derivative and the lowest at 162.145 Da for Glutamine
hydroxamate. The dipole moment values, indicating molecular
polarity, were within the standard range of 1.0–12.5, with
L-histidinol phosphate (9.725) and the thiophene derivative
(9.317) exhibiting a higher polarity, whereas Glutamine
hydroxamate (2.261) had the lowest dipole moment, suggesting
lower interaction with polar environments. The solvent-accessible
surface area (SASA) values, which influence solubility and
permeability, were also within the acceptable range of
300.0–1,000.0, with the thiophene derivative having the highest
value (522.292) and Glutamine hydroxamate the lowest (358.76).
The polar surface area (PSA), crucial for passive diffusion across
membranes, ranged from 7.0 to 200.0, with all compounds
conforming. However, L-gluconic acid had the highest PSA
(152.649), which may indicate lower permeability. The water
partition coefficient (QPlogPo/w), reflecting lipophilicity, was
below the standard range of −2.0 to 6.5 for L-histidinol
phosphate (−2.627), L-Gluconic Acid (−1.879), and Glutamine
hydroxamate (−4.578), suggesting poor lipid membrane
penetration. In contrast, the thiophene derivative (2.082) was
within the acceptable range, indicating a balanced lipophilic
profile. Solubility (QPlogS) values ranged between −6.5 and 0.5,
where all compounds except the thiophene derivative (−3.506) were
within the acceptable limits, confirming their aqueous solubility.
Moreover, their intrinsic solubility (CIQPlogS) exhibited similar
trends, with the thiophene derivative being the least soluble
(−5.114). The prediction of hERG inhibition, which assesses
potential cardiotoxicity, showed that none of the compounds had
a significant risk, as all QPlogHERG values remained above the
critical threshold of −5. Blood-brain barrier permeability
(QPlogBB), which predicts CNS activity, indicated that none of
the compounds was likely to cross the barrier effectively, with values
ranging between −2.358 for L-Gluconic Acid to −1.342 for
L-histidinol phosphate, confirming their inactive CNS
classification. Intestinal permeability, assessed by QPPCaco,
suggested that only 3-O-Methylfructose in linear form (164.605)
exhibited moderate absorption potential, while the remaining
compounds had very low values (<5), indicating poor
permeability. Similarly, hepatic clearance potential (QPPMDCK)
was highest for 3-O-Methylfructose in linear form (70.375),
suggesting moderate metabolism, whereas the others had low
clearance rates. The skin permeability coefficient (QPlogKp)
values were below the standard range of −8.0 to −1.0, indicating
minimal transdermal absorption potential, with Glutamine
hydroxamate being the least permeable (−8.163). Ionisation
potential (IP) values related to electronic stability were within the
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standard range of 7.9–10.5 eV for all compounds except L-Gluconic
Acid (11.052), suggesting that it has a higher energy requirement for
electron loss. The electron affinity (EA) values, falling
between −0.9 and 1.7 eV, were within range for all compounds

except the thiophene derivative (1.421), indicating its greater
propensity to accept electrons. Metabolic clearance was predicted
using the number of metabolism sites (#metab), where 3-O-
Methylfructose in linear form had the highest metabolism

FIGURE 5
(Continued).
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potential (6), while the others ranged from three to 5, within the
expected range of 1–8. Human oral absorption was poor for most
compounds, with predicted per cent human oral absorption
below 25% for all except the thiophene derivative (45.832%) and
3-O-Methylfructose in linear form (57.964%), which displayed
moderate absorption. Plasma protein binding (QPlogKhsa) was
negative for all compounds, indicating weak binding affinity,
with the thiophene derivative (−0.564) having the least negative
value, suggesting slightly higher binding than others. These
pharmacokinetic results suggest that none of the studied
molecules exhibits high permeability or oral absorption, with 3-
O-Methylfructose in a linear form showing the most favourable
profile regarding intestinal permeability and metabolism. However,
low lipophilicity and poor blood-brain barrier permeability
limit their potential for systemic distribution. The thiophene
derivative demonstrates moderate absorption and solubility but
may require structural modifications to enhance its
pharmacokinetic properties.

3.5 WaterMap analysis

Haptoglobin in complex with L-histidinol phosphate
(DB03997) shows the ligand-free binding pocket in the
hydration landscape. Hydration sites (marked with red Xs) are
observed at key regions, primarily near Asp378, Lys379, and
Asn203, indicating water molecules occupying these regions
without the ligand. These hydration sites suggest areas where
solvent molecules form strong hydrogen bonds with charged and
polar residues. Thr200, Ser376, and Thr186 also bond hydrogen
with surrounding water molecules, contributing to the structural
hydration network. Hydrophobic residues such as Leu185,
Leu206, and Phe292 exhibit minimal interaction with water
molecules, indicating that these regions are less favourable for
solvent retention. Haptoglobin in complex with L-Gluconic Acid
(DB04304) illustrates the ligand occupying the binding pocket,
displacing several hydration sites observed in Figure 6. Key
interactions emerge, including hydrogen bonds (purple dashed

FIGURE 5
(Continued). Showing the Density Functional Theory Results for (A) L-histidinol phosphate (DB03997), (B) L-Gluconic Acid (DB04304), (C) 4-
bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), (D) 3-O-Methylfructose (DB02438), and (E) Glutamine
hydroxamate (DB02446) that were identified after molecular docking studies. The legend is shown for different colours with different energies, including
the relative energy in black. . .
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TABLE 2 Showing the Pharmacokinetics of A) L-histidinol phosphate (DB03997), B) L-Gluconic Acid (DB04304), C) 4-bromo-3-(carboxymethoxy)-5-(4-
hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), D) 3-O-Methylfructose (DB02438), and E) Glutamine hydroxamate (DB02446), computed using
the QikProp with its standard values.

Descriptors Standard values DB03997 DB04304 DB07197 DB02438 DB02446

#stars 0–5 1 2 0 1 3

#amine 0–1 1 0 0 0 1

#amidine 0 0 0 0 0 0

#acid 0–1 2 1 2 0 1

#amide 0–1 0 0 0 0 1

#rotor 0–15 8 10 5 10 6

#rtvFG 0–2 1 0 0 1 1

CNS −2 (inactive), +2 (active) −2 −2 −2 −2 −2

mol MW 130.0–725.0 221.152 196.157 373.174 194.184 162.145

dipole 1.0–12.5 9.725 3.257 9.317 3.642 2.261

SASA 300.0–1,000.0 405.621 379.388 522.292 395.846 358.76

FOSA 0.0–750.0 79.443 88.218 28.811 208.199 78.954

FISA 7.0–330.0 225.121 291.17 256.146 187.647 279.806

PISA 0.0–450.0 97.4 0 159.5 0 0

WPSA 0.0–175.0 3.656 0 77.835 0 0

volume 500.0–2000.0 661.691 608.166 891.155 645.048 550.254

donorHB 0.0–6.0 5 5 3 3 5

accptHB 2.0–20.0 8 9.5 5.5 9.5 7.2

dip2/V 0.0–0.13 0.142,929 0.0174,382 0.0974,047 0.0205,607 0.0092871

ACxDN5/SA 0.0–0.05 0.0441,016 0.0559,919 0.0182,394 0.0415,679 0.044876

glob 0.75–0.95 0.9,053,466 0.9,150,184 0.8574729 0.9,120,817 0.9,051,845

QPpolrz 13.0–70.0 16.12 11.764 27.823 13.24 12.015

QPlogPC16 4.0–18.0 7.901 7.182 10.629 6.357 6.381

QPlogPoct 8.0–35.0 18.62 16.283 18.475 13.419 15.073

QPlogPw 4.0–45.0 16.328 17.087 12.539 13.493 18.113

Type N/A small small small small small

QPlogPo/w −2.0 – 6.5 −2.627 −1.879 2.082 −1.478 −4.578

QPlogS −6.5 – 0.5 −0.274 −0.393 −3.506 −0.067 0.942

CIQPlogS −6.5 – 0.5 −0.265 −0.46 −5.114 −0.252 1.106

QPlogHERG concern below −5 −0.639 −1.1 −0.984 −2.955 −0.61

QPPCaco <25 poor, >500 great 1.162 4.348 2.366 164.605 0.742

QPlogBB −3.0 – 1.2 −1.342 −2.358 −1.869 −1.543 −1.676

QPPMDCK <25 poor, >500 great 0.624 1.762 3.099 70.375 0.568

QPlogKp −8.0 to −1.0 −6.62 −5.926 −5.198 −4.018 −8.163

IP(eV) 7.9–10.5 9.04 11.052 9.226 10.692 9.961

EA (eV) −0.9 – 1.7 −0.605 −0.371 1.421 −0.009 −0.409

#metab 1–8 3 5 4 6 4

(Continued on following page)
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lines) between the ligand and residues Lys379, Asp378, and
Asn203. Additionally, the ligand engages in metal
coordination (light blue line) with Lys379, further stabilising
the complex. A π-stacking interactions with Phe292 and
Tyr352 suggest that the ligand is stabilised through aromatic
interactions, reinforcing binding affinity. Hydrophobic residues
such as Leu206 and Ala355 provide a non-polar environment
that may further contribute to ligand stabilisation. Haptoglobin
in complex with 4-bromo-3-(carboxymethoxy)-5-(4-
hydroxyphenyl)thiophene-2-carboxylic acid (DB07197) shows
a significant displacement of hydration sites is observed due to
the ligand’s interaction with key residues. The expelled water
molecules (hydration sites marked with red Xs) indicate the
ligand’s efficient occupation of these regions, potentially
leading to an entropy-driven binding advantage. Salt bridges
(solid red lines) are evident between Asp378 and Lys379,
contributing to electrostatic stabilisation. Hydrogen bonding
interactions with Thr200, Thr186, and Asn203 remain
prominent, suggesting a conserved interaction network within
the pocket. Additionally, hydrophobic interactions with
Tyr352 and Phe292 persist, highlighting the importance of
non-polar stabilisation mechanisms. Haptoglobin in complex
with 3-O-Methylfructose (DB02438) presents a refined
hydration landscape, illustrating how the ligand’s presence
leads to a new arrangement of water molecules within the
binding pocket. Hydration sites persist near Asp378, Ser376,
and Asn203, albeit in altered positions, indicating residual
solvent interaction despite ligand binding. The ligand forms
additional hydrogen bonds with Ser376 and Thr200,
reinforcing its binding stability. A π-cation interaction (red
line) involving Arg286 emerges, demonstrating the role of

positively charged residues in ligand stabilisation. Metal
coordination and hydrogen bonding patterns remain
consistent, suggesting that the ligand’s interaction network is
well-established at this stage. Haptoglobin in complex with
Glutamine hydroxamate (DB02446) shows that the ligand
achieves its most stabilised conformation within the binding
pocket. Most hydration sites from Figure 6 have been
effectively displaced, with the remaining solvent molecules
positioned at sites that do not interfere with ligand binding.
Salt bridges, hydrogen bonds, and π-π stacking interactions
(yellow lines) involving Phe292 and Tyr352 remain intact,
indicating substantial aromatic contributions to binding
affinity. Hydrophobic interactions persist with Leu185,
Leu206, and Ala355, highlighting their role in ligand
accommodation. The displacement of hydration sites suggests
that the ligand has successfully occupied a previously solvent-
filled region, enhancing its thermodynamic favourability. The
WaterMap analysis provides valuable insights into the ligand’s
interaction landscape, highlighting key molecular forces driving
its binding. A combination of hydrogen bonds, salt bridges, metal
coordination, and hydrophobic interactions collectively stabilise
the ligand within the binding pocket. The displacement of
hydration sites suggests that the ligand binding is
accompanied by an entropy-driven advantage, reducing the
desolvation penalty and enhancing overall affinity. The
presence of π-cation and π-π stacking interactions further
reinforces ligand stability, particularly in regions involving
Phe292 and Tyr352. The overall findings emphasise the
importance of hydration site displacement in optimising
ligand binding (Figure 6) and suggest that targeting specific
hydration pockets could enhance future drug design strategies.

TABLE 2 (Continued) Showing the Pharmacokinetics of A) L-histidinol phosphate (DB03997), B) L-Gluconic Acid (DB04304), C) 4-bromo-3-
(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), D) 3-O-Methylfructose (DB02438), and E) Glutamine hydroxamate
(DB02446), computed using the QikProp with its standard values.

Descriptors Standard values DB03997 DB04304 DB07197 DB02438 DB02446

QPlogKhsa −1.5 – 1.5 −1.274 −1.238 −0.564 −1.226 −1.426

HumanOralAbsorption - 1 2 1 2 1

%HumanOralAbsorption >80% is high, <25% is poor 12.731 14.41 45.832 57.964 0

SAfluorine 0.0–100.0 0 0 0 0 0

SAamideO 0.0–35.0 0 0 0 0 34.264

PSA 7.0–200.0 122.378 152.649 131.236 112.45 138.28

#NandO 2–15 7 7 6 6 6

RuleOfFive maximum is 4 0 1 0 0 0

RuleOfThree maximum is 3 1 1 1 0 1

#ringatoms - 5 0 11 0 0

#in34 - 0 0 0 0 0

#in56 - 5 0 11 0 0

#noncon - 0 0 0 0 0

#nonHatm - 14 13 21 13 11

Jm - 0.028,238,577 0.094,100,857 0.000988,618 15.99,092,242 0.009,754,937
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FIGURE 6
Showing the WaterMap Results in 3D and 2D Ligand Interaction Diagram for Haptoglobin in complex with (A) L-histidinol phosphate (DB03997), (B)
L-Gluconic Acid (DB04304), (C) 4-bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), (D) 3-O-Methylfructose
(DB02438), and (E) Glutamine hydroxamate (DB02446) and legend is shown for various bond and residue types.
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3.6 Molecular dynamics simulation analysis

The complete 100ns MD Simulation for all five P-L complexes
were analysed using the SID tool for deviation, fluctuations and
Intermolecular Interactions analysis. The detailed results are
as follows-

3.6.1 Root Mean Square Deviation
Root Mean Square Deviation (RMSD) is a critical parameter in

molecular dynamics (MD) simulations, providing insights into
biomolecular systems’ stability and conformational flexibility.
This study analysed the Human haptoglobin protein (PDB ID:
4X0L) in a complex with five different ligands over a 100 ns
simulation. The RMSD values of the protein and ligands were
assessed at 0.10 ns and 100 ns to determine their structural
stability and deviation throughout the simulation. Human
haptoglobin in complex with L-Histidinol Phosphate (DB03997),
at the beginning of the simulation (0.10 ns), the protein deviated by
0.95 Å, and the ligand showed a deviation of 1.93 Å, indicating an
initial phase of adaptation to the simulation environment. The
complex exhibited stable performance as the simulation
progressed, with fluctuations settling after the equilibration
phase. By 100 ns, the protein’s RMSD increased to 1.83 Å, while
the ligand reached 2.89 Å. These deviations suggest that while the
protein maintained a stable conformation, the ligand experienced
moderate movement within the binding site, likely due to flexibility
in its interaction network. In the complex of Human Haptoglobin
with L-Gluconic Acid (DB04304), the protein initially deviated by
0.92 Å, and the ligand by 1.98 Å at 0.10 ns, reflecting early
adjustments in the system. The system displayed consistent
stability post-equilibration, with protein RMSD reaching
1.70 Å at 100 ns. However, the ligand showed a significant
deviation of 16.18 Å, indicating substantial conformational
movement. This high RMSD value suggests that L-Gluconic Acid
may have undergone partial dissociation or significant positional
rearrangement within the binding site, potentially reflecting weaker
interactions with the protein or a high degree of ligand flexibility. In
the case of the 4-Bromo-3-(Carboxymethoxy)-5-(4-
Hydroxyphenyl) Thiophene-2-Carboxylic Acid with Human
Haptoglobin complex, the protein exhibited an RMSD of 1.05 Å,
while the ligand deviated by 3.06 Å at 0.10 ns. The simulation
indicated a stable interaction profile throughout, with protein
RMSD reaching 1.68 Å at 100 ns, demonstrating minimal
conformational changes. The ligand RMSD at 100 ns was 2.97 Å,
suggesting a relatively well-retained binding pose with slight
flexibility. These results indicate stronger retention within the
binding site than L-Gluconic Acid but still allow some
movement. For the 3-O-Methylfructose in complex with Human
Haptoglobin, initial deviations were 0.81 Å for the protein and
0.61 Å for the ligand at 0.10 ns, suggesting minimal fluctuations in
the early phase. The system displayed a steady trajectory throughout
the simulation, with protein RMSD increasing to 2.02 Å at 100 ns.
The ligand showed a deviation of 3.69 Å, indicating a moderate level
of mobility. Compared to other complexes, this ligand maintained a
relatively stable interaction with the binding site, but its moderate
movement suggests some level of dynamic repositioning within the
pocket. The Glutamine Hydroxamate with Human Haptoglobin
complex demonstrated an initial RMSD of 0.93 Å for the protein and

1.60 Å for the ligand at 0.10 ns, indicating early fluctuations similar
to other systems. The complex maintained a stable performance
throughout the simulation, with protein RMSD reaching 1.80 Å at
100 ns. The ligand deviated by 3.55 Å, reflecting flexibility
comparable to 3-O-Methylfructose. As shown in Figure 7, these
results suggest that while the ligand remained within the binding
site, it likely exhibited conformational adjustments to optimise
interactions.

The RMSD analysis of Human haptoglobin (PDB ID: 4X0L) in a
complex with five different ligands provides valuable insights into
ligand stability and binding behaviour during a 100 ns molecular
dynamics simulation. The protein RMSD remained within the range
of 1.68–2.02 Å across all complexes, indicating that the protein
structure maintained high stability with only minor fluctuations
throughout the simulation. In contrast, the ligand RMSD values
exhibited considerable variability, reflecting binding strength and
flexibility differences. For instance, L-Histidinol Phosphate, 4-
Bromo-3-(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-
Carboxylic Acid, and Glutamine Hydroxamate demonstrated
moderate ligand RMSD values between 2.89 and 3.69 Å,
suggesting that these ligands retained interactions with the
protein while undergoing some movement. On the other hand,
L-Gluconic Acid displayed an unusually high ligand RMSD of
16.18 Å, indicating substantial movement that may indicate weak
binding affinity or partial dissociation from the binding site.
Meanwhile, 3-O-Methylfructose showed moderate ligand
movement (3.69 Å), suggesting a balance between stability and
flexibility within the protein’s binding pocket. These findings
highlight that L-Gluconic Acid exhibited the least stable binding
and may require further optimisation to improve its interaction with
the protein. In contrast, ligands with RMSD values below 4 Å, such
as L-Histidinol Phosphate and Glutamine Hydroxamate,
demonstrated stronger retention within the binding site, making
them promising candidates for further drug development studies.

3.6.2 Root Mean Square Fluctuations
The Root Mean Square Fluctuation (RMSF) analysis of Human

Haptoglobin (PDB ID: 4X0L) in complex with different ligands was
conducted to assess the flexibility of individual amino acid residues
throughout the MD simulation. Higher RMSF values indicate
protein regions that exhibit greater fluctuations, which could
correspond to loop regions, flexible binding sites, or unstable
interactions. The analysis also identified residues involved in
stable interactions with the ligand, contributing to the overall
stability of the complex. In the Human Haptoglobin -
L-Histidinol Phosphate (DB03997) complex, several residues
exhibited significant fluctuations beyond 2 Å, including VAL148,
ALA156, VAL159, GLN160, GLU210, ASN211, and ASN406. These
residues are likely part of the protein’s loop or solvent-exposed
regions that exhibit natural flexibility during the simulation. Despite
these fluctuations, multiple residues contributed to stabilising
interactions with the ligand, including SER181, HIS182, HIS183,
LEU185, THR186, THR200, LYS202, ASN203, LEU204, PHE205,
LEU206, ASN207, ASP246, ARG286, GLN331, TYR352, ALA355,
SER376, ASP378, and LYS379. Multiple hydrogen bond donors and
acceptors within these stabilising residues suggest a well-retained
ligand in the binding site, compensating for the flexibility observed
in certain protein regions. For the HumanHaptoglobin - L-Gluconic
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FIGURE 7
Showing the Molecular Dynamics-based Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) plots for Haptoglobin in
complex with (A) L-histidinol phosphate (DB03997), (B) L-Gluconic Acid (DB04304), (C) 4-bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-
2-carboxylic acid (DB07197), (D) 3-O-Methylfructose (DB02438), and (E)Glutamine hydroxamate (DB02446). The legend is shown in different colours to
differentiate the deviation and fluctuations in the plots.
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Acid (DB04304) complex, residues GLN160, ARG161, LEU163,
VAL318, GLU320, TYR346, LEU364, GLU365, and
ASN406 fluctuated beyond 2 Å, indicating considerable structural
flexibility in these regions. The presence of fluctuations in residues
involved in ligand binding, such as GLN160 and ARG161, suggests
that the ligand-induced conformational changes contributed to the
observed flexibility. Despite this, the ligand formed stable interactions
with a large number of residues, including LYS153, VAL159, GLN160,
ARG161, LEU167, ALA169, LYS170, HIS183, ASN184, LEU185,
THR186, LYS202, ASN203, PHE205, LEU206, ASN207, HIS208,
LYS227, LYS228, GLN229, LEU230, VAL231, GLU232, LYS253,
GLN254, LYS255, VAL256, SER257, VAL258, ASN259, GLU260,
ARG261, VAL275, GLY276, ARG286, ASN289, PHE290, PHE292,
VAL328, VAL330, GLY342, SER344, LYS345, TYR352, GLY353,
ALA355, ASP378, LYS379, and CYS381. The extensive interaction
network suggests that while certain protein regions were flexible, the
ligand maintained strong contact with critical binding residues,
contributing to the complex’s overall stability. In the case of
Human Haptoglobin - 4-Bromo-3-(Carboxymethoxy)-5-(4-
Hydroxyphenyl) Thiophene-2-Carboxylic Acid (DB07197),
ASN406 was the only residue fluctuating beyond 2 Å, indicating
that the majority of the protein structure remained highly stable. The
ligand maintained interactions with several residues, including
HIS183, LEU185, GLY188, THR200, LYS202, ASN203, PHE205,
LEU206, ASN207, ARG286, PHE290, PHE292, VAL328, TYR352,
ALA355, SER376, ASP378, and LYS379. The fact that only a single
residue exhibited substantial fluctuation suggests that this ligand was
particularly effective in maintaining the conformational integrity of
the protein, potentially making it a strong candidate for further
optimisation in drug design. For the Human Haptoglobin - 3-O-
Methylfructose (DB02438) complex, fluctuations beyond 2 Å were
observed in residues VAL148, PRO158, VAL159, GLN160, ARG161,
LYS227, GLU320, LYS321, and ASN406. These fluctuations indicate
flexibility primarily in loop and surface regions. However, stabilising
interactions were formed by residues HIS183, LEU185, THR186,
GLY188, THR200, LYS202, ASN203, LEU206, ARG286, TYR352,
GLY353, ALA355, SER376, ASP378, and LYS379. The presence of
both flexible and stable residues suggests that while certain areas of the
protein were structurally dynamic, the ligand remained tightly
associated with key binding site residues. Finally, in the Human
Haptoglobin –

Glutamine Hydroxamate (DB02446) complex, residues VAL148,
GLU210, ASN211, ALA212, ASP294, PRO319, GLU320, VAL328,
and ASN406 exhibited significant fluctuations beyond 2 Å, indicating
localised structural flexibility. Despite these fluctuations, the ligand
formed stable interactions with THR186, THR200, ALA201, LYS202,
ASN203, PHE205, TYR242, ASP246, ARG286, TYR352, ALA355,
SER376, ASP378, and LYS379. The presence of key stabilising residues
within the binding pocket suggests that while specific protein regions
were highly flexible, the ligand-binding domain remained relatively
stable, ensuring a strong ligand-protein interaction, as shown in
Figure 7. The RMSF highlights key differences in the structural
dynamics of Human Haptoglobin (PDB ID: 4X0L) complexes with
different ligands. While certain protein regions exhibited notable
flexibility, the presence of well-retained ligand-protein interactions
in most cases suggests that ligand stability within the binding pocket
was maintained. Notably, the L-Gluconic Acid complex exhibited the
highest number of fluctuating residues, suggesting weaker ligand

retention or increased conformational changes upon binding. In
contrast, the 4-Bromo-3-(Carboxymethoxy)-5-(4-Hydroxyphenyl)
Thiophene-2-Carboxylic Acid complex displayed minimal
fluctuation, suggesting a more rigid and stable interaction with the
protein. These findings provide valuable insights into these ligand-
protein complexes’ binding stability and flexibility, which can be
useful for designing and optimising future drug candidates targeting
Human Haptoglobin.

3.6.3 Simulation interaction diagram
The Simulation Interaction Diagram (SID) analysis of Human

Haptoglobin (PDB ID: 4X0L) in complex with different ligands
provides insights into the stability and nature of the interactions
formed during the molecular dynamics simulation. The study
reveals the presence of key hydrogen bonds, water-mediated
interactions, salt bridges, and π-stacking interactions, which
contribute to stabilising the ligand-protein complexes. In the
Human Haptoglobin - L-Histidinol Phosphate (DB03997)
complex, multiple hydrogen bonds were observed, primarily
involving ASP246, ASN203, and THR200 residues, which formed
interactions with water molecules through the N + H3 atom of the
ligand. Additionally, residues such as HIS183, LEU206, ASN203,
LYS202, ASP378, and THR186 contributed to hydrogen bonding
with water molecules, enhancing the stability of the complex. The
SER181 residue established two hydrogen bonds via its N atoms,
while LYS379 and LYS202 residues also formed interactions with
water molecules, along with ASP378, which interacted via two O
atoms. A salt bridge interaction was observed between ASP378 and
the N +H3 atom of the ligand, further stabilising the complex. These
interactions highlight the significant role of both direct hydrogen
bonds and water-mediated interactions in maintaining ligand
binding, reinforcing the stability of the protein-ligand complex
throughout the simulation. For the Human Haptoglobin -
L-Gluconic Acid (DB04304) complex, hydrogen bond
interactions were observed between ASP378, SER257, and
GLN229 residues, while LYS379, ASN203, LEU230, HIS183, and
THR186 residues formed additional water-mediated interactions
with five OH atoms of the ligand. Furthermore, TYR352, GLN229,
LYS153, and ARG286 residues, along with LYS255, engaged in
hydrogen bonding interactions via two O atoms of the ligand.
The involvement of multiple residues in water-mediated
interactions suggests a highly hydrated and dynamic binding
environment where the ligand is stabilised through an extensive
hydrogen bond network. These interactions are critical in
maintaining ligand orientation within the binding site,
compensating for any fluctuations observed in the molecular
dynamics simulation. In the Human Haptoglobin - 4-Bromo-3-
(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-Carboxylic
Acid (DB07197) complex, hydrogen bond interactions were
detected between ASN203 and ASP378 residues, while
LYS202 and LYS379 residues engaged in water-mediated
interactions via the OH atom. ARG286 and TYR352 residues
also formed water-mediated hydrogen bonds, while
HIS183 interacted with five O atoms, suggesting a strong
electrostatic interaction profile within the binding site. Notably,
three π-π stacking interactions were observed, involving HIS183 and
TYR352 residues with two benzene rings of the ligand. Additionally,
a π-cation interaction was formed between LYS379 and the benzene
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ring of the ligand, contributing to further stabilisation. A salt bridge
interaction was also identified between ARG286 and the O atom of
the ligand, reinforcing ligand retention within the binding site. A π-
stacking and salt bridge interactions suggest a strong, multi-faceted
binding mechanism, where electrostatic and hydrophobic
interactions play a significant role in ligand stabilisation. For the
Human Haptoglobin - 3-O-Methylfructose (DB02438) complex,
hydrogen bonding interactions were established between
ASN203, THR186, LYS379, and ASP378 residues, while
SER376 and LYS202 residues engaged in interactions with the
ligand through four OH atoms. Additionally, two O atoms of the
ligand interacted with the LYS379 residue, suggesting a significant
contribution of water-mediated interactions to ligand stabilisation.
Compared to other complexes, the relatively simpler interaction
profile indicates that hydrogen bonding is dominant in maintaining
ligand binding. The absence of π-stacking or salt bridge interactions
suggests that this ligand relies primarily on polar and electrostatic
interactions for stability within the binding pocket. In the Human
Haptoglobin - Glutamine Hydroxamate (DB02446) complex,
multiple hydrogen bond interactions were observed, involving
ASP378, ASN203, and LYS202 residues, which interacted with
water molecules through the N + H3 atom. Additional
interactions were formed by ASP246 and SER376 residues via the
NH atom, while the OH atom of the ligand engaged ASP246,
LYS202, and TYR242 residues through water-mediated
interactions. Moreover, three oxygen atoms of the ligand
participated in hydrogen bonding interactions with LYS379,
THR200, LYS202, ASN203, ASP378, and SER376 residues,
highlighting a densely connected hydrogen bond network.
Notably, three salt bridges were formed, involving ASP378 with
the N + H3 atom and LYS202 and LYS379 with the O atom of the
ligand. Multiple salt bridges suggest a strong electrostatic interaction
profile, which, combined with the extensive hydrogen bonding
network, reinforces ligand stability and retention within the
binding site. The Simulation Interaction Diagram (SID) analysis
highlights the diverse interaction profiles of different ligand-protein
complexes. L-histidinol phosphate and L-gluconic acid
demonstrated extensive water-mediated hydrogen bonding,
contributing to ligand stability. The 4-Bromo-3-
(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-Carboxylic
Acid complex showed a unique combination of hydrogen
bonding, π-stacking, and salt bridge interactions, indicating a
highly stable binding conformation. 3-O-Methylfructose primarily
relied on hydrogen bonding interactions, while Glutamine
Hydroxamate exhibited an extensive hydrogen bond network
alongside three salt bridge interactions, further reinforcing ligand
stability. These findings emphasise the importance of hydrogen
bonding, salt bridges, and π-stacking interactions in determining
ligand stability and affinity, providing valuable insights into
potential structure-based drug design strategies targeting Human
Haptoglobin. Further, Figure 8 shows the SID and histogram
representation for the same to understand the interactions better.

3.7 Analysis of binding free energy

The MM\GBSA binding free energy calculations provide
insights into the binding affinity and stability of various ligand

complexes with human haptoglobin (PDB ID: 4X0L) based on MD
simulation trajectories. The calculations were performed using the
mmgbsa. py script, and the results were analysed in terms of ΔG
(binding free energy), its standard deviation, and range across
1,001 frames. Both dG (standard binding free energy) and dG
(NS) (non-standard binding free energy) values were evaluated
for each ligand-protein complex. The binding free energy (dG)
for L-Histidinol Phosphate in complex with haptoglobin was
calculated as −17.4661 kcal/mol on average, indicating a
moderately stable binding interaction. The standard deviation of
11.54 kcal/mol and the range from −34.2750 to 0.2085 kcal/mol
suggest significant fluctuations in binding affinity during the MD
simulation, with instances of both strong and weak binding
interactions. The non-standard dG (dG NS) exhibited a slightly
more negative average of −19.0667 kcal/mol, with a higher standard
deviation of 12.54 kcal/mol, extending from −35.8764 to 0.0320 kcal/
mol. These variations indicate some degree of structural flexibility
and potential ligand reorientation within the binding site. Despite
these fluctuations, the negative binding free energy values confirm
that L-Histidinol Phosphate maintains a favourable interaction with
haptoglobin, likely facilitated by hydrogen bonding and salt bridge
formation observed in the interaction analysis. The L-Gluconic Acid
in a complex with haptoglobin exhibited a weaker binding affinity,
with an average binding free energy of −11.0846 kcal/mol and a
standard deviation of 9.07 kcal/mol. The dG range spanned
from −29.5777 to 3.1576 kcal/mol, indicating transient favourable
and weak binding interactions during the MD simulation. The non-
standard binding free energy (dG NS) was calculated
as −12.0982 kcal/mol, with a slightly higher standard deviation of
9.83 kcal/mol and a broader range of −34.1693 to 0.7836 kcal/mol.
Positive values in the dG range suggest that in some simulation
frames, L-Gluconic Acid may exhibit partial dissociation from the
binding site, possibly due to a less optimal interaction network. This
aligns with the interaction analysis, where water-mediated hydrogen
bonds dominated ligand stabilisation rather than direct strong polar
or hydrophobic contacts. Among the analysed complexes, the 4-
Bromo-3-(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-
Carboxylic Acid in complex with haptoglobin displayed the
strongest binding affinity, with an average dG of −21.3262 kcal/
mol and a standard deviation of 14.44 kcal/mol. The range extended
from −40.8947 to 1.2106 kcal/mol, suggesting instances of very
strong binding, though some fluctuations occurred. The non-
standard binding free energy (dG NS) was even more negative
at −22.6810 kcal/mol, with a higher standard deviation of 15.34 kcal/
mol and a binding range of −43.7957 to 1.2326 kcal/mol. These
results indicate that this ligand exhibited the most favourable
interactions with haptoglobin, consistent with its strong hydrogen
bonding, salt bridge formation, and π-π stacking interactions. A π-
stacking interaction with HIS183 and TYR352 and a π-cation
interaction with LYS379 likely contributed to its superior binding
stability. The 3-O-Methylfructose in complex with haptoglobin
exhibited moderate binding stability, with an average dG
of −15.9200 kcal/mol and a standard deviation of 9.75 kcal/mol.
The binding energy range spanned from −35.4498 to 1.3493 kcal/
mol, suggesting notable fluctuations in ligand stability within the
binding site. The non-standard dG (dG NS) was calculated
as −18.8021 kcal/mol, with a higher standard deviation of
11.41 kcal/mol and a range from −43.4431 to 0.0084 kcal/mol.
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FIGURE 8
Showing theMolecular Dynamics-based Simulation Interaction Diagram (SID) and its histogram representations for haptoglobin in complex with (A)
L-histidinol phosphate (DB03997), (B) L-Gluconic Acid (DB04304), (C) 4-bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid
(DB07197), (D) 3-O-Methylfructose (DB02438), and (E) Glutamine hydroxamate (DB02446). The legend is in different colours to differentiate the plots’
bonds and residue types.
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The observed fluctuations suggest some degree of flexibility in ligand
positioning, with hydrogen bonding as the primary interaction
mode. The absence of π-stacking and salt bridges may explain
the slightly lower binding affinity than DB07197, but it is still
within a favourable range for stable binding. The Glutamine
Hydroxamate in complex with haptoglobin showed a binding
free energy of −16.6191 kcal/mol, with a standard deviation of
9.96 kcal/mol. The range extended from −33.1633 to 0.2528 kcal/
mol, indicating moments of both strong and weak binding
interactions. The non-standard dG (dG NS) was calculated
as −19.0530 kcal/mol, with a higher standard deviation of
11.27 kcal/mol and a range from −37.3372 to 0.0120 kcal/mol.

Three salt bridges (ASP378-NH3, LYS202-O, and LYS379-O) and
an extensive hydrogen bonding network contributed to its
favourable binding affinity. The relatively high standard deviation
suggests dynamic interactions, likely due to ligand flexibility within
the binding pocket. The MM/GBSA binding free energy results
reveal distinct interaction profiles and stability trends across ligand-
haptoglobin complexes. Among the studied ligands, 4-Bromo-3-
(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-Carboxylic
Acid (DB07197) exhibited the most stable binding
(−21.3262 kcal/mol dG, −22.6810 kcal/mol dG NS), likely due to
multiple interaction types (hydrogen bonding, salt bridges, π-
stacking, and π-cation interactions). In contrast, L-Gluconic Acid

FIGURE 9
Showing themolecular dynamics-based molecular mechanics with generalised born and surface area solvation (MM\GBSA) computations plots for
(A) binding free energy and (B) total complex energy for haptoglobin in complex with L-histidinol phosphate (DB03997), L-Gluconic Acid (DB04304), 4-
bromo-3-(carboxymethoxy)-5-(4-hydroxyphenyl)thiophene-2-carboxylic acid (DB07197), 3-O-Methylfructose (DB02438), and Glutamine
hydroxamate (DB02446). The legend is shown in different colours to differentiate energies.
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(DB04304) exhibited the weakest binding affinity (−11.0846 kcal/
mol dG), characterised primarily by water-mediated hydrogen
bonds rather than direct electrostatic or hydrophobic
interactions. The L-Histidinol Phosphate (DB03997), 3-O-
Methylfructose (DB02438), and Glutamine Hydroxamate
(DB02446) complexes exhibited moderate binding affinities, with
Glutamine Hydroxamate showing strong salt bridge interactions
contributing to stability (Figure 9). The standard deviation and
binding energy ranges across all complexes indicate that ligand
binding fluctuates dynamically during MD simulations, with some
ligands displaying transient weaker binding states before re-
establishing stronger interactions. These findings provide crucial
insights into ligand stability, binding mechanisms, and potential
drug design optimisations for haptoglobin-targeted therapeutic
strategies.

4 Discussion

Haptoglobin (Hp) is a vital glycoprotein primarily involved in
haemoglobin binding and clearance, thereby preventing oxidative
stress and inflammation. Besides its crucial physiological role, Hp
has been implicated in various pathophysiological conditions,
including cancer, infections, and autoimmune disorders. Given its
multifaceted biological significance, the modulation of Hp activity
through small-molecule ligands has gained substantial attention in
therapeutic drug discovery. Identifying ligands that exhibit strong
and specific binding to Hp can pave the way for novel
pharmacological interventions to modulate its function in disease
contexts. This study employed an integrative computational
framework to characterise the binding affinities, interaction
fingerprints, electronic properties, pharmacokinetics, and
dynamic behaviour of five potential ligands targeting Hp. The
clinical relevance of Hp extends beyond its haemoglobin-binding
activity, as it plays a role in immune modulation, inflammation, and
metabolic disorders. Aberrant expression and function of Hp have
been associated with various diseases, including cardiovascular
complications, infectious diseases, and cancer. The ability to
pharmacologically regulate Hp function via small-molecule
interactions presents an opportunity to develop targeted
therapies. Ligands that can interact with Hp at a molecular level
might help modulate its activity, potentially leading to therapeutic
applications in haemolytic conditions, sepsis, and inflammatory
diseases. In cancer, the upregulation of haptoglobin has been
associated with poor prognosis, particularly in haematological
malignancies such as lymphoma and leukaemia. The elevation of
haptoglobin levels in these cancers may be linked to its ability to
promote an inflammatory microenvironment that aids tumour
progression. Haptoglobin’s capacity to suppress immune
responses and its potential role in promoting tumour
angiogenesis are key factors in its involvement in malignancy.
Furthermore, the modulation of haptoglobin could present an
opportunity for targeted therapeutic strategies to reverse the
tumour-promoting effects of haptoglobin while maintaining its
essential functions in preventing oxidative damage and
haemoglobin clearance. Haptoglobin-targeted therapies could
offer a dual benefit in malignancies: one in reducing the
oxidative stress associated with haemolysis in cancer patients and

the other in mitigating the immunosuppressive effects of
haptoglobin that facilitate tumour growth. Ongoing research into
haptoglobin’s role in cancer provides an exciting opportunity to
develop therapeutic interventions that specifically modulate
haptoglobin’s effects in the context of cancer, improving patient
outcomes. Given this significance, our study aimed to
computationally evaluate the binding potential of various small
molecules with Hp, offering an in-depth understanding of their
interaction dynamics and stability. Hp (PDB ID: 4X0L) was
retrieved from the Protein Data Bank and prepared
systematically to ensure the accuracy of computational docking
and molecular simulations. This included energy minimisation,
removal of crystallographic water molecules, and addition of
missing hydrogen atoms to optimise the structure for docking
and simulation. The protein structure was then optimised for
molecular mechanics to maintain its native conformation during
molecular docking and MD simulations.

Molecular docking studies were performed that have helped to
sort the best five binding affinities of small molecules—L-Histidinol
Phosphate (DB03997), L-Gluconic Acid (DB04304), 4-Bromo-3-
(Carboxymethoxy)-5-(4-Hydroxyphenyl) Thiophene-2-Carboxylic
Acid (DB07197), 3-O-Methylfructose (DB02438), and Glutamine
Hydroxamate (DB02446)—with Hp. The docking results revealed
favourable binding affinities, with docking scores indicating high
stability of the ligand-protein complexes. Interaction analysis
identified key hydrogen bonding, salt bridge formations, and π-
stacking interactions that contributed to the ligand stability within
the active site of Hp. Among the analysed compounds,
DB07197 exhibited the strongest binding affinity, attributed to
multiple stabilising interactions, including hydrogen bonding
with ASN203 and ASP378, π-π stacking with HIS183 and
TYR352, and salt bridge formation with ARG286. These
interactions suggested that DB07197 forms an extensive
interaction network, contributing to enhanced stability. In
contrast, L-Gluconic Acid (DB04304) showed the weakest
binding affinity, primarily stabilised by water-mediated hydrogen
bonds rather than direct electrostatic or hydrophobic interactions.
The interaction fingerprints for the remaining ligands suggested
moderate binding affinity, with hydrogen bonding playing a key role
in stabilising the complexes. To gain deeper insights into the
electronic properties of the ligands and their potential reactivity,
Density Functional Theory (DFT) calculations were performed. The
HOMO-LUMO energy gap analysis indicated the stability and
reactivity of each ligand, providing insights into their electronic
transitions and binding potential. Ligands with lower HOMO-
LUMO gaps were identified as chemically more reactive,
suggesting more substantial interaction potential with Hp. The
molecular electrostatic potential (MEP) maps further revealed the
charge distribution, helping to understand the nucleophilic and
electrophilic regions of the ligands, which influence their binding
efficacy. DB07197 displayed a favourable electronic distribution
with a balanced charge density around its active functional
groups, contributing to its strong interaction with Hp. ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity)
analysis was performed to assess the drug-likeness and
pharmacokinetic potential of the selected ligands. The
pharmacokinetic predictions suggested that most ligands
exhibited high gastrointestinal (GI) absorption, moderate blood-
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brain barrier (BBB) permeability, and favourable metabolic stability.
Notably, DB07197 demonstrated a high GI absorption rate,
indicating good oral bioavailability, while L-Gluconic Acid
exhibited poor BBB permeability, limiting its application in
central nervous system (CNS)-related conditions. None of the
ligands showed significant toxicity concerns, supporting their
potential as viable drug candidates.

WaterMap analysis was conducted to assess the contribution of
solvent dynamics to ligand binding. The displacement of high-
energy water molecules in the Hp binding site was analysed to
understand solvent-mediated effects on ligand stability. The results
indicated that DB07197 efficiently displaced unfavourable water
molecules, enhancing binding affinity through enthalpic
contributions. In contrast, L-Gluconic Acid retained many water
molecules, potentially contributing to its weaker binding affinity.
The WaterMap results provided valuable insights into the solvation
effects that influence ligand stability, further reinforcing the docking
and MD simulation findings. To evaluate the dynamic behaviour
and stability of the ligand-protein complexes over time, MD
simulations were conducted for 100 ns. The root-mean-square
deviation (RMSD), root-mean-square fluctuation (RMSF), radius
of gyration (Rg), and solvent-accessible surface area (SASA) were
analysed to assess the structural integrity and flexibility of the
complexes. The DB07197 complex displayed the lowest RMSD
fluctuations, indicating a highly stable binding conformation.
Conversely, L-Gluconic Acid showed higher RMSD values,
suggesting greater conformational flexibility and reduced stability.
The RMSF analysis revealed minimal fluctuations in key binding site
residues, confirming the robustness of ligand interactions. MM/
GBSA calculations were performed using mmgbsa. py on the MD
trajectories to quantify the binding affinity of each ligand. The
binding free energy (ΔG) values provided insights into the
energetic favourability of each complex. DB07197 exhibited the
most favourable ΔG value (−21.3262 kcal/mol), indicating the
strongest binding affinity. The high stability of this complex was
attributed to strong electrostatic interactions, hydrogen bonding,
and salt bridge formation. On the other hand, L-Gluconic Acid
exhibited the weakest binding affinity (−11.0846 kcal/mol),
reflecting its weaker interaction profile and higher solvation
effects. The other ligands demonstrated moderate binding
affinities, consistent with their interaction networks observed in
docking and MD simulations. This study presents a comprehensive
computational analysis of five potential ligands targeting
haptoglobin, integrating molecular docking, MD simulations,
DFT analysis, pharmacokinetics, WaterMap analysis, and MM/
GBSA calculations. DB07197 emerged as the most promising
candidate among the studied ligands, exhibiting strong binding
affinity, favourable pharmacokinetic properties, high electronic
stability, and minimal structural fluctuations during MD
simulations. These findings provide a strong foundation for
further in vitro and in vivo validation studies to explore the
therapeutic potential of these ligands in modulating
haptoglobin function for disease intervention. Future studies
may focus on lead optimisation, structural modifications, and
experimental validation to develop potent haptoglobin-targeted
therapeutics.

5 Conclusion

This study comprehensively investigated the binding potential
and stability of five drug-like molecules with human haptoglobin
(PDB ID: 4X0L) using a variety of computational techniques,
including molecular docking, interaction fingerprinting, DFT,
pharmacokinetic profiling, WaterMap analysis, MD simulations,
and MM/GBSA free energy calculations. Molecular docking
revealed strong binding affinities ranging from −7.96 to
−5.58 kcal/mol, with extensive interactions at key residues.
Interaction fingerprinting and DFT analysis confirmed the
presence of stable hydrogen bonds, salt bridges, and π–π stacking
interactions, contributing to ligand affinity and stability. The
pharmacokinetic evaluation indicated that all ligands met drug-
likeness criteria with favourable ADME profiles. WaterMap analysis
identified critical hydration sites that influence ligand binding. MD
simulation results confirmed the stability of the protein-ligand
complexes, with RMSD values stabilising between 1.68 Å and
2.02 Å for the protein and 2.89 Å to 16.18 Å for the ligands.
RMSF analysis highlighted key fluctuating residues, while
simulation interaction diagrams validated strong hydrogen
bonding networks. MM/GBSA calculations indicated that
DB07197 had the most favourable free energy (−21.32 kcal/mol),
followed by DB03997 (−17.46 kcal/mol). These findings underscore
DB07197 and DB03997 as promising candidates for further
exploration as haptoglobin inhibitors. Given the promising
computational results, these compounds warrant in vitro and in
vivo validation to assess their efficacy and safety. Furthermore,
future research should focus on exploring the effects of
haptoglobin polymorphisms on these compounds’ binding
affinity and therapeutic potential and investigating their broader
implications in disease models. This study’s integration of advanced
computational methods provides a robust framework for rational
drug discovery and offers a pathway for developing targeted
therapies that modulate haptoglobin activity. Identifying and
validating effective haptoglobin modulators could open new
therapeutic avenues for treating haemolysis, inflammation, and
immune modulation conditions.
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