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As an efficient and environmentally friendly photocatalyst, TiO2 has garnered
significant interest among researchers. However, the rapid recombination of
photogenerated carriers leads to the inhibition of its photocatalytic activity.
Fluorine modification has been proven to be an effective method to improve
the photocatalytic performance of TiO2, leading to a multitude of research
reports on this subject. Surface fluorine adsorption or lattice fluorine doping
can deftly modulate the surface chemical attributes and electronic configuration
of the TiO2 photocatalyst, thereby amplifying its functional performance. The role
of fluorine atoms coordinatedwith different number titanium atoms (terminal Ti1-
F, bridging Ti2-F and Ti3-F) are also discussed. This paper provides a minireview of
various aspects of fluorine-modified TiO2, including its classification (surface-
adsorbed fluorination, lattice-doped fluorination and Tix-F) and characterization
techniques (X-ray photoelectron spectroscopy and solid-state nuclear magnetic
resonance). Finally, this treatise elucidates the mechanistic impact of fluorine
modification on the photocatalytic hydrogen production performance of TiO2.
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1 Introduction

Titanium dioxide (TiO2) is one of the most extensively utilized photocatalysts due to its
excellent stability, cost-effectiveness and eco-friendliness (Nishiyama et al., 2021; Bhom and
Isa, 2024; Wen et al., 2024). The low efficiency of photogenerated carrier separation and
transport limits the wide application of TiO2 (Cheng et al., 2024; Zhao et al., 2025). To
enhance the photocatalytic activity of TiO2, numerous modification studies have been
undertaken, including noble metal deposition (Li et al., 2021), doping (Zhang et al., 2019)
and heterojunction construction (Ma et al., 2019). A pivotal discovery made by Lai et al., in
1993 revealed that adjusting the ratio of hydrofluoric acid (HF) to fluoride ion in fluorinated
reaction solutions could alter the band edge potential of TiO2 (Lai et al., 1993). This finding
established fluorine modification as an effective strategy to improve the photocatalytic
performance of TiO2 due to enhanced surface acidity, stronger adsorption of reactant
molecules, additional Ti3+ self-doping, and stabilized {001} facets (Yang et al., 2008). After
substituting O atoms or surface hydroxyl groups, fluorine introduced into TiO2 is usually
classified as surface-adsorbed fluorine or lattice-doped fluorine (Wu and Schmuki, 2023).
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Moreover, according to the different number of titanium atoms
coordinated with fluorine, Wang et al. and Hu et al. proposed that
the F atoms doped in fluorinated TiO2 system by a variety of
chemical bonds: terminal Ti1-F bond (F1s), bridging fluorine F2c
(Ti2-F) and 3-coordinated fluorine F3c (Ti3-F), where the x in Tix-F
represents the number of titanium atoms bonded to this fluorine
atom (Wang et al., 2013). However, due to the complex types of Ti-F
bonds in fluorinated TiO2, the mechanism of carrier separation and
transport is unclear, the precise control of Ti-F bonds is difficult, the
mechanism of fluorination reaction is not clear, and the
understanding of the structure-property relationship is
insufficient. There is an urgent need for follow-up and
cooperation in related theoretical research. This minireview aims
to summarize the impact of fluorine modification on the
photocatalytic hydrogen production performance of TiO2

through a comprehensive review of relevant literature. The
discussion will encompass aspects such as classification of TiO2

fluorination, characterization of fluorine species, and effect of
fluorine on the photocatalytic hydrogen generation
performance of TiO2.

2 Classification of TiO2 fluorination

The fluorination route influences the physicochemical
properties and photocatalytic performance of F-TiO2. Generally,
the modification of TiO2 with fluorine encompasses both surface-
adsorbed fluorination and lattice-doped fluorination (Zulfiqar et al.,
2021). Surface-adsorbed fluorine is typically achieved through post-
treatment fluorination via a ligand exchange between F− ions and the
surface functional groups of TiO2. The realization of fluorine doping
in the internal phase lattice of materials often requires the
introduction of fluorine in the preparation process of TiO2 for
in-situ synthesis. Herein, we will briefly describe the fluorination
principle and fluorine species of these fluorinationmethod, as well as
the detailed structures and descriptions of corresponding examples.

2.1 Surface-adsorbed fluorination

Surface fluorinated TiO2 material can be easily obtained by
simple ligand exchange between F- and the surface hydroxyl group
(OH−) through exposing TiO2 photocatalyst to a mild aqueous
solution containing F− (NaF, NH4F, ILs-F) (Park and Choi, 2004;
Wang et al., 2008; Lin et al., 2020). After being immersed in NaF
aqueous solution, the coordination unsaturated surface Ti4+ ions in
TiO2 will combine with water to form various hydrates, and the
chemisorbed water molecules will dissociate to ≡Ti-OH to produce
surface hydroxyl. Ligand exchange occurs between F− and ≡Ti-OH
to complete the adsorption of fluorine on the TiO2 surface to form
Ti1-F (Park and Choi, 2004). Compared with simple exchange ≡Ti-
OH, etching TiO2 surface with HF can change the surface properties
more strongly (Wang et al., 2008). When low concentration HF is
etched, F− not only replaces the end hydroxy-group on the surface
but also the lattice oxygen. However, F− does not penetrate into the
interior of the TiO2 lattice, and the substitution of lattice oxygen
only occurs on the surface (Wang et al., 2008). Some studies also
believe that during HF etching, HF dissociates and adsorbates on the

clean TiO2 surface during surface fluoridation. When the adsorption
site on the surface is completely occupied by fluorine, the exposed
hydroxyl group on the surface will be replaced by fluorine, and then
a completely fluorinated surface covered by -TiOF2 will be formed.
Under the action of high concentration HF, These -TiOF2 will
further react with HF to produce oxygen vacancies, as shown in
Figures 1a–d (Wang et al., 2011). Surface fluorinated TiO2 prepared
by post-treatment in liquid phase method often contains both
surface adsorbing and inner surface phase doping fluorine.
Researchers should comprehensively consider the fluorination
effect and better understand the influence of inner surface phase
doping fluorine in photocatalyst and distinguish it from the
influence of surface adsorbing fluorine.

2.2 Lattice-doped fluorination

The radius of F− (0.133 nm) is close to that of O2- (0.132 nm),
and F− has a strong bonding ability with titanium atoms, so it is
easier for F− to stably dope TiO2 than other elements (Wardman,
1989). As mentioned in the previous section, when TiO2 is corroded
by HF, lattice fluorine doping can be introduced while surface
fluorine adsorption is achieved, but such lattice fluorine doping
only exists in a few atomic layers on the surface and cannot enter the
material phase. The realization of fluorine doping in the internal
phase lattice of materials often requires the introduction of fluorine
in the preparation process of TiO2 for in-situ synthesis. As the
commonly used synthesis method, sol-gel method usually involves
the nucleophilic reaction of fluorine ions in the hydrolysis process of
titanium salts, and then is included in the material phase.

As shown in Figures 1e,f, according to the different number of
titanium atoms coordinated with fluorine, Wang et al. proposed that
fluorine exists in F-TiO2 in three forms: surface Ti1-F bond formed
through replacing OH− by F−; 2-bridged fluorine F2c (Ti2-F) and 3-
coordinated fluorine F3c(Ti3-F) by substituting F atoms for O atoms
(Wang et al., 2013). Due to possessing large number of lattice F
atoms which could be converted into the lattice F3c atoms in the
bulk TiO2 phase during the preparation processes, TiOF2 and
HTiOF3 are reported to be the promising intermediates to
synthesis anatase TiO2 (Liu et al., 2012). Hu et al. also reported
the characterization of fluorine species such as Ti1-F, Ti2-F and Ti3-F
in TiOF2/TiO2 composites by solid-state nuclear magnetism (Hu
et al., 2020a).

3 Characterization of fluorine in TiO2

In general, X-ray photoelectron spectroscopy (XPS) and solid-
state nuclear magnetic resonance (NMR) are used to characterize
fluorine-modified TiO2 to determine the presence of
fluorine species.

3.1 Analysis of fluorine species by X-ray
photoelectron spectroscopy (XPS)

There are usually two F1s peaks in the XPS spectrum of
fluorinated TiO2 materials (Figure 1g), respectively in the range
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of 684.4–685.3eV (attributed to the physical adsorption of Ti1-F or
the presence of TiOF2-like F (Ti2-F) in the material). And in the
687.8–688.6eV range (attributed to F−, which is substituted for O2−

into the lattice by either alone or co-doped with other elements (Yu
et al., 2002). As shown in Figure 1h, Li et al. observed in the F1s XPS
spectra of typical FT powder and pure TiOF2 prepared by treating

TiO2 with HF, that pure TiOF2 had a symmetric peak at 685.3eV,
attributed to the Ti2-F atoms in TiOF2, and the peak at 687.8eV was
attributed to the doped fluorine atoms in TiO2 (Li et al., 2005). Yang
et al. also observed a symmetry peak at 684.5eV on F1s XPS of
anatase single crystal synthesized by TiF4 and HF, which could not
be accurately attributed to either TiOF2 (Ti2-F) or surface adsorbed

FIGURE 1
DFT (density functional theory) calculated reaction energies and structures for different stages of HF interaction with single crystal anatase TiO2(101)
(left) and (001) (right) surfaces: (a) Clean surfaces; (b) full HF-covered surfaces; (c) complete fluorinated surfaces; (d) etched surfaces; (e) fluorinated
surface with lattice F2c atoms; (f) fluorinated surface with lattice F3c atoms. All structures are optimized structures (Wang et al., 2011; Wang et al., 2013).
XPS spectra of (g) F1s spectra of F-doped TiO2 (Yu et al., 2002) and (h) F1s spectra of FT powder and pure TiOF2 (Li et al., 2005); (i)

19F NMR spectra of
TiOF2/TiO2 (Hu et al., 2020a).
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F (Ti1-F) (Yang et al., 2008). Wang et al. believe that the binding
energy of F1s is related to the coordination state of F-Ti, and the peak
near 687.6eV on the XPS spectrum of F1s can be attributed to the 3-
coordination F (Ti3-F). However, since the fluorinated surface of
Ti2-F is more stable, and the test depth of XPS is generally about
5–10 nm, the binding energy of F1s can be classified into 3 Ti3-F. The
surface of TiO2 fluoride synthesized by hydrothermal or sol-gel
method is often unable to detect the peak near 687.6eV, but after Ti3-
F is exposed to the sample surface by NaOH treatment, the signal of
Ti3-F near 687.6eV can be detected by XPS. Therefore, considering
the fuzzy allocation of F1s signals in XPS and the detection limit of
XPS in the bulk phase, additional characterization techniques are
needed to clearly distinguish fluorine species (Wang et al., 2013).

3.2 Nuclear magnetic resonance (NMR) to
study the Ti-F coordination

Because of its high natural abundance, high sensitivity and
wide chemical shift range, 19F NMR is suitable for qualitative
analysis of fluorine-containing compounds. Reyes-Garcia et al.
studied the Ti-F coordination through solid-state 19F NMR
testing, and they found TiO5F species in fluorine and boron
co-doped TiO2 (Reyes-Garcia et al., 2007). After this, 19F NMR
was used to study fluorine in F-doped TiO2(Hu et al., 2020a;
Wang et al., 2022) and TiOF2/TiO2 mixtures (Hu et al., 2020a).
Koketsu et al. tested solid 19F NMR to show that in sample
Ti0.78□0.22O1.12F0.4(OH)0.48, fluoride ions near the vacancy were in
three different chemical environments according to the
coordination relationship between titanium atoms and vacancy
(□): Ti3-F, Ti2□1-F and Ti1□2-F (Koketsu et al., 2017). The
coordination environment of fluorine in the bulk phase can
significantly affect the photocatalytic performance of TiO2.
Wang et al. reported that Ti3-F with high 1s binding energy
contribute to the enhancement of visible light activity of TiO2

fluoride. The introduction of such F leads to the formation of
Ti3+, shrinks the band gap, and the presence of Ti3-F enhances the
adsorption of hydroxyl. The photocatalytic activity was further
improved (Wang et al., 2013). Subsequently, Hu et al. used NMR
to study the Ti-F coordination of the sample TiOF2/TiO2 (Hu
et al., 2020a). As shown in Figure 1i, multiple resonance signals at
~ 15ppm can be attributed to the Ti2-F environment in the TiOF2
lattice, and the resonance at −84ppm can be attributed to the bulk
phase Ti3-F. It was further confirmed that F was successfully
incorporated into TiO2. After light treatment, the formation of a
new signal at −151 ppm was attributed to the Ti1-F environment,
indicating that the doped fluorine transformed from Ti2-F to Ti1-
F and generated Ti3+ at the interface of TiOF2 and TiO2, which
significantly enhanced the charge transfer efficiency in TiOF2/
TiO2, thereby improving the photocatalytic performance.
Therefore, according to the solid 19F NMR test results,
fluorine atoms coordinate with different numbers of titanium
atoms can be distinguished, but this research needs further
exploration.

Furthermore, more comprehensive sample information can be
provided by the combination of other technologies, such as electron
paramagnetic resonance spectroscopy (Hu et al., 2020b) and
electron energy loss spectroscopy (Wang et al., 2022).

4 Effect of fluorine on the
photocatalytic hydrogen generation
performance of TiO2

In the past years, fluorine-modified TiO2 has attracted attention
in the field of photocatalytic hydrogen production (Wang et al.,
2019; Bhom and Isa, 2024), which consists of the following steps:
light absorption, charge separation and transport, and redox
reactions at the photocatalyst’s surface.

4.1 Light absorption

Fluorinated TiO2 photocatalysts show stronger UV-visible light
adsorption with a red shift (Figure 2a) were developed by Yu et al.
through hydrolysis of titanium tetraisopropoxide in a mixed
NH4F-H2O solution (Yu et al., 2002; Chen et al., 2022; Hou
et al., 2024). The reduction of Ti3+ from Ti4+ by charge
compensation of F doping form a donor level between the band
gaps of TiO2 may benefit to the enhanced light absorption
(Figure 2b). In addition, surface fluoridation also produces some
oxygen vacancies, resulting in visible-induced photocatalytic
activity. Le et al. used the thermal shock method to fluoridate
TiO2 P25 powder at different temperatures, and the fluoridated
sample produced oxygen vacancy at 400°C–600°C, which was
confirmed by XPS spectroscopy as the formation of TiO2 surface
fluoridation (Khoa Le et al., 2012).

Zhao et al. concluded that the surface lattice F3c atoms (Ti3-F)
with higher 1s binding energy are identified to be the origin of visible
light activity by analyzing the 1s CLSs of various types of F atoms in
the fluorinated TiO2 (Wang et al., 2013). Further analyzing the
electronic structures of the fluorinated TiO2 using semi-local density
functional theory and non-local hybrid density functional theory
calculations demonstrates that the introduction of the 3-coordinated
surface F atoms leads to the formation of Ti3+ ions in the sub-surface,
which is the cause for the bandgap shrinking, increasing the visible-
light activity. However, the photocatalytic efficiency of fluorinated
TiO2 for water splitting is limited due to the limited absorption
under visible light irradiation and the high recombination rate of
photogenerated electron-hole pairs (Yu et al., 2010; Li et al., 2020).
Developing a method to synthesize F-TiO2 materials that with
considerable visible-light photocatalytic activity is still a challenge.

4.2 Carriers separation and transport

Several investigations have been reported for increasing the
efficiency of carriers separation/transport in TiO2 based materials
through fluorine modified. Surface fluorination of TiO2 can
significantly change the physicochemical properties and structure
of the material surface: increasing the surface electronegativity,
promoting the separation and transfer of surface charge, and
inhibiting the recombination of electron hole pairs; promoting
the formation of hydroxyl free radical and other active reactive
substances (Yuan et al., 2025). The oxygen vacancy defects and Ti3+

centers formed on the surface of TiO2 during fluorination process
also favor the separation of charge carriers (electrons and holes) and
can trap the holes (Wang et al., 2021).
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The surface charge separation can be further enhanced by
loading Pt, Ag, Pd and other precious metals as cocatalyst on the
fluorinated TiO2 (Vaiano et al., 2018; Díaz-Sánchez et al., 2021).
Yu et al. reported that the F ions on the surface of TiO2 can greatly
decrease the recombination rate of photogenerated carriers by
acting as an electron-trapping sites to trap the photogenerated
electrons due to its strong electronegativity and then transfer
electrons to the Pt loaded (Yu et al., 2010). As shown in
Figure 2c, our previous work further proved that the surface F
anions with negative electric will attract the holes to migrate to the
surface of TiO2 and inhibit the migration of photogenerated
electrons, which further prevents electron-hole recombination
(Hu et al., 2020b). Besides, the introduction of surface fluorine
provides anchoring sites for Pt nanoparticles and strengthens the
interaction between Pt nanoparticles and the TiO2 substrate
resulting in significantly improved catalytic performance (Ji

et al., 2019). Many recent works focus on the loading of metal
single atoms (SAs) on TiO2 as cocatalyst for photocatalytic
reactions (Hejazi et al., 2020; Cha et al., 2022). For example,
Wu et al. reported that both surface and lattice Ti3+ suitable for
Pt anchoring and charge compensation can be generated in
pristine TiO2-F nanosheets with surface terminal F species.
After surface F species are removed by NaOH treatment, Pt
single atoms (SAs) were stabilized by lattice F (Figure 2d), and
shows much higher photocatalytic hydrogen generation efficiency
than Pt SAs on TiO2-F (Figure 2e (Wu et al., 2023; Wu and
Schmuki, 2023). Recently, combined with the surface stabilizing
effect of the as-formed F-C/F-Ti bonds, single-atom catalysts (Pd,
Ir, Pt) on TiOxNy nanorods surface via in situ fluoride ion etching
for hydrogen evolution could be obtained (Zeng et al., 2025).

The crystallinity of fluorine-doped TiO2 could be improved
upon F− doping and then benefit to the higher bulk electronic

FIGURE 2
(a) UV-visible absorption spectra of Degussa P25 and the F-doped TiO2; (b) schematic energy level diagram for Ti3+ and charge-carrier dynamics in
F-doped TiO2 (Yu et al., 2002); (c) proposed mechanism for the photocatalytic properties of TM-S (Hu et al., 2020b); (d) structure models and (e)
normalized photocatalytic H2 evolution rate of Pt SAs/TiO2-F and Pt SAs/TiO2-OH (Wu and Schmuki, 2023).
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conductivity, which is responsible for enhanced water splitting
(Fang et al., 2014). Next, Hu et al. simulated the geometric
structures and calculated the deformation density of the Ti2-F,
Ti3-F, and Ti1-F sites, respectively. The neighboring Ti atoms of
Ti1-F sites got more electrons, compared with those on theTi2-F or
Ti3-F sites. The generation of terminal Ti1-F in TiOF2/TiO2 moved
more electrons toward the terminal F atom resulting in the
acceleration of the interfacial charge transfer (Hu et al., 2020b).

5 Conclusion

The current minireview focuses on the investigation of the
surface-adsorbed fluorination and lattice-doped fluorination for
F-TiO2 nanomaterials, and the role of fluorine in photocatalytic
water splitting. According to the different number of titanium
atoms coordinated with fluorine, the F atoms introduced to
fluorinated TiO2 system are classified into terminal Ti1-F,
bridging Ti2-F and Ti3-F. In conclusion, both surface-adsorbed
fluorination and lattice-doped fluorination are effective measures
to improve the photocatalytic performance. Fluorine ions on the
surface of TiO2 can significantly change the physicochemical
properties and structure of the material surface: increasing the
surface electronegativity, promoting the separation and transfer
of surface charge. Especially, the surface Ti3-F is identified to be
the origin of visible light activity. The surface lattice Ti2-F are
beneficial to stabilize Pt SAs and then bring high photocatalytic
efficiency. Defects such as surface Ti3+ and oxygen vacancy
defects formed during fluorination process could change the
local electronic structure and improve the photocatalytic
performance. Ti3+ defects introduced by lattice-doped
fluorination can regulate the band structure of TiO2 and
inhibit photogenerated carrier recombination. The generation
of terminal Ti1–F moved more electrons toward the terminal F
atom resulting in the acceleration of the interfacial
charge transfer.

Although great progress has been made in the role of fluorine in
photocatalysis, there are still many problems that need to be fully
studied further. For example, due to the varied fluorine species in
fluorine-modified TiO2, there are challenges in the precise
regulation of doped fluorine species, and the mechanism of
action of various doped fluorine species on the improvement of
photocatalytic performance at the atomic scale also needs to
be improved.
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