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Understanding themicroscopic catalytic mechanism of the olefin polymerization
reaction is crucial for the rational design of next-generation catalysts. However,
the dynamic nature of the active species, including the fluctuations of the ion pair
structure and the orientation of substituents, presents significant challenges for
theoretical approaches. In this paper, we present an overview of our recent
computational studies on the role of the structural dynamics of the active species
of olefin polymerization catalyst in determining reactivity, especially focusing on a
novel olefin polymerization catalyst (pyridylamido) Hf(IV) complex. Utilizing the
molecular dynamics method and our Red Moon method, a novel methodology
we have developed for atomistic simulation of complex chemical reaction
systems, we elucidate how the dynamic features, including anion coordination
and steric interaction, govern the reactivity in key steps such as ligand
modification and propagation reactions. In addition, we demonstrate how
machine learning techniques can be applied to extract chemically meaningful
descriptors from the structural ensemble obtained from atomistic simulation data
of complex chemical reaction systems, thereby identifying the substituents that
play an important role in propagation reactions. Our studies highlight the
importance of incorporating molecular-level dynamic features of catalysts into
mechanistic models.
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1 Introduction

In today’s society, polyolefins are the most extensively used
polymer resins. Consequently, significant efforts have been made to
develop the olefin polymerization catalyst for achieving efficient
production and precise control over the microscopic structures of
resulting polymers (Sinn et al., 1980; Gibson and Spitzmesser, 2003;
Wilke, 2003; Baier et al., 2014). Although gaining a precise
understanding of the polymerization mechanism is crucial for
catalyst development, experimentally capturing the microscopic
processes remains challenging due to the complexity of the
reaction and the difficulty of isolating intermediates. Therefore,
computational approaches have been widely adopted to
investigate the detailed reaction mechanism that cannot be easily
probed experimentally. For example, the reaction mechanisms have
been extensively investigated using quantum chemical methods
from a static point of view, particularly with respect to the origin
of monomer reactivity, as well as regio- and stereoselectivity
(Kawamura-Kuribayashi et al., 1992; Alt and Köppl, 2000;
Angermund et al., 2000; Lanza et al., 2000; Lanza et al., 2001;
Rappé et al., 2000; Resconi et al., 2000; Zurek and Ziegler, 2003;
Ziegler et al., 2005; Motta et al., 2007; Motta et al., 2008; Tomasi
et al., 2007; De Rosa et al., 2016). While these quantum mechanical
methods provide valuable insights into the static features of the
reaction mechanism, understanding the dynamic aspect of the
catalytic processes requires a different set of computational tools.
In this regard, various methodologies have been developed. For
instance, ab initio molecular dynamics and molecular dynamics
using machine learning potentials (MLPs), the latter of which has
significantly progressed in recent years (Unke et al., 2021), have been
widely used. However, bridging the gap between the timescales of
chemical reactions and molecular motions remains challenging due
to the high computational cost; the former, which involves the bond
formation and breaking, occurs far less frequently than the latter.
Another important class of approaches is reactive force fields, such
as ReaxFF (van Duin et al., 2001; Senftle et al., 2016), which have
been successfully applied to a wide range of systems. However,
reactive force fields are sometimes difficult to parametrize accurately
(Gissinger et al., 2017) and suffer from limited transferability of their
parameters (Senftle et al., 2016). For these reasons, studies
addressing the dynamic aspect of the polymerization reaction
with organometallic catalyst remain relatively scarce, even though
such dynamics are crucial for a comprehensive understanding of the
catalytic behavior (Correa and Cavallo, 2006; Yang and Ziegler,
2006; Rowley and Woo, 2011).

Under such circumstances, we have investigated themicroscopic
dynamics of the active species and its role in the olefin
polymerization reaction by employing the molecular dynamics
(MD) method and the Red Moon (RM) method, a novel
methodology we have developed for atomistic simulation of
complex chemical reaction systems. In particular, we have
focused on the (pyridylamido) Hf(IV) complex, which attracts
much attention as a novel catalyst with high activity (Boussie
et al., 2003; Boussie et al., 2006; Chum and Swogger, 2008;
Frazier et al., 2011). In this mini-review, we present an overview
of our recent computational investigations, highlighting the
dynamic features of the active species and their influence on the
olefin polymerization reaction (Matsumoto et al., 2016; Matsumoto

et al., 2019; Misawa et al., 2021; Misawa et al., 2023; Kanesato et al.,
2023; Kanesato et al., 2024).

Similar to other olefin polymerization catalysts with group
4 metal, (pyridylamido) Hf(IV) complex 1 requires an activation
process. As shown in Figure 1A, when neutral complex 1 reacts with
such as [B(C6F5)3] or [HNMe(C18H37)2][B(C6F5)4], called
cocatalyst, one of the Me groups is abstracted and results in the
ion pair (IP) of the cation 2 and the anion. Afterwards, monomeric
olefin is inserted into the Hf-Caryl bond, which is known as ligand
modification reaction. It is widely accepted that the 3 referred to as
“monomer-inserted active species” is the genuine active species for
the following propagation reaction (Froese et al., 2007; Zuccaccia
et al., 2009).

This mini-review is organized as follows. In Section 2, we
present molecular dynamics study on the structural dynamics of
the active species in the ligand modification reaction. We revealed a
characteristic dynamic of the anion dissociation from the active site,
which we refer to as the associative active site opening (AASO)
mechanism. Next, in Section 3, we focus on the structural dynamics
of the active species in the propagation reaction. For this purpose, we
utilized the RM method. Our study reasonably reproduced the
anion-dependent reactivity of the catalyst and clearly illustrated
how the structural dynamics of the active species is interwoven with
the propagation reaction. Then, in Section 4, we present an
application of our RM method, especially focusing on the role of
structural dynamics in the mechanism of steric hindrance. By
combining machine learning techniques, we successfully
identified the key substituents and elucidated how they govern
the steric hindrance around the active site. Finally, in Section 5,
we conclude with emphasis on the importance of capturing dynamic
features of the active species in mechanistic analysis of olefin
polymerization reaction.

2 Associative active site opening
mechanism in the ligand
modification reaction

Experimental evidence indicates that the active site, i.e., the Hf
atom on the cation species 2 is occupied by the anion due to its
strong interaction with the Hf atom (Zuccaccia et al., 2008;
Zuccaccia et al., 2009). Thus, the anion dissociation from the
active site is a prerequisite for the ligand modification reaction.
However, active site opening process is hard to statically investigate
with such as quantum mechanical method because it is a dynamic
process. We, therefore, developed a molecular model of the IP of the
cation 2 and the counter anion [MeB(C6F5)3]

−, and investigated its
structural dynamics by MD method (Matsumoto et al., 2016).

From our simulation, it was revealed that the counter anion
exhibits characteristic dissociation from the active site when
monomeric ethylene molecules are present in the system
(Figure 1B). Initially, the counter anion [MeB(C6F5)3]

− interacts
with the Hf atom using a single F atom andMe group (structure α in
Figure 1B). Subsequently, the anion interacts with the Hf atom solely
via F atoms, leading to the structure β in Figure 1B. Then, the borate
anion can move along the cation’s surface while staying coordinated
to the Hf atom, thereby yielding enough coordination space for the
monomeric ethylene to access the active site (structure γ in
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Figure 1B). Such a behavior arises from the planar geometry, and the
orthogonal alignment of pyridylamide ligand and perfluorophenyl
group. In the final step, the anion dissociation and the monomer
coordination occur associatively (structure δ in Figure 1B), which we
refer to as the associative active site opening (AASO).

According to the free energy barrier, structural change from
structure α to β in Figure 1B is the slowest step in the AASO
mechanism, involving the Me group dissociation. It is inferred,
therefore, that the ligand modification occurs more rapidly if the
anion is [B(C6F5)4]

− because of the lack of Me group strongly
interacting with the active site. In fact, it is experimentally shown
that the polymer growth initiation proceeds more slowly with
[MeB(C6F5)3]

− (Cueny et al., 2017), which supports the validity
of the AASO mechanism.

3 Structural dynamics of the ion pair
active species interwoven with the
propagation reaction

The anion-dependent reactivity is also observed in the
propagation as well as in the ligand-modification. In fact, it has
been experimentally observed that active species 3 with [B(C6F5)4]

−

tends to show higher polymerization rate of 1-octene than that with
[MeB(C6F5)3]

− (Cueny et al., 2017), which indicates that the
dynamic features of the IP active species has an effect on the
propagation reaction as in the case of the ligand modification.
However, it is still challenging to computationally investigate
how the propagation reaction and the IP dynamics influence
each other because these phenomena differ significantly in

FIGURE 1
(A) Schematic representation of activation (Me group abstraction and ligand modification) and propagation reaction of (pyridylamido) Hf(IV)
complex. (B) Schematic representation of the associative active site opening mechanism. Adapted with permission from Organometallics, 2016, 35, 24,
4099–4105. Copyright 2016 American Chemical Society. (C) A schematic representation of the Red Moon method. In three regions R, S,and T, the
configurational distribution Peq

x (x � R, S,T) is proportional to the exponential factor e−βUx , where Ux is the potential function in each region.Wsr and
Wts are the transition probabilities from a configuration state r in region R to s in region S, and from s in region S to t in region T, respectively.
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timescale. The former, characterized by the formation and breaking
of chemical bonds, takes place much less frequently than the
structural changes seen in the latter. To tackle this problem, the
RM method (Nagaoka et al., 2013; Nagaoka et al., 2019; Nagaoka,
2024) was employed. In the RMmethod, the molecular motions over
a relatively short time scale are handled with the MD method, while
the chemical reaction processes involving formation and breaking of
chemical bonds over a relatively long time scale are handled with

Monte Carlo (MC) method. A single cycle comprising these two
methods is referred to as the “RM cycle”. Repeating the RM cycle
allows stochastic simulation of a series of propagations (Figure 1C).
Moreover, by employing the time transformation theory (Suzuki
and Nagaoka, 2017; Nagaoka et al., 2019), the RM cycle is mapped
onto an effective real-time domain. Some independent groups have
recently adopted the same spirit of the RM method and reasonably
applied their methods in the field of lithium-ion batteries

FIGURE 2
(A) Averaged ISIP ratio as a function of the effective real-time in each IP system. (B)OSIP structure of the IP systemwith [MeB(C6F5)3]

− anion after the
first monomer insertion, where the steric hindrance between the inserted monomer and the counter anion induces the structural transition from the ISIP
to OSIP. Adapted with permission from J. Phys. Chem. B 2023, 127, 5, 1209–1218. Copyright 2023 American Chemical Society. (C) Schematic
representation of the cation showing the i-Pr and Hex groups in the 1-octene unit adjacent to the Hf atom (Hex in 1st OCT) which affect the
propagation reaction. (D) Results of descriptor extraction with machine learning techniques. Typical snapshots of steric hindrance around the active site
due to (E) the i-Pr group and (F) the Hex group. Adapted with permission from Phys. Chem. B 2024, 128, 25, 6178–6188. Copyright 2024 American
Chemical Society.
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(Biedermann et al., 2021b; Biedermann et al., 2021a; Abbott and
Hanke, 2022). Furthermore, Okabe et al. employed a treatment
similar to the RM method to primarily study the cross-linking
reactions and physical properties of epoxy resins (Takaba et al.,
2008; Okabe et al., 2013; Oya et al., 2021). We believe that these
works further support the validity of the direction pursued by our
RM method.

By applying the RMmethod, higher 1-octene consumption with
[B(C6F5)4]

−was reasonably reproduced (Misawa et al., 2021; Misawa
et al., 2023). Furthermore, to reveal the dynamic features of the IPs,
according to the location of the counter anion relative to the cation,
we classified the IP structure into two classes, that is, inner-sphere IP
(ISIP) state where the counter anion is coordinated to the Hf atom,
and the outer-sphere IP (OSIP) where the counter anion is
dissociated from the Hf atom. Figure 2A illustrates the variations
of the ISIP ratio averaged over the 10 trajectories obtained from the
RM simulation. It is clearly shown that the IP of [MeB(C6F5)3]

−

forms ISIP which inhibits the coordination of the monomeric 1-
octene to the active site. Notably, the ISIP ratio of the IP of
[MeB(C6F5)3]

− drops steeply within the first 20 ms, as the
inserted monomer has the steric repulsion with the counter
anion after the first monomer insertion (Figure 2B). Afterwards,
the ISIP ratio fluctuates between 40% and 60%, which indicates the
IP of the [MeB(C6F5)3]

− reaches a quasi-equilibrium state. By
contrast, the IP of [B(C6F5)4]

− predominantly retains the OSIP
across the entire simulation, leading to the faster propagation.
These results reveal significant differences in the dynamic
features between the two IPs and illustrate how the IP dynamics
is interwoven with the propagation reaction.

4 Effect of the steric hindrance on the
propagation reaction: extraction of
essential descriptors by machine
learning techniques

In general, it is well known that the steric hindrance between a
catalyst’s ligands and the reacting monomers significantly affects
monomer reactivity, as well as regio- and stereoselectivity in olefin
polymerization reactions (Kawamura-Kuribayashi et al., 1992;
Lanza et al., 2000; Lanza et al., 2001; Zurek and Ziegler, 2003;
Ziegler et al., 2005; Motta et al., 2007; Motta et al., 2008; Tomasi
et al., 2007; De Rosa et al., 2016). Therefore, a precise understanding
of the microscopic mechanism of steric hindrance caused by
substituents is essential for the rational design of catalysts that
yield polymers with desired physical properties. In fact, the
relationship between the catalyst structure and its reactivity has
been extensively investigated using quantum mechanical methods.
However, our studies presented above imply that not only the static
structure of the catalyst but also its structural dynamics plays a
significant role in the mechanism of steric hindrance. Motivated by
these considerations, we investigated the dynamic aspect of the steric
hindrance in coordinative chain transfer copolymerization of
ethylene and 1-octene by (pyridylamido) Hf(IV) by combining
our RM method and machine learning techniques (Kanesato
et al., 2023; Kanesato et al., 2024).

To begin with, we confirmed that the frequency of the chain
transfer reaction and the ethylene content in the resulting polymers

obtained from our simulation are consistent with the experimental
observations (Kanesato et al., 2023). These agreements validate the
reliability of our simulation and the subsequent mechanistic analysis
of the steric hindrance by the substituent. In addition, it is also
shown that our methodology is applicable not only to homo
polymerization but also to more complex polymerization systems
such as coordinative chain transfer copolymerization.

Next, we attempted to find substituents that affect the
propagation reaction by extracting essential descriptors using a
machine learning technique. For this purpose, by using the
Cartesian coordinate values of the cationic active species from
our RM simulation as input variables, we developed random
forest classification models to determine whether no reactant for
the propagation reaction is found, or a reactant is found and the
propagation reaction proceeds. We collected a large data set
containing 4,146 structural entries from our RM simulation, and
applied RMSD fitting to align the cationic active species, addressing
the lack of rotational and translation invariance in Cartesian
coordinates. The two hyperparameters, the number and depth of
the trees, were optimized using grid search with 10-fold cross-
validation.

Subsequently, based on the feature importance, we extracted the
substituents whose Cartesian coordinate values are important.
Figures 2C,D indicate that the i-Pr group of the cationic active
species and the hexyl group of the inserted 1-octene adjacent to the
Hf atom have significant effects on the occurrence of the
propagation reaction. In fact, two snapshots from our RM
simulation (Figures 2E,F), where no reactant for the propagation
reaction is found, clearly show that the i-Pr group or the hexyl group
occupies the active site and inhibits the approach of monomers.

It is worth noting that the combination of RM simulation and
machine learning techniques successfully identified the substituents
that affect the propagation reaction. This fact includes two
important aspects: First, the RM simulation can provide
meaningful information, including the reactions and dynamic
features of the catalyst, for the complex reaction system that are
hard to analyze using conventional approaches. Second, we have
proposed a new scheme to analyze the chemical reaction dynamics
by integrating molecular simulation and data science.

5 Conclusion and future perspectives

In this mini-review, we presented an overview of our recent
computational studies on the role of the structural dynamics of the
active species of olefin polymerization catalyst, especially focusing
on the active species of (pyridylamido) Hf(IV) complex. By
employing molecular dynamics method and Red Moon (RM)
method, i.e., a novel methodology we have developed for the
atomistic simulation of complex chemical reaction systems, we
have revealed that the dynamic features such as the anion
coordination and the steric interaction by the substituents
significantly influence the key reaction steps, including ligand
modification and propagation reactions. Furthermore, by
combining machine learning techniques with our RM method,
we successfully identified the substituents that govern the steric
hindrance around the active site. These findings underscore the
importance of capturing molecular-level dynamics in the
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mechanistic analysis of olefin polymerization reactions. They also
demonstrate the potential of molecular simulation and a simulation-
machine learning hybrid approach for uncovering the structure-
reactivity relationships that are inaccessible by static models.

Although the role of structural dynamics has not been explored
enough in previous mechanistic models, we find that some
experimental and theoretical observations could be viewed as
consistent with our perspective. For example, it has been speculated
that the bulky substituents increase the propagation rate by locking the
anion into a position away from the cationic metal center (Cueny et al.,
2021). In addition, the rearrangement of the backbone structure of the
cationic active species during the capture of a monomeric olefin has
been proposed to influence the comonomer affinity (Zaccaria et al.,
2017). We consider these observations to be suggestive of the
underlying role of the dynamics in determining catalytic reactivity.
We believe that a deeper understanding of the dynamic features of the
olefin polymerization catalysts, often overlooked in static models, will
become an essential component in the mechanistic understanding and
contribute to the rational design of next-generation catalysts in
the future.
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