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Hyperspectral imaging (HSI) technology integrates spectral analysis and image
recognition with non-destructive and efficient advantages, and is widely used in
the agriculture, geological exploration, military sectors, among others. Traditional
Chinese medicine (TCM) has a long history of use in China, and to ensure the
quality of TCM herbs, it is necessary to perform accurate quality assessments. It is
also crucial to evaluate the active ingredients and changes in cultivation strategies
and processing parameters over time. The use of HSI technology for the
investigation of Chinese medicines has grown in importance, and recent
advances in HSI have enabled the multi-dimensional non-destructive analyses
of various components, origins, and growth statuses, thereby providing
innovative solutions for modernization. This paper systematically reviews the
application of HSI for detecting active ingredients, evaluating their quality, and
recognizing the authenticity and species of Chinese herbal medicines. It clearly
describes the limitations of hyperspectral technology in terms of data processing,
emphasizes the importance of textural information, and suggests the application
of HSI for large-scale detection.
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1 Introduction

Traditional Chinese medicine (TCM) refers to natural medicines used under the
guidance of traditional Chinese medicine theory. These medicines are primarily derived
from plants, animals, and minerals, and are processed into medicinal products to regulate
bodily functions, in addition to preventing, treating, and diagnosing various diseases. The
earliest use of TCM in China can be traced back to ancient times. More specifically, during
the Xia, Shang, and Zhou periods, its development began to be documented through
systematic theoretical research. Ancient methods for identifying the quality of TCM herbs
mainly relied on the accumulation of experience and sensory judgment, and combined with
the technical conditions and theories of Chinese medicine at that time, a complete set of
identification methods were gradually formed, including sensory identification, fire, and
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water assays. However, these methods are highly subjective, are
unable to accurately quantify Chinese herbal medicines, and are
incompatible with processed products.

With the development of modern science and technology,
researchers have devoted themselves to the in-depth analysis and
study of TCM herbs using the novel techniques that have become
available to them over the years. As a result, new quality control
methods, including microscopic identification, chemical
identification, and stable isotope technologies, have been
proposed and applied. For example, compared with naked-eye
observation microscopic identification is based on the use of
microscopy to observe the cellular structures of herbs and
provide more intuitive information. However, its operation is
complicated, especially when the herbs have been processed,
since the resulting structural changes may complicate their
identification (Zhang Hui et al., 2024). Alternatively, chemical
identification methods, including high-performance liquid
chromatography and gas chromatography, represent highly
sensitive techniques, and can provide more objective and reliable
data; however, some limitations remain in terms of separating and
identifying complex components, thereby rendering it difficult to
fully assess interactions and synergistic effects (Wang et al., 2022).
Stable isotope techniques, on the other hand, have been applied to
identify the geographic origins of herbs. The ratios of common stable
isotopes (e.g., carbon, hydrogen, and oxygen) present in the herbs
originating from different regions and subjected to different growth
environments can vary significantly, thereby allowing traceability
evaluation be performed (Yu et al., 2022). However, these methods
are destructive and are unsuitable for rare or intact materials.
Additionally, previous studies assessed only individual samples,
failing to meet the requirements of holistic quality evaluations.

Therefore, the combination of multiple methods for the
comprehensive assessment of herbs will be an important trend in
the future quality control of TCM ingredients (Indrayanto, 2024).

Hyperspectral imaging (HSI) is an imaging technique that
acquires and analyzes the spectral information of target objects
across multiple continuous narrow bands within the visible and
near-infrared spectra to identify their chemical compositions and
physical properties. As a general concept, spectroscopy has its
origins in the early 20th century, and since then has been
commonly employed in the fields of astronomy, physics, and
chemistry, with a focus on substance identification and analysis
using spectral data (Figure 1). Although early technologies focused
on limited spectral bands, they paved the way for the development of
HSI. In the 1960s, with the rise of remote sensing, multispectral
imaging gained prominence, while in 1987, the development of the
first HSI system marked a significant breakthrough. By the 21st
century, advances in sensors and computational power had boosted
its capabilities. Moreover, due to its notable advantages, such as its
high sensitivity, rapid nature, and non-invasive operation, HSI is
now widely used across multiple fields, especially in the fields of
agriculture (Liu et al., 2020; Cheshkova, 2022), food science (Lv et al.,
2023), defense (Luft et al., 2014), geology (Chakraborty et al., 2024),
medicine (Sharma et al., 2024) and cultural relics protection (Shi
et al., 2024). As a result, this technology has led to the development
of novel methods for the quality control and compositional analysis
of Chinese herbal medicines, boosting the efficiency of research,
while providing reliable quality control support. As related
technologies continue to advance and improve, their potential
applications in traditional Chinese medicine continue to expand.

With new developments in the area of HSI, the spectral
resolution has been increased down to the pixel level, with each

FIGURE 1
Applications of hyperspectral imaging technology in various fields.
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pixel containing spectral information across multiple bands. This
allows the creation of a spectral “curve” that reflects the absorption,
reflection, and scattering characteristics of the target object at
different wavelengths. To date, various data processing
techniques have been employed to analyze spectral signatures
and to distinguish and identify various substances, thereby
enabling detailed feature recognition and quantitative analysis of
the types, qualities, and components of Chinese herbal medicines
(Zhang et al., 2021). Hyperspectral technology not only captures
wavelength information, but it also records the two-dimensional
spatial information of objects to generate a three-dimensional data
cube. In contrast to traditional data, high-dimensional data provide
richer information. Through the subsequent analyses of these
spectral data using deep learning algorithms, the characteristic
differences in medicinal materials and the distribution of
bioactive compounds within them can be visually presented,
ultimately advancing the standardization and scientific progress
of traditional Chinese medicine, and addressing the limitations
associated with traditional identification methods (Zhang Deng-
Ting et al., 2023; Wang He et al., 2023).

However, relying solely on spectral information often fails to
capture the full characteristics of such materials. For example,
textural information, which represents a key metric for
describing local image regions and patterns, reflects the
distributions, arrangements, and variations in pixel intensities.
Thus, a combination of both spectral and textural information
provides a fuller picture of the surface structure and shape. By
analyzing grayscale differences between bands and pixel directional
features, it is possible to supplement spatial structure details and
provide more complete data for medicinal herb identification and
quality assessment. Moreover, the effective fusing of spectral and
textural information not only significantly improves the detection
accuracy and reliability, but it also opens new research possibilities
in other fields (Wang et al., 2020; Duan et al., 2024). For example, in
agriculture, textural information aids in the detection of diseased
areas, contributes to analysis of the soil quality, and can be used to
distinguish between different crop types (Zhao et al., 2023). In the
food industry, textural information provides details related to
surface defects, helps detect food spoilage, and contributes to the
identification of food adulteration (Wang Yulong et al., 2024).
Moreover, in medicine, textural information aids in disease
diagnosis and pathological analysis, including in the detection of
skin conditions and tumors, and in the assessment of lesion types
and progression degrees (Colomer et al., 2020). These examples
clearly demonstrate that the integration of spectral and textural
information through the use of HSI technology not only guides
quality control in medicinal herbs, but that it also promotes material
identification and improves the classification accuracy across
multiple fields.

However, as far as we know, in the field of traditional Chinese
medicine, the systematic and comprehensive description of
monitoring technology and data fusion is still insufficient. This
article reviews the application of HSI in the identification of the
origin of traditional Chinese medicine, classification of varieties,
quality assessment and planting monitoring, etc. Furthermore, this
paper also focuses on discussing the key role of texture information
in feature data recognition, and systematically sorts out the fusion
methods of spectral information and texture information at multiple

scales. Meanwhile, the article reviews the commonly used
preprocessing methods, feature extraction methods and modeling
strategies for different types of data. The core objective of this study
is to provide relevant researchers with an overall research trend
analysis of the application of HSI technology in the field of
traditional Chinese medicine, thereby promoting the effective
transformation of monitoring technology from theoretical
research to practical application.

2 Overview of HSI technology

2.1 Acquisition of HSI data

Acquiring hyperspectral data is a key step in HSI technology,
wherein an imaging spectrometer is used to collect spectral
information from target objects. Depending on the imaging
principles, hyperspectral instruments can be classified into two
types, namely, push brooms and snapshots. In line-scanning HSI
using a push-broom approach, the sensor scans the entire scene line
by line from one direction, representing an efficient technique for
large-area imaging. In area-scanning HSI using a snapshot
approach, all scene data are obtained simultaneously, which is
ideal for scanning dynamic objects.

Spectral data acquisition involves three steps, including scene
selection, equipment calibration, and data collection. Following the
selection of an observation scene based on the application
requirements, the equipment (see Figure 2) is calibrated in terms
of both spectral and geometric calibrations. For spectral calibration,
standard panels, such as whiteboards, are used to remove the effects
of ambient light, while geometric calibration ensures that the
positional features of the image match those of the actual ground
objects. Finally, the parameters for data collection include the light
sources, methods, wavelength ranges, exposure times, sampling
frequencies, and resolutions.

2.2 Methods for the processing of spectral
information

Because hyperspectral data encompass the chemical
compositions and physical structures of materials, they are
characterized by large data volumes, high degrees of
dimensionality, and significant noise. Data processing therefore
aims to extract key information from a vast dataset to permit the
identification, classification, or quantitative analysis of different
substances. The processing steps include preprocessing,
dimensionality reduction, spectral feature extraction,
classification, and recognition. More specifically, data
preprocessing aims to reduce or eliminate noise and acquisition
artifacts, as well as normalizing the data scale across different
samples and spectral bands to facilitate subsequent analysis.
Common methods include normalization and smoothing
filtration. In addition, dimensionality reduction involves reducing
the data dimensionality or increasing the class separability using
mathematical methods. Techniques associated with this processing
step include principal component analysis, independent component
analysis, linear discriminant analysis, and factor analysis, all of
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which contribute to simplifying the data structure. Indeed, this
represents the most critical step in spectral data processing, as it
involves selecting themost representative features from the raw data.
Examples include calculating the band ratios to obtain vegetation
indices (Table 1), or analyzing the continuum features of spectral
curves to identify material compositions and structures.
Classification and recognition represent the ultimate objectives of
hyperspectral data processing, and can be typically categorized into
supervised classification, unsupervised classification, and deep
learning algorithms. For supervised classification using labeled
sample data, various algorithms can be employed, including
support vector machines, decision trees, and random forests.
Unsupervised classification groups data into categories based on
intrinsic similarities, often employing clustering algorithms such as
k-means clustering and hierarchical clustering, which are multilayer
neural networks comprising input, output, and hidden layers. They
can automatically extract features from the data and learn complex
nonlinear relationships. Common algorithms include feed-forward
neural networks, convolutional neural networks (CNNs), and long
short-term memory networks.

2.3 Methods for the extraction of textural
information

Various methods exist for extracting textural features, and these
can be primarily categorized into statistical analysis, structural
analysis, signal processing, and model-based approaches
(Table 2). Statistical methods include the gray-level co-occurrence
matrix and local binary patterns. The former calculates the gray-
level and positional relationships between pixel pairs to describe
textural features, such as the contrast and energy, whereas the latter
compares adjacent pixel gray levels using binary encoding to build a
histogram for textural analysis (Alibabaei et al., 2023). Structural
analysis primarily uses a histogram of oriented gradients, which
divides an image into cells, computes the gradient direction
distributions within each cell, groups cells into blocks for

normalization, and concatenates these normalized histograms to
detect the edges and shapes present in the objects.

Textures often exhibit different characteristics at varying scales
because they provide multilevel information. Techniques such as the
Fourier and wavelet transformations decompose information at
multiple scales and convert spatial data to the frequency domain
to extract textures at specific orientations and scales. In addition,
model-based methods offer new approaches for extracting textural
features. For example, CNNs fuse deep features to enhance complex
textural recognition, and have been employed in various
applications to date (Cai et al., 2022). In practice, ongoing
improvements in the computing power and in the associated
algorithms lead to a continuous evolution of textural extraction
methods and tools. Moreover, a combination of deep features with
traditional textural features has the potential to boost the accuracy
and robustness of image classification (Gao et al., 2021); however, it
also poses new challenges for feature analysis.

2.4 Method for the fusion of spectral and
textural information

The fusion of spectral and textural information is a common
technique in image processing and computer vision, and has
emerged as an important research direction in image analysis in
recent years (Figure 3). It was therefore considered desirable to
merge these two techniques to achieve more precise image
classification, object detection, and feature extraction. Currently
available fusion methods are based on pixel-, feature-, and
decision-level fusion.

For example, pixel-based fusion methods combine two
information sources directly at the pixel level, simplifying
complex information and rendering its analysis more facile. For
example, spectral and textural images can be layered using a
weighted average method, or specific frequency band features can
be fused using filter methods. Although pixel-based fusion methods
effectively enhance the image contrast, they also introduce artifacts

FIGURE 2
Hyperspectral imaging system.

Frontiers in Chemistry frontiersin.org04

You et al. 10.3389/fchem.2025.1620154

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1620154


and edge blurring, which render it difficult to balance information
differences at different scales in some complex application
scenarios. Consequently, such approaches are only suitable for
processing high-resolution image data. As a result, feature- and
decision-level fusion methods offer several benefits for many
applications. For example, feature-level fusion methods pull
features from various information sources and then merge
these features at specific levels to form a new, more
comprehensive feature vector, effectively enhancing the
classification accuracy (Zhou et al., 2022a). Previous research
in this area has shown that combining spectral features with
wavelet texture features can significantly enhance the accuracy
of remote sensing estimates of rice leaf area indices based on data
collected from unmanned aerial vehicles (i.e., drones). However,
the contributions of individual features can differ between
applications, thereby rendering selection of the best features
rather challenging. Additionally, following direct combination,
strong correlations between features can interfere with the final
results. To address this, decision-based fusion methods can be
employed, which initially handle the classification or detection of

different information sources separately, and then integrate the
results at the decision level to generate the final decision.
Decision-level fusion occurs primarily at the output layer of
the classifiers, which can reduce the chances of mistakes from
a single classifier to enhance the overall robustness of the system.
In addition, compared with the first two methods, decision-level
fusion does not require complex data processing, instead simply
merging the results of each classifier, and rendering the
integration of multiple data sources more straightforward.
However, decision-level fusion has lower information usage
and relies excessively on classifier performance. Thus, the
performance of the classifiers is low, the results will not be
ideal. The above points clearly demonstrate that each of the
three fusion methods exhibits specific advantages and
disadvantages. Choosing the appropriate fusion method
therefore requires careful consideration of the data
characteristics, application goals, and real-time computing
requirements, as well as balancing the advantages and
disadvantages of each method, and using appropriate
optimization techniques to achieve the optimal fusion effect.

TABLE 1 Commonly used vegetation indices and formulae.

No. Vegetation index Abbreviation Formula References

1 Chlorophyll Absorption Ratio Index CARI (|a*R670 + R670 + b|*R700)/[SQRT(a2 + 1)*R670]
a � (R700 − R550)/150, b � R550 − 500*a

Kim et al. (1994)

2 Modified Chlorophyll Absorption in Reflectance
Index

MCARI [(R700 − R670) − 0.2(R700 − R550)](R700/R670) Daughtry et al. (2000)

3 Transformed Chlorophyll Absorption
Reflectance Index

TCARI 3*[(R700 − R670) − 0.2*(R700 − R550)*(R700/R670)] Haboudane et al. (2002)

4 Renormalized Difference Vegetation Index RDVI (R800 − R670)/SQRT(R800 − R670) Roujean and Breon, (1995)

5 Photochemical Reflectance Index PRI R531 − R570/R531 + R570 Gamon, Penuelas, and Field,
(1992)

6 Green Normalized Difference
Vegetation Index

GNDVI R750 − R540 − R570/R750 + R540 + R570 Gitelson and Merzlyak, (1997)

7 Normalized difference Vegetation
Index

NDVI R800 − R670/R800 + R670 Rouse Jr et al. (1974)

8 Optimised Soil Adjusted Vegetation
Index

OSAVI (1 + 0.16)(R800 − R670)/(R800 + R670 + 1.16) Rondeaux, Steven, and Baret,
(1996)

9 Structure Insensitive Pigment Index SIPI (R800 − R445)/(R800 + R430) Penuelas, Baret, and Filella, (1995)

10 Double Peak Index DPI (R688*R710)/R697
2 Zarco-Tejada et al. (2003)

11 Triangular Vegetation Index TVI 120(R750 − R550) − 200(R670 − R550)/2 Broge and Leblanc, (2001)

12 Normalized Pigment Chlorophyll
Index

NPCI (R680 − R430)/(R680 + R430) Vigier, Pattey, and Strachan,
(2004)

13 Plant Senescence Reflectance Index PSRI (R660 − R510)/R760 Merzlyak et al. (1999)

14 MERIS Terrestrial Chlorophyll Index MTCI (R754 − R709)/(R709 + R681) Dash and Paul (2004)

15 Normalized Difference Red Edge
Index

NDRE (R790 − R720)/(R790 + R720) Barnes et al. (2000)

16 Anthocyanin Reflectance Index ARI R700/R550 − 1 Gitelson (2004)

17 Plant Pigment Ratio PPR (R550 − R450)/(R550 + R450) Metternicht, (2003)

18 Modified Simple Ratio MSR (R800/R670 − 1)/ �����������
R800/R670 + 1

√
Chen, (1996)

19 Normalized Pheophytization Index NPQI (R415 − R430)/(R415 + R430) Barnes et al. (1992)
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3 Application of HSI in the
compositional analysis of TCM

HSI is an advanced technology for material analysis, which is
based on spectral information and has been widely used in the
compositional analysis of TCM in recent years. Using this approach,
researchers have performed various quantitative analyses, and have
studied the spatial distributions of the components present in
traditional Chinese medicine by collecting reflectance or
transmittance spectral data across various wavelengths.
Additionally, with the ongoing development of artificial
intelligence and machine learning technology, HSI technology
has shown good application prospects in the quality control,
composition identification, and traceability analysis of Chinese
herbal medicines (Pan et al., 2024; Yi et al., 2020).

3.1 Quality assessment of TCM

3.1.1 Establishment and validation of
quality standards

In the application of hyperspectral technology, the
establishment and validation of quality control standards for
TCM materials has recently become an important area of focus
in the field of traditional Chinese medicine quality testing. For
example, following the determination of characteristic spectral
fingerprints using spectral data and data mining technologies,
conducted correlation analysis was performed based on the
chemical and pharmacodynamic components to establish quality
standards for TCM. As previously reported, HSI technology can

effectively distinguish between Chinese herbal medicines of different
origins, thereby supporting the development of quality standards
(Yang et al., 2020). Furthermore, relevant studies have indicated that
hyperspectral technology exhibits a high sensitivity and specificity
for the quality detection of Chinese herbal medicines, effectively
identifying pollutants and counterfeit products (Xu et al., 2023). To
verify the accuracy and reliability of HSI technology in the quality
assessment of Chinese herbal medicines, it is necessary to compare
the safety and pharmacodynamic verification data with those of
traditional quality control methods. In addition, textural
information should be coupled with physical characteristics (e.g.,
color and structure) to ensure the diversity of indicators during the
establishment of quality standards.

In the application of compositional analysis and authenticity
identification, hyperspectral data collection refers to the collection
of data from a single Chinese herbal medicine. However, quality
standards require the collection of data from numerous samples of
different types and origins, and which have been subjected to
different processing methods. Following data processing and
modeling, specific testing standards and processes are
formulated based on national or industry standards, and these
are subsequently combined with actual testing requirements to
ensure their consistency and reproducibility under different
conditions (Christophe et al., 2005). Overall, the establishment
of quality standards for TCMs based on hyperspectral technology
not only leads to improved scientific quality control, but it also
systematically integrates the germplasm resources of Chinese
herbal medicines, establishes a sharing platform, and promotes
the multifaceted collaboration of quality standards for Chinese
herbal medicines.

3.1.2 Quantitative analysis of active ingredients
The application of hyperspectral technology has gradually

become a research hotspot for the quantitative analysis of TCM
components. Through the use of HSI technology, it is possible to
obtain the spectral features of Chinese herbal medicine components
across multiple subgroups, whilst also incorporating the use of
machine learning algorithms. This establishes a quantitative
relationship between the spectral features and the chemical
composition, and permits a quantitative analysis of the active
ingredients present in the TCM. As reported previously, the
active ingredients present in TCMs (e.g., flavonoids, saponins,
and anthraquinones) exhibit unique absorption and reflection
features in different bands of the hyperspectrum, which can be
used to further estimate the concentration and distribution of these
components (He et al., 2018; Shi et al., 2022). In addition, the
positions and intensities of the absorption peaks within the different
wavelength ranges may also differ, thereby allowing effective
identification of the corresponding chemical components.
Furthermore, previous works have determined the number of
growth years of kudzu roots using this property in combination
with deep learning algorithms. Furthermore, with the advancement
of related technologies and the cross-application of multiple
disciplines, the implementation of HSI technology in quantitative
analysis is expected to become more widespread. Consequently, it
should be possible to comprehensively assess the quality of TCM
and ensure the stability and validity of its components (Lin et al.,
2021; Shen et al., 2024), thereby providing new ideas and methods

TABLE 2 Common textural features and formulae.

No. Textural feature Formula

1 Mean ∑N
i�1
∑N
j�1
i*P(i, j) 1

2 Variance ∑N
i�1
∑N
j�1
P(i, j)(i −Mean) 1

3 Standard deviation
�������������������
∑N
i�1
∑N
j�1
P(i, j)(i −mean)2

√√
1

4 Homogeneity (Bai et al., 2019) ∑N
i�1
∑N
j�1
P(i, j)/1 + (i − j)2 1

5 Contrast (Akimov et al., 2019) ∑N
i�1
∑N
i�1
(i − j)2P(i, j) 1

6 Dissimilarity ∑N
i�1
∑N
j�1
P(i, j)|i − j| 1

7 Entropy (Barnes et al., 1992)
-∑N
i�1
∑N
j�1
P(i, j)lg(p(i, j)) 1

8 ASM ∑N
i�1
∑N
j�1
P(i, j)2 1

9 Correlation (Arivazhagan et al., 2013) ∑N
i�1
∑N
i�1
(ij)P(i, j) − μiμj/σiσj 1
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for the standardization and quality control of Chinese
herbal medicines.

3.1.3 Research progress in multi-component
synergistic analysis

The application of hyperspectral technology for the
multicomponent synergistic analysis of Chinese herbal medicines
is progressing rapidly. By simultaneously acquiring rich spectral
information, hyperspectral technology can not only be used for the
quantitative detection and synergistic effect analysis of multiple
active ingredients in such products, but it can also be employed to
obtain information regarding the component distributions in
different parts these herbal medicines through spatial analysis

technology. Consequently, the spatial distribution characteristics
of the biologically active ingredients can be revealed, thereby
highlighting the application potential of hyperspectral technology
in the field of traditional Chinese medicine. Hyperspectral
technology has also been used to collect spectra from different
parts of ginseng, and the partial least squares and Principal
Component Analysis (PCA) models have been combined to
clarify the distribution characteristics of ginsenosides and other
components (Zhang W. et al., 2024). In addition, flavonoids are the
main components of the traditional Chinese medicine Scutellaria
baicalensis, and by combining hyperspectral technology with
machine learning algorithms, it is possible to simultaneously
analyze the distributions of flavonoids, apricots, and other

FIGURE 3
Spectral data acquisition, textural information acquisition, and the fusion approach.
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TABLE 3 Examples of hyperspectral imaging techniques for compositional analysis.

No. Varieties employed for content prediction Performance parameters References

1 Purple Potato Spectral range: 900–1700 nm
Spectral resolution: 5 nm
Spectral bands:256

Heo et al. (2021)

2 Winter Jujube Spectral range: 400–1000 nm
Exposure time: 28 ms
Spectral bands:128

Wei et al. (2024a)

3 Dried Ginger Spectral range: 400–1000 nm
Spectral resolution: 7 nm
Spectral bands:204

Samrat et al. (2022)

4 Atractylodis Rhizoma Spectral range: 400–1000 nm
900–1700 nm
Spectral resolution: 8 nm
Spectral bands:512

Jiang et al. (2023b)

5 Mulberry Fruits Spectral range: 40–1000 nm
Spectral resolution: 2.8 nm
Exposure time: 60 ms

Li et al. (2023a)

6 Flos Lonicerae Spectral range: 400–1000 nm
Spectral resolution: 1.58 nm
Exposure time: 90 ms

Liu et al. (2019)

7 Turmeric Spectral range: 400–1000 nm
Spectral resolution: 2.3 nm

Farrar et al. (2021)

8 Glycyrrhiza Spectral range: 500–900 nm
Spectral resolution:9 nm
Spectral bands:45

Xu et al. (2024)

9 Milk Spectral range: 400–1000 nm
Spectral resolution: 4.8 nm
Spectral bands:125

Zhang and Liu, (2025)

10 Chrysanthemum Spectral range: 900–1700 nm He et al. (2021)

11 Coix Seeds Spectral range: 491–2500 nm
Spectral bands:396

Wang et al. (2023b)

12 Lycium Spectral range: 900–1700 nm
Spectral resolution: 5 nm
Spectral bands:256

Zhang et al. (2020)

13 Ganoderma Spectral range: 400–1000 nm
900–1700 nm

Ran et al. (2025)

14 Gastrodia Spectral range: 400–2500 nm Ma et al. (2023)

15 Jujube Spectral range: 900–1700 nm
Spectral resolution: 5.13 nm

Ibrahim et al. (2021)

16 Orange peel Spectral range: 900–2500 nm Badaró et al. (2020)

17 Honey Spectral range: 400–1000 nm
Spectral bands:128

Lanjewar, Panchbhai, and Patle, (2024)

18 Raw yams Spectral range: 900–1700 nm
Spectral resolution: 8 nm

Adesokan et al. (2024)

19 Lotus Seed Spectral range: 380–1030 nm
Spectral resolution: 2.8 nm

Wei et al. (2023)

20 Panax notoginseng powder Spectral range: 400–1000 nm
Spectral resolution: 2.8 nm

Sun et al. (2024)

21 Flos Lonicerae Spectral range: 371–1024 nm
Spectral resolution: 2.8 nm

Wang et al. (2019b)

22 Loquat Spectral range: 400–1000 nm
Spectral resolution: 2.8 nm
Spectral bands:360

Li et al. (2023b)
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components in Scutellaria baicalensis. Furthermore, spectral and
pharmacological data have been combined to clarify the
distributions of polysaccharides, flavonoids, and carotenoids in
Lycium barbarum, which has provided an objective basis for
exploring the active ingredients of this shrub in terms of their
antioxidant and immunomodulatory properties (Zhang et al.,
2020). Moreover, using pixel-level recognition technology, the
distributions of trace components have been detected in Chinese
herbal medicines, including trace mycotoxins in red ginseng,
thereby providing an important basis for safety assessments (Liu
Biao et al., 2024). It is therefore evident that hyperspectral
technology shows strong potential for use in the spatial analysis
of component distributions in Chinese herbal medicines, and could
provide new technical support for quality evaluations and medicinal
efficacy assessments of such products (Table 3).

3.2 Identification of Chinese
herbal medicines

The identification of Chinese herbal medicines is an important
link in the research and application of TCMs, and is known to
involve many aspects, such as quality control, the evaluation of
medicinal effects, and the clinical application of herbs. With the
rapid development of the Chinese medicine industry, there is an
increasing demand for the identification of Chinese herbal
medicines, especially to ensure their authenticity, efficacy, and
safety. Previous studies have shown that the combination of
hyperspectral technology with deep learning algorithms can
effectively identify different types of Chinese herbal medicines,
thereby providing a greater analytical accuracy and significantly
reducing detection times (Wang Qi et al., 2023). At present, the
application of hyperspectral technology in the identification of
Chinese herbal medicines is mainly reflected in the identification
of different varieties, along with confirmation of their authenticity
and quality.

3.2.1 Identification of different Chinese herbal
medicine varieties

Significant differences exist in the chemical compositions and
structures of different Chinese herbal medicine varieties.
Consequently, hyperspectral technology has been successfully

applied to classify and identify different varieties of Chinese
herbal medicines based on their absorption, reflection, and
scattering properties at different wavelengths, along with the
fusion analyses of their spectral and textural information using
mathematical algorithms (Zhou et al., 2020). For example,
organic compounds such as flavonoids and terpenoids have
unique fingerprint characteristics in the near-infrared region. By
analyzing the hyperspectral information of chrysanthemums using a
deep CNN algorithm, a differentiation accuracy of ~100% was
obtained for seven varieties of chrysanthemums (Wu et al.,
2018). In addition, using this technique, superior results were
obtained for the species identification of different Bayberry
(Kabir et al., 2022), Jujube (Liu Hong et al., 2024), Cannabis
sativa (Lu et al., 2022), Potato (Li Sihai et al., 2024), Lycium
barbarum (Tang et al., 2021), and Mullein (Yang et al.,
2022) varieties.

3.2.2 Identification of the authenticity and quality
of Chinese herbal medicines

The safety and effectiveness of the clinical application of Chinese
herbal medicines can be detrimentally affected by product
adulteration through the incorporation of low-quality substances
or the inclusion of substances with similar appearances but different
compositions. Previous studies have shown that hyperspectral
technology can significantly improve the efficiency and accuracy
of the detection of counterfeit Chinese herbal medicines (Yi et al.,
2020). More specifically, through a comprehensive analysis of multi-
dimensional data based on the spectral “fingerprints” of Chinese
herbal medicines containing polysaccharides, flavonoids, and
saponins, the observation of different spectral responses at
specific wavelengths can allow rapid identification of the product
authenticity. In this context, the authentication and rapid
assessment of ginseng and other valuable Chinese herbal
medicines have been performed to prevent the inflow of
counterfeit and inferior-quality products into the market (Wang
et al., 2023c). For example, authentic wolfberries are distinguished
from adulterated products based on their spectral reflectance
differences in the near-infrared band (Zhang Yao et al., 2024;
Nirere et al., 2023). Similarly, by establishing spectral databases
of different Ganoderma samples and confusing fungal features,
authentic and fake Ganoderma specimens can be effectively
distinguished from one another. Moreover, in combination with

TABLE 3 (Continued) Examples of hyperspectral imaging techniques for compositional analysis.

No. Varieties employed for content prediction Performance parameters References

23 Puerariae Thomsonii Radix Spectral range: 900–2500 nm
Spectral bands:288

Hu et al. (2023)

24 Wolfberry Spectral range:400–1000 nm
Spectral resolution: 2.53 nm
Spectral bands:256

Chen et al. (2024)

25 Pomelo peel Spectral range: 1000–2500 nm
Spectral resolution:8 nm

Chen et al. (2019)

26 Blueberry Spectral range: 900–1700 nm
Spectral bands:512

Qiu et al. (2024b)

27 Hetian jujube Spectral range: 1000–2500 nm
Spectral resolution: 5.43 nm

Wei et al. (2024b)
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deep learning algorithms, hyperspectral technology can realize a
comprehensive assessment of the quality of Chinese herbal
medicines, allowing rapid determination of the active ingredients
to enhance quality control (Ding et al., 2024).

3.3 Cultivation monitoring andmanagement
of Chinese herbal medicines

With the continual growth of the Chinese medicine industry, the
market demand for Chinese herbal medicine is also increasing. As a
result, cultivation monitoring and management are essential to
ensuring consistent yields and product qualities, in addition to
improving the competitiveness of the market. At present, the
application of HSI technology in cultivation monitoring is based
mainly on monitoring of the soil composition, the acidity and
alkalinity, real-time plant growth patterns, and real-time pest and
disease infestations.

3.3.1 Hyperspectral monitoring of soil and
environmental factors

Recently, hyperspectral technology has been increasingly
employed in the fields of soil and environmental monitoring.
Different textures of soils, such as sands, clays, and loams,
exhibit different spectral reflectances due to their varying particle
sizes and mineral compositions. Hyperspectral technology can be
used to differentiate between differently textured soils by capturing
and analyzing subtle differences in spectral reflectance. In addition,
since the spectral absorption characteristics of such materials are
closely related to the vibrations of the pigments and other organic
matter, it is possible to estimate the contents of these components
and monitor the soil over a large area. For example, previous studies
have shown that hyperspectral technology can effectively identify
the correlation characteristics of heavy metal contamination and soil
active components, which is crucial for monitoring the cultivation
environments of Chinese herbal medicines (Pechlivani et al., 2023;
Wang Zhihao et al., 2024). Furthermore, the combination of
hyperspectral technology with Internet of Things devices
(Schmidt and Ahn, 2022) and unmanned aerial systems (Huang
et al., 2024) can realize dynamic monitoring of the soil quality and
temperature, in addition to accurate classification of the air quality
index, and the provision of data support for the precise cultivation of
Chinese herbal medicines. Moreover, by analyzing the spectral data
recorded for a soil, the fertilizer program and irrigation time can be
adjusted to increase the fertilizer utilization rate, improve the soil
structure, reduce the use of chemical pesticides, ensure the growth
and quality of Chinese herbal medicines, and guarantee an optimal
raw material supply.

3.3.2 Real-time detection of the crop growth status
During their distinct growth stages, the leaves and canopies of

crops exhibit different chemical compositions and physical
structures. Using HSI, the spectral reflectances associated with
multiple bands can be calculated to analyze vegetation indices
that are related to crop growth. Indeed, the relationship between
various characteristic parameters and crop biochemical indices has
been modeled such that the chlorophyll content, photosynthetic
efficiency, and water status of the crop during the growth process

could be monitored in real time, which is essential for assessing the
growth health of the crop. For example, studies have shown that
hyperspectral technology can effectively monitor the growth status
of wheat and predict the crop yield from spectral data alone (Wu
et al., 2023). In addition, the use of drones carrying hyperspectral
sensors enables the rapid monitoring of large crop planting areas in
the dual-band range, which can lead to the detection of growth
abnormalities, pests, and diseases in a timely manner, thereby
allowing appropriate management measures can be taken, as
necessary (Yao et al., 2019). This non-contact monitoring
method therefore improves the monitoring efficiency while
incorporating all measurement parameters related to the plant
growth conditions and different developmental stages (Liu
et al., 2021).

3.4 Identification of the origin of Chinese
herbal medicines

The quality of Chinese herbal medicines is affected by various
factors, including the soil type, climatic conditions, and altitude, all
of which directly affect crop growth and development, while also
influencing the accumulation of various chemical components.
Consequently, when grown in a different region, the same crop
can exhibit obviously different physical characteristics or
pharmacodynamic components. Although traditional quality
assessment methods rely on chemical analysis and sensory
testing, these methods are less efficient and do not fully reflect
the internal quality differences between herbs. Compared with
traditional biochemical experiments, HSI technology
demonstrates the unique advantage of analyzing the quality
differences between Chinese herbs from different origins. More
specifically, it can be used to perform a non-destructive, rapid,
and multi-dimensional quality assessment of herbs and reveal their
quality differences by analyzing the spectral characteristics
associated with different growing environments. In this context,
some studies have shown that significant differences exist between
the active ingredient contents of Chinese herbs grown under
different soil conditions, which can be associated with varying
nutrient compositions and pH values (Chen et al., 2020). For
example, in the pH 6–7 range, honeysuckle plants exhibit the
highest nutrient absorption efficiency, which is favorable for the
production of their active ingredient, namely, chlorogenic acid. In
addition, climatic factors, such as temperature and humidity, also
affect the growth of herbal medicines. For instance, the growth of
Atractylodes macrocephala requires a sufficient supply of water,
wherein a moist but well-drained environment ensures normal
growth its tuberous roots. (Cao et al., 2024). Indeed, in-depth
investigations into the effects of different growth environments
on the quality of Chinese herbal medicines not only helps
optimize the planting conditions, but it also provides an
important reference for product quality control.

In recent years, the applicability of hyperspectroscopy in origin
classification has been demonstrated (Table 4). For example, HSI has
been employed to classify the geographic origins of licorice, wherein
significant differences were detected in the component distributions
between the investigated locations (Zhang Hui et al., 2024). In
addition, Salvia miltiorrhiza, which is widely used in the

Frontiers in Chemistry frontiersin.org10

You et al. 10.3389/fchem.2025.1620154

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1620154


TABLE 4 Examples of hyperspectral imaging techniques for origin identification.

No. Varieties identified Performance parameters References

1 Lily Spectral range: 900–1700 nm
Spectral resolution: 8 nm

Zhao et al. (2024)

2 Saffron Crocus Spectral range: 400–1000 nm
Spectral resolution:3 nm
Spectral bands:204

Kiani, Yazdanpanah, and Feizy, (2023)

3 Polygonatum Cyrtonema Spectral range: 410–990 nm
950–2500 nm
Spectral resolution: 6 nm
Spectral bands:396

Zhang et al. (2023b)

4 Tiegun Yam Spectral range: 410–990 nm
950–2500 nm
Spectral bands:396

Zhang et al. (2023c)

5 Poria Cocos Spectral range: 410–990 nm
950–2500 nm

Sun et al. (2023)

6 Wolfberry Spectral range: 400–10000 nm
Spectral bands:125

Hao et al. (2022a)

7 Gardeniae Fructus Spectral range: 410–990 nm
950–2500 nm

Zhou et al. (2022b)

8 Radix Astragali Spectral range: 400–1000 nm
900–1700 nm

Xiao et al. (2020)

9 Angelica dahurica Spectral range: 900–1700 nm
Spectral resolution: 4 nm

Xu et al. (2019)

10 Hangbaiju Spectral range: 400–900 nm
900–2500 nm
Spectral resolution: 5 nm

Long et al. (2023)

11 Wolfberry Spectral range: 400–1000 nm
Spectral resolution:2.8 nm
Spectral bands:125

Hao et al. (2022b)

12 Chrysanthemum Spectral range: 900–1700 nm Cai et al. (2023a)

13 Wolfberry Spectral range: 400–1000 nm
900–1700 nm
Spectral bands:384

Cui et al. (2022)

14 Gentiana Spectral range: 400–1000 nm
Spectral resolution: 8 nm

Li et al. (2024a)

15 Cinnamon Spectral range: 900–1700 nm
Spectral bands:159

Cruz-Tirado et al. (2023)

16 Hazelnut Spectral range: 1350–2500 nm
Spectral resolution: 16 nm

Torres-Cobos et al. (2025)

17 Gastrodia elata Blume Spectral range: 400–500 nm
Spectral resolution: 8 nm

Liu et al. (2024c)

18 Notoginseng Spectral range: 30-680cm-1

Spectral resolution:2cm-1

Gu et al. (2024)

19 Specialty yam Spectral range: 400–1000 nm
Spectral resolution: 4 nm

Gao et al. (2024)

20 Tangerine peel Spectral range: 900–1700 nm
Spectral bands:228

Pan et al. (2022)

21 Saffron Spectral range: 400–950 nm Hashemi-Nasab Parastar, (2022)

22 Fritillaria Spectral range: 900–1700 nm
Spectral resolution: 5 nm

Kabir et al. (2022)

23 Radix Spectral range: 400–1000 nm
900–1700 nm

Cai et al. (2023b)
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treatment of cardiovascular diseases, exhibits significant differences
in its active ingredients (e.g., salvianolic acid and danshenin)
depending on its growth location. The application of
hyperspectral technology to analyze Salvia miltiorrhiza samples
demonstrated that different origins led to significant
characteristic differences in the resulting spectral features of the
samples. By extracting these spectral features at specific wavelengths
and combining them with chemometric modeling, the origin of
Salvia divinorum could be quickly distinguished, and its active
ingredient content could be accurately predicted (Dai et al.,
2024). Moreover, the hyperspectral technique has been combined
with PCA and a partial minimization squares regression model to
detect different parts of Scutellaria baicalensis, while feature band
analysis has been used to reveal the differences in the flavonoid
contents depending on the sample origin (Xiao et al., 2020).
Furthermore, considering the importance of the saponin content
of ginseng in determining its efficacy, quantitative analysis of these
components can be used to effectively distinguish between samples
of different origins owing to differences in the growth environment
and climate, among other conditions. Consequently, spectroscopic
data and chemometrics revealed that the absorption peaks of
ginseng at different wavelengths varied significantly, thereby
allowing clear identification of the sample origin along with a
corresponding quality assessment (Ping et al., 2024).

3.5 Detection in the processing of Chinese
herbal medicines

Following production, the processing of Chinese herbal
medicines can prolong their storage times and prevent
deterioration, in addition to enhancing the efficacy of the drug
and moderating its potency. Processing is also conducive to
compounding and mixing depending on the desired preparation.
At present, HSI technology is mainly used for quality control during
processing, and for confirming the compositions of the
finished products.

3.5.1 Quality control during processing
During the processing of Chinese herbal medicines, quality

control is important to ensure the safety and effectiveness of the

final product. For example, sulfur fumigation is often employed to
process herbs to change their brightness, speed up drying, and
prevent the growth of molds, bacteria, and other microorganisms;
however, excessive sulfur fumigation will alter the active ingredients
of drugs and lead to excessive sulfur dioxide generation, which can
have a negative effect on human health. With this in mind,
hyperspectral technology can be used to detect sulfur dioxide
residues in the near-infrared range in sulfur-fumigated
Chuanbeimu and Chenpi specimens (He et al., 2017; Feng et al.,
2019; Qiu Guangjun et al., 2024). In addition, hyperspectral
technology can be used to monitor physical changes in Chinese
herbal medicines during processing, such as changes in the moisture
content and color, which directly affect the efficacy and storage
stability of the final product (Bhargava et al., 2024). By analyzing the
spectral data and known moisture contents of a large number of
samples over different wavelength ranges, a model based on
hyperspectral data and quality characteristics was established to
achieve the rapid assessment and real-time monitoring of moisture,
and to improve the final processing efficiency and product
consistency (Xue et al., 2021).

3.5.2 Quality assessment of processed products
Hyperspectral technology also has significant advantages for the

quality assessment of processed Chinese herbal medicine products.
Through the analysis of hyperspectral images, it is possible to
identify Chinese herbal medicines that are contaminated by
molds or insects. Notably, this approach overcomes the
limitations associated with traditional methods, including a poor
reproducibility, thereby providing accurate quality assessments for
herbal medicines and improving their safety profiles (Zuo et al.,
2023). For example, HSI has been used for the non-destructive
detection of honeysuckle aphids and molds in jujubes,
demonstrating a high accuracy and sensitivity (Wang et al.,
2019a; Wu et al., 2013). In addition, when combined with
machine learning algorithms, hyperspectral techniques have been
reported to detect the impurities present in complex samples of
processed herbal products (Manifold et al., 2021), and to assess the
contents and distributions of their impurities. For example,
researchers have fused hyperspectral and imaging data to
successfully detect the adulteration of Ganoderma lucidum spore
powder (Jiang et al., 2023a) and Panax ginseng powder (Zhang et al.,

TABLE 4 (Continued) Examples of hyperspectral imaging techniques for origin identification.

No. Varieties identified Performance parameters References

24 Peach and apricot kernels Spectral resolution: 16 nm Kajino et al. (2021)

25 Chrysanthemum Spectral range: 900–1700 nm
Spectral resolution: 5 nm

Wu et al. (2018)

26 Ginseng Spectral range: 900–1700 nm Cheng et al. (2024)

27 Auricularia Spectral resolution: 8 nm Yang et al. (2022)

28 New Zealand honey Spectral range: 400–1000 nm
Spectral resolution: 2.8 nm

Zhang and Abdulla, (2022)

29 Wolfberry fruits Spectral range: 400–1000 nm
Spectral resolution: 4.9 nm

Nirere et al. (2023)

30 Spore powder Spectral range: 900–1700 nm
Spectral bands:512

Jiang et al. (2023a)
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2022). Overall, the application of hyperspectral technology in the
processing of Chinese herbal medicines not only improves the
efficiency of quality control, but it also provides novel ideas and
methods for compositional analysis.

4 Challenges and prospects

To sum up, HSI has the advantages of being non-destructive,
fast, easy to operate, highly versatile, and providing multi-
dimensional data. Compared to other techniques such as Near-
Infrared Spectroscopy (NIR) and Raman Spectroscopy, HSI enables
in situ analysis of Chinese medicinal materials preserving sample
integrity and compositional distribution information, while
simultaneously providing both spectral and spatial dimensional
information, thus integrating a “data cube”. However, although
HSI technology shows good application prospects in this field,
previous research has mainly focused on simple identification
and prediction protocols for single herbs or components in a
laboratory environment. It is therefore necessary to develop large

databases of compounds and herbs to promote the application of
HSI technology on a large scale, and to ensure the safety and
standardization of Chinese herbal medicines at the source (Liu
et al., 2020).

A number of challenges are also associated with hyperspectral
technology (Figure 4). Firstly, this approach is less integrated than
other technologies because of the high data dimensions and
computational complexity. In addition, the resulting complexity
associated with data processing and feature extraction renders the
selection and optimization of algorithms critical. Furthermore, in
the context of practical applications, the huge number of species,
origins, and processing methods associated with Chinese herbal
medicines leads to wide-ranging spectral features. It is therefore
difficult to establish a unified standard; this is unaided by
imperfections in the spectral database and the testing process.
Moreover, an imbalance remains between the spatial and spectral
resolutions of hyperspectral sensors. Consequently, improving the
spatial resolution while maintaining a high spectral resolution is an
important research direction (Pan et al., 2024). Additionally, HSI
equipment is expensive, and the costs associated with its related

FIGURE 4
Limitations and trends associated with hyperspectral imaging systems.
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technologies are high. The spectral data processing and analysis
protocols are also extremely time-consuming. Finally, future studies
in this field should focus on reducing the costs associated with such
innovative technologies, in addition to improving the real-time
nature of spectral data acquisition and application to promote
the widespread application of HSI. Recently, emerging
technologies such as deep learning have been investigated to
improve the processing efficiency and accuracy of spectral
imaging data (Wang He et al., 2023).

5 Conclusion

This paper summarizes the application of HSI in the field of
traditional Chinese medicinal materials, mainly focusing on
species identification, origin classification, and component
detection. With the analysis process as the framework, it
elaborately describes the spectral data processing methods,
texture information extraction methods, and data fusion
strategies. It also analyzes a series of challenges faced by
intelligent monitoring of traditional Chinese medicine from
different perspectives. Given the significance of traditional
Chinese medicinal materials in the medical field, it is suggested
that future research in this area can further predict multiple
chemical components and their mutual synergistic effects,
promoting the transition of HSI from laboratory conditions to
large-scale applications.
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