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Introduction: Psoriasis is a chronic immune-mediated inflammatory skin disease.
Xiaoyin Jiedu Decoction (XYJDY) is a traditional Chinese medicinal formula that
has demonstrated significant clinical efficacy in alleviating psoriatic symptoms;
however, its underlying pharmacological mechanisms remain unclear.

Methods:We employed network pharmacology, machine learning–based target
screening, and functional enrichment to identify key targets and pathways.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) were
used to validate gene expression. An IL-17A–induced HaCaT cell model was
established for in vitro validation.

Results: AKR1B10 was identified as the core therapeutic target of XYJDY in
psoriasis. It was markedly upregulated in psoriatic skin lesions, primarily
enriched in keratinocytes, and its expression demonstrated positive
correlations with multiple pro-inflammatory immune cell subsets. In vitro
experiments showed that XYJDY-medicated serum significantly
downregulated AKR1B10 expression in IL–17A–stimulated HaCaT cells.

Conclusion: This study reveals that the multi-component formula XYJDY exerts
anti-psoriatic effects through a multi-target synergistic mechanism, in which
AKR1B10 is a potential core target. These findings provide a theoretical
foundation for further exploration of the molecular mechanisms underlying
the efficacy of XYJDY in psoriasis treatment.
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1 Introduction

Psoriasis is a chronic, immune-mediated inflammatory skin disease marked by genetic
predisposition and autoimmune dysregulation. It affects approximately 125 million people
globally, with 80%–90% of cases presenting as plaque-type psoriasis (Armstrong and Read,
2020). Beyond its cutaneous manifestations, psoriasis is strongly linked to a range of
systemic comorbidities, including inflammatory arthritis, cardiometabolic disorders,
mental health conditions, and gastrointestinal diseases (Takeshita et al., 2017).
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Traditional Chinese Medicine (TCM), as a vital component of
complementary and alternative medicine, has shown promising
adjunctive effects in the treatment of various chronic conditions
(L. Zhao et al., 2023). From the TCM perspective, the core
pathogenesis of psoriasis is attributed to heat-toxicity in Xuefen.
Xiaoyin Jiedu Yin (XYJDY), a classical herbal formula, consists of
Buffalo Horn, Japanese Honeysuckle Flower Bud, Indigowoad Root,
Bistort Rhizome, Tree Peony Root–bark, Adhesive Rehmannia Root
Tuber, Red Paeoniae Trichocarpae, Redroot Gromwell, Chinese
Manyleaf Paris Rhizome, Lightyellow Sophra Root, Densefruit
Pittany Root-bark, Glabrous Greenbrier Rhizome, and Liquorice
Root. The formulation is traditionally used to clear heat and
eliminate toxins, cool the blood, and resolve blood stasis. Its
therapeutic efficacy has been consistently validated through over
30 years of clinical application.

The rapid advancements in bioinformatics and network
pharmacology have revolutionized research paradigms in TCM,
offering novel insights into complex disease mechanisms. In this
study, we developed a comprehensive, multidimensional integrative
analysis framework to systematically elucidate the molecular
mechanisms underlying the therapeutic effects of XYJDY in
psoriasis. We first curated psoriasis-related genetic targets from
multiple reputable bioinformatics databases. Active compounds
within XYJDY were identified through network pharmacology
techniques, and shared targets between the decoction and
psoriasis were subjected to functional annotation and pathway
enrichment analyses. Machine learning algorithms were applied
to rank potential therapeutic targets to refine our findings,
ultimately highlighting aldo-keto reductase family 1 member B10
(AKR1B10) as a pivotal molecular target.

Building upon these insights, we conducted a comprehensive
analysis of immune microenvironmental infiltration, integrating
single-cell RNA sequencing (scRNA-seq) and spatial
transcriptomics (ST) technologies to validate the expression
patterns and spatial localization of AKR1B10 in psoriasis-
associated tissues across multiple biological layers. Furthermore,
an IL-17A-induced psoriasiform inflammation model in HaCaT
keratinocytes demonstrated that XYJDY markedly suppressed
AKR1B10 expression, reinforcing its candidacy as a pivotal
therapeutic target in XYJDY-mediated treatment of psoriasis.

In summary, this study employed an integrative technological
approach to delineate the key targets, and underlying mechanisms of
XYJDY in psoriasis therapy, thereby providing compelling evidence
for the multi-target regulatory paradigm of traditional Chinese
medicine in complex disease management.

2 Materials and methods

2.1 Active components and targets of XYJDY

Thirteen herbal constituents of XYJDY were systematically
analyzed using the Traditional Chinese Medicines Network
Pharmacology Analysis System (TCMNPAS), an integrated
platform encompassing five widely utilized databases: HIT
(Herbal Ingredient’s Targets), TCMID (Traditional Chinese
Medicines Integrated Database), TCMSP (Traditional Chinese
Medicines Systems Pharmacology Database), STITCH, and a

custom-built database (Liu et al., 2024). Active compounds and
their associated targets were identified based on the following
screening parameters: a quantitative estimate of drug-likeness
(QED) ≥ 0.2, a drug–target association score ≥400, and a
compound–target significance threshold of P < 0.05.

2.2 Psoriasis-related disease targets

Microarray datasets associated with psoriasis were retrieved
from the GEO public database (https://www.ncbi.nlm.nih.gov/
geo/), with non-human gene chips excluded. Datasets GSE78097,
GSE182740, and GSE226244 were selected as the training cohort,
and GSE201827 was used as an independent validation set. Gene
annotation was performed using Perl, converting probe-level data
into gene-level expression matrices based on the corresponding
platform annotation files. The combined training data were
normalized and analyzed for differential gene expression using
the “limma” package in R (version 4.0.2). Differentially expressed
genes (DEGs) were identified with thresholds set at P < 0.05 and
|logFC| > 0.5.

To complement this analysis, psoriasis-related genes were
retrieved by searching the keyword “psoriasis” in the GeneCards,
OMIM, and DisGeNET databases. The intersection of DEGs and
psoriasis-related genes was visualized using Venny 2.1.0, resulting in
the identification of candidate psoriasis-specific disease targets.

2.3 Intersection genes of XYJDY and
psoriasis and construction of the XYJDY
drug–active ingredient–target network

The targets of XYJDY were overlapped with psoriasis-associated
targets, and a Venn diagram was constructed in Venny 2.1.0 to
visualize and pinpoint the shared targets through which XYJDYmay
exert therapeutic effects in psoriasis. Subsequently, data on XYJDY’s
constituent herbs, their bioactive compounds, and corresponding
targets were imported into Cytoscape 3.9.1 to assemble the XYJDY
drug–active ingredient–target network. A topological analysis of this
network was then performed to pinpoint the key bioactive
compounds responsible for XYJDY’s therapeutic effects on psoriasis.

2.4 GO and KEGG enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed on
the intersecting target genes using the “clusterProfiler” package in R.
Enrichment results with a P-value <0.05 were deemed statistically
significant.

2.5 Machine learning-based identification of
key targets and external dataset validation

Three machine-learning algorithms were applied to the
intersecting gene set to identify key therapeutic targets. The least
absolute shrinkage and selection operator (LASSO) is a linear
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regression technique incorporating L1 regularization,
simultaneously performing variable selection and regularization
(Kang et al., 2021). By shrinking regression coefficients, LASSO
achieves dimensionality reduction and model optimization. The
support vector machine–recursive feature elimination (SVM-RFE)
algorithm ranks genes based on their importance using a support
vector machine and recursively eliminates features to identify the
most informative subset—defined as the set with the lowest
classification error (Li et al., 2024). These are considered the
SVM-RFE-derived feature genes. The random forest (RF)
algorithm, renowned for its robustness in analyzing high-
dimensional data, integrates multiple decision trees to enhance
predictive accuracy and model stability (X. Zhao et al., 2025).
The gene sets selected by these three machine learning
approaches are not only valuable for constructing high-
performance classification or predictive models but also offer
important insights into the molecular mechanisms of disease and
the identification of therapeutic targets. As such, they represent
powerful tools for biomarker discovery and functional genomics
research. Therefore, this study performed an intersection analysis of
the feature genes predicted by the three models, and the overlapping
genes were regarded as the key targets of XYJDY in the treatment
of psoriasis.

The validation dataset GSE201827 was used to verify the
differential expression of the key targets between the normal and
psoriasis groups. Receiver Operating Characteristic (ROC) curves
were plotted for the key target genes, and those with an Area Under
the Curve (AUC) greater than 0.7 and P < 0.05 were selected as the
final key targets.

2.6 CIBERSORT and immune
infiltration analysis

In this study, we utilized the CIBERSORT algorithm to estimate
the relative abundance of immune cell subsets across three psoriasis-
related training datasets. Spearman correlation analysis was
performed to evaluate the associations between the therapeutic
target genes of XYJDY and the infiltration levels of specific
immune cell types. Correlations with a P-value <0.05 were
deemed statistically significant. Data visualization was carried out
using the “ggplot2” package in R.

2.7 Processing of scRNA-seq data

The scRNA-seq datasets analyzed in this study were retrieved
from the GEO database (accession numbers: GSE220116 and
GSE230842), each comprising both healthy and psoriatic skin
samples. Data processing and merging were performed using R
software (version 1.4.2) in conjunction with the “Seurat” package,
applying the merge function to integrate datasets. Genes with low
expression levels were filtered out, and the resulting dataset was
normalized. Principal component analysis (PCA) and uniform
manifold approximation and projection (UMAP) were then
conducted for dimensionality reduction and visualization. Cell
type annotation was performed using the “SingleR” package, and
DEGs across cell clusters were identified using the FindAllMarkers

function. Final cell type identities were determined based on
canonical marker genes.

2.8 Processing and analysis of ST data

Spatial transcriptomics data (GSE251950) were obtained from
the GEO database. In R (version 1.4.2), raw gene expression matrices
were imported using the Read10X function, and spatial coordinate
metadata were integrated using Read10X_Image. Separate “Seurat”
objects were constructed for each individual sample. To minimize
technical variability and ensure consistency across samples,
normalization was performed using the SCTransform algorithm,
resulting in a harmonized dataset for downstream analysis.
Dimensionality reduction was achieved through PCA, followed
by cell clustering based on UMAP and the shared nearest
neighbor (SNN) modularity optimization algorithm. DEGs
between clusters were identified using the FindAllMarkers
function with thresholds of |log2FC| > 1 and adjusted P < 0.05.
Group-level expression differences between psoriasis and control
samples were quantified using pseudobulk analysis. The spatial
expression patterns of key genes were visualized with the
SpatialFeaturePlot function.

2.9 Experiments

2.9.1 Animals
Twenty male specific pathogen-free (SPF) Sprague-Dawley (SD)

rats (six to eight weeks old) were obtained from Speifu (Beijing)
Biotechnology Co., Ltd. (Beijing, China, Approval No. SYXK
(Beijing) 2021-0017). The animals were maintained under
standard laboratory conditions, including a controlled
temperature of 22°C–26°C, relative humidity of 40%–70%, and a
12-h light/dark cycle. Rats were provided with unrestricted access to
food and water. All animals were acclimatized for 1 week prior to
oral gavage and were used to prepare XYJDY-containing serum.
Animal welfare and experimental procedures were carried out in
strict accordance with the guidelines approved by the Animal Ethics
Committee of the China Academy of Chinese Medical Sciences
(Ethical Approval No. ERCCACMS21-2410-02).

2.9.2 Traditional Chinese medicine
The Chinese herbal formula XYJDY, administered at a dosage of

34 g per packet twice daily, comprises 13 medicinal herbs, as detailed
in Table 1. The formulation was provided by the granule pharmacy of
Dongzhimen Hospital, Beijing University of Chinese Medicine, and
was manufactured by Beijing Kangrentang Pharmaceutical Co., Ltd.

2.9.3 Preparation of serum containing the
XYJDY decoction

After a 1-week acclimatization period, twenty male Sprague-
Dawley rats were randomly divided into two groups (n = 10 per
group): a control group and a drug-containing serum group. Rats in
the control group received 0.9% saline by oral gavage (10 mL kg-1),
while those in the drug-containing group were administered an
XYJDY suspension at a dosage of 3 g kg-1, determined based on the
standard human-to-rat body surface area conversion. Gavage was
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performed once daily for 7 consecutive days. One hour following the
final administration, the animals were anesthetized with isoflurane,
and blood samples were collected from the abdominal aorta.
Samples were centrifuged at 3,000 rpm for 15 min (centrifugal
radius: 10 cm), and the resulting supernatants were incubated at
56°C for 30 min. The serum was then sterilized by filtration
through a 0.2 μm microporous membrane. The final
preparations of normal rat serum and XYJDY-containing serum
were aliquoted and stored at −80 °C for subsequent experiments.
The serum obtained from the SD rats was used exclusively for
in vitro cell experiments.

2.9.4 Cell culture, treatment, and
experimental grouping

Human immortalized keratinocytes (HaCaT cells; Fuheng
Biological) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin (P/S) andmaintained in a humidified incubator
at 37 °C with 5% CO2 until reaching the logarithmic growth phase. To
simulate the pathological changes of psoriasis, we adopted the IL-17A-
stimulated HaCaT cell model, which has been widely used in psoriasis
research to assess the effects of inflammatory factors on keratinocyte
proliferation and gene expression (Shen et al., 2025). Proliferating
HaCaT cells were seeded into culture plates and treated with varying
concentrations of interleukin-17A (IL-17A; 50, 100, and 200 ng/mL;
ILA-H82Q1, ACROBiosystems). Cell viability was assessed using the
Cell Counting Kit-8 (CCK-8) assay at 24 and 48 h post-treatment.
The concentration and time point that yielded the greatest
enhancement in cell viability were defined as the optimal
stimulation conditions.

Cells stimulated with the optimal IL-17A concentration were
then treated with either blank control serum or XYJDY-medicated
serum at concentrations of 5%, 10%, 15%, and 20%. CCK-8 assays
were conducted at 0, 24, 48, and 72 h to evaluate cell viability across
groups. The optimal medicated serum concentration and exposure

duration were determined based on proliferation rates and applied
in subsequent experiments.

Finally, IL-17A-induced HaCaT cells were assigned to two
treatment groups: one group was given XYJDY-containing serum
for intervention, one group was given blank control serum as a
control group, and the other set of untreated HaCaT cells was a
blank control group.

2.9.5 Western blotting
HaCaT cells from the experimental groups described in Section

2.9.4 were collected, and total protein was extracted using RIPA lysis
buffer supplemented with phenylmethylsulfonyl fluoride (PMSF) and
phosphatase inhibitors. Proteins were separated by SDS-PAGE and
transferred onto polyvinylidene difluoride (PVDF) membranes,
followed by blocking with an appropriate blocking buffer. The
membranes were incubated overnight at 4°C with a primary
antibody against AKR1B10 (YT6598, ImmunoWay). After thorough
washing with phosphate-buffered saline (PBS), the membranes were
incubated at 27°C for 1 h with horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG (H + L) secondary antibody (S004,
Tiandeyue). Beta-tubulin (YM3030, ImmunoWay) was used as an
internal loading control. Protein bands were visualized using an
enhanced chemiluminescence (ECL) detection system, and band
intensities were quantified using ImageJ software.

2.9.6 Real-time quantitative PCR (RT-qPCR)
analysis of gene expression

Total RNAwas extracted from theHaCaT cells in each experimental
group (as described in Section 2.9.4) using TRNzol Total RNA
Extraction Reagent (DP424, Tiangen) following phosphate-buffered
saline (PBS) washing. First-strand cDNA was synthesized using the
PrimeScript™ RT reagent kit with gDNA Eraser (Takara) according to
the manufacturer’s instructions. Quantitative real-time PCR (qRT-PCR)
was carried out on a QuantStudio™ 5 Real-Time PCR System (Applied
Biosystems) using gene-specific primers and BlazeTaq™ SYBR® Green

TABLE 1 Information for XYJDY granule composition.

Chinese name Herb’s English name Herb’s Latin name

Shui Niu Jiao (SNJ) Buffalo Horn Bubali Cornu

Jing Yin Hua (JYH) Japanese Honeysuckle Flower Bud Lonicerae Japonicae Flos

Ban Lan Gen (BLG) Isatidis Radix Indigowoad Root

QUAN SHEN (QS) Rhizome of Bistort Rhizoma Bistortae

Mu Dan Pi (MDP) Tree Peony Root - bark Moutan Cortex

Sheng Di Huang (SDH) Adhesive Rehmannia Root Tuber Rehmanniae Radix

Chi Shao (CS) Red Paeoniae Trichocarpae Paeoniae Radix Rubra

Zi Cao (ZC) Redroot Gromwell Arnebiae Radix

Chong Lou (CL) Chinese Manyleaf Paris Rhizome Paridis Rhizoma

Ku Shen (KS) Lightyellow Sophra Root Sophorae Flavescentis Radix

Bai Xian Pi (BXP) Denesefruit Pittany Root-bark Dictamni Cortex

Tu Fu Lin (TFL) Glabrous Greenbrier Rhizome Smilacis Glabrae Rhizoma

GAN CAO (GC) Liquorice Root Glycyrrhizae Radix et Rhizoma
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qPCR Mix 2.0 (QP031-S, GeneCopoeia). Relative mRNA expression
levels were calculated using the comparative Cqmethod (2–ΔΔCq). β-actin
was used as the internal reference gene. The primer sequences were
as follows:

AKR1B10-F: CCCAGGAGACAGAGGTTATA;
AKR1B10-R: GAAATGATTCTGAGTGAGCAGGTAG.
β-Actin-F: TCCTCCTGAGCGCAAGTACTCC;
β-Actin-R: CATACTCCTGCTTGCTGATCCAC.

2.9.7 Statistical analysis
Statistical analyses were performed using GraphPad Prism

(v10.1.2). Data normality was assessed with the Kolmogorov-
Smirnov test. For two-group comparisons, the Mann-Whitney
test (non-parametric) or Student’s t-test (parametric) was used.
One-way ANOVA followed by a Bonferroni post hoc test was
applied for comparisons among multiple groups. Statistical
significance was defined as P < 0.05.

FIGURE 1
Drug-Active Ingredient Target Network for XYJDY. The green color represents the herbs, the circle around each herb represents its chemical
composition, the orange color represents all the gene targets of XYJDY, and the pink color in the outer circle represents all the chemical compounds of
XYJDY. Abbreviations: SNJ, Buffalo Horn; JYH, Japanese Honeysuckle Flower Bud; BLG, Indigowoad Root; QS, Bistort Rhizome; MDP, Tree Peony Root-
bark; SDH, Adhesive Rehmannia Root Tuber; CS, Red Paeoniae Trichocarpae; ZC, Redroot Gromwell; CL, Chinese Manyleaf Paris Rhizome; KS,
Lightyellow Sophra Root; BXP, Densefruit Pittany Root-bark; TFL, Glabrous Greenbrier Rhizome; GC, Liquorice Root.
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3 Results

3.1 Network pharmacology

3.1.1 Identification of potential compounds and
targets of XYJDY related to psoriasis

From the TCMNPAS database, a total of 203 unique active
compounds and 617 corresponding molecular targets were
identified across 13 traditional Chinese medicinal herbs after
eliminating duplicates. Comprehensive compound and
target information is summarized in Supplementary Table S1.
The chemical components and predicted targets of XYJDY
were imported into Cytoscape software to construct a
drug–active compound–target interaction network for
XYJDY (Figure 1).

3.1.2 Disease targets associated with psoriasis
Psoriasis-related DEGs were identified by comparing gene

expression profiles between lesional and healthy skin samples.
Analysis of three GEO training datasets (GSE78097, GSE182740,
and GSE226244) yielded 484 DEGs in total, including
277 upregulated and 207 downregulated genes (Figure 2A). The
full list of DEGs is available in Supplementary Table S2. A heatmap
was generated to display the top 50 most significantly dysregulated
DEGs (Figure 2B).

Furthermore, a total of 5,121 disease-associated targets were
compiled from the GeneCards, OMIM, and DisGeNET databases.
These were systematically intersected with DEGs identified from the
GEO datasets. This integrative analysis ultimately yielded
142 psoriasis-specific disease targets (Figure 2C), the details of
which are listed in Supplementary Table S3.

FIGURE 2
(A) Volcano plot of DEGs between psoriasis and healthy control skin samples. (B): Heatmap showing the top 50 most significantly upregulated and
downregulated DEGs at the protein-coding level between psoriatic and control skin samples. (C): Venn diagram of the intersection between DEGs from
the GEO database and disease-associated genes from public databases. (D): Venn diagram of overlapping targets between XYJDY and psoriasis-related
disease targets. Abbreviations: XYJDY, Xiaoxian Jiedu Yin; Con, normal skin tissue; Pso, psoriatic skin tissue; DEGs, differentially expressed genes.
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3.1.3 Overlapping targets between XYJDY
and psoriasis

Twenty-four overlapping targets were identified by intersecting
the predicted targets of XYJDY-derived compounds with the
psoriasis-related disease targets (Figure 2D). A detailed list of
these overlapping targets is provided in Table 2.

3.1.4 Identification of potential compounds and
targets of XYJDY related to psoriasis

To explore the biological significance of the 24 overlapping
targets between XYJDY and psoriasis, GO and KEGG enrichment
analyses were performed. KEGG analysis revealed that these targets
were predominantly enriched in immune- and inflammation-
related pathways, including viral protein interaction with
cytokine and cytokine receptors, the IL-17 signaling pathway, the
chemokine signaling pathway, cytokine–cytokine receptor
interaction, and the TNF signaling pathway (Figure 3A). GO
enrichment analysis indicated that in the biological process (BP)
category, the targets were mainly involved in cell chemotaxis,
response to lipopolysaccharide, and response to molecules of

bacterial origin. In the cellular component (CC) category,
enrichment was observed in the external side of the plasma
membrane and tertiary granule lumen, while in the molecular
function (MF) category, the enriched terms included chemokine
activity, G protein-coupled receptor binding, and chemokine
receptor activity (Figure 3B). These findings suggest that the
active components of XYJDY may alleviate psoriasis symptoms
by modulating multiple immune and inflammatory pathways.

3.2 Machine learning-based identification of
key targets and validation using
external datasets

To identify potential core targets, LASSO regression was applied
to the 24 overlapping genes, resulting in the selection of 10 feature
genes: CXCR2, AKR1B10, CCL20, CXCL8, LEPR, CCR7, XDH,
MMP9, AGT, and MMP3 (Figure 3C). The SVM-RFE (Support
Vector Machine–Recursive Feature Elimination) algorithm
identified CXCL8, AKR1B10, CXCL1, and CXCL13 as optimal

TABLE 2 Overlapping targets in XYJDY and psoriasis.

NO. Uniprot ID Gene symbol Protein name

1 O60218 AKR1B10 Aldo-keto reductase family 1 member B10

2 P00491 PNP Purine nucleoside phosphorylase

3 Q07325 CXCL9 C-X-C motif chemokine 9

4 P02778 CXCL10 C-X-C motif chemokine 10

5 Q16548 BCL2A1 Bcl-2-related protein A1

6 P25025 CXCR2 C-X-C chemokine receptor type 2

7 Q08050 FOXM1 Forkhead box protein M1

8 P78556 CCL20 C-C motif chemokine 20

9 P10145 CXCL8 Interleukin-8

10 O60235 TMPRSS11D Transmembrane protease serine 11D

11 P48357 LEPR Leptin receptor

12 O43927 CXCL13 C-X-C motif chemokine 13

13 P09341 CXCL1 Growth-regulated alpha protein

14 P32248 CCR7 C-C chemokine receptor type 7

15 P47989 XDH Xanthine dehydrogenase/oxidase

16 P03956 MMP1 Interstitial collagenase

17 P06493 CDK1 Cyclin-dependent kinase 1

18 P14780 MMP9 Matrix metalloproteinase-9

19 P21549 AGT Alanine--glyoxylate aminotransferase

20 P19876 CXCL3 C-X-C motif chemokine 3

21 P01584 IL-1BB Interleukin-1 beta

22 Q9Y4X3 CCL27 C-C motif chemokine 27

23 P16581 SELE E-selectin

24 P08254 MMP3 Stromelysin-1
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FIGURE 3
(A) KEGG pathway enrichment analysis of the shared targets between XYJDY and psoriasis. (B) Gene Ontology enrichment analysis of the shared
targets between XYJDY and psoriasis. (C) Identification of signature genes using LASSO regression. (D) Selection of optimal signature genes via the SVM-
RFE algorithm. The x-axis indicates the number of genes, and the y-axis shows the generalization error. A linear trend line illustrates the association
between gene count and generalization error. (E) Screening of key signature genes using the Random Forest method (left) and ranking of gene
importance (right). (F) Venn diagram illustrating intersecting genes identified by all three machine learning algorithms. (G) Differential expression of
AKR1B10 in healthy and psoriatic skin samples. (H) ROC curve evaluating the diagnostic accuracy of AKR1B10.
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feature genes (Figure 3D). Random forest analysis further identified
BCL2A1 and AKR1B10 as key genes based on their importance
scores (Figure 3E). By intersecting the results of the three machine-
learning algorithms, AKR1B10 was ultimately selected as the hub
gene (Figure 3F). In the validation dataset, AKR1B10 was
consistently differentially expressed in psoriasis samples
compared to healthy controls, with statistically significant
differences observed (Figure 3G). ROC curve analysis showed
that AKR1B10 had excellent diagnostic performance, with an

AUC of 0.994 (95% CI: 0.980–1.000), indicating high accuracy
(Figure 3H). These findings suggest that AKR1B10 may serve as
a key therapeutic target of XYJDY in the treatment of psoriasis.

3.3 Immune cell infiltration analysis

Immune cell infiltration was analyzed using the CIBERSORT
algorithm. After filtering the immune infiltration matrix, a total of

FIGURE 4
(A) Analysis of intergroup differences in immune cells; (B): Immune cell correlation analysis; (C): Correlation between AKR1B10 and immune cell
infiltration. con, normal skin tissue; Pso, psoriatic skin tissue.
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FIGURE 5
(A)UMAP plot showing the clustering of single-cell RNA-sequencing data from all samples. (B)UMAP visualization of single-cell clustering in normal
and psoriatic skin samples. (C) Expression distribution of AKR1B10 in normal and psoriatic skin tissues. (D) Spatial localization of AKR1B10 in normal and
psoriatic skin tissues, as revealed by spatial transcriptomics.
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76 reliable samples were obtained, including 65 psoriatic lesion
samples and 11 normal control samples. The results showed that
activated CD4+ memory T cells, follicular helper T (Tfh) cells, γδ
T cells, M1 macrophages, activated dendritic cells, and neutrophils
were significantly increased in psoriatic lesions. In contrast, CD8+

T cells, activated natural killer (NK) cells, and resting mast cells were
decreased in psoriatic lesions (Figure 4A). Correlation analysis
among immune cell populations revealed several notable
associations. Memory B cells were positively correlated with
plasma cells (r = 0.67). Resting mast cells were positively
correlated with activated NK cells (r = 0.58), while negatively
correlated with Tfh cells (r = −0.65) and resting dendritic cells
(r = −0.50). Naive B cells showed positive correlations with
regulatory T (Treg) cells (r = 0.55) and activated CD4+ memory
T cells (r = 0.68) but a negative correlation with plasma cells
(r = −0.55). Additionally, activated CD4+ memory T cells were
positively correlated with activated B cells (r = 0.68). These
relationships are visualized in Figure 4B, where red indicates a
positive correlation, and blue indicates a negative correlation. The
expression level of AKR1B10 was positively correlated with activated
mast cells, γδ T cells, naive B cells, M1 macrophages, activated CD4+

memory T cells, activated dendritic cells, and Tfh cells. Conversely, it
was negatively correlated with plasma cells, M2 macrophages,
activated NK cells, and resting mast cells (Figure 4C).

3.4 scRNA-seq and spatial transcriptomics
analysis of AKR1B10

scRNA-seq data were obtained from the GSE220116 and
GSE230842 datasets, comprising a total of 27 samples (13 from
psoriatic lesions and 14 from healthy controls). Following data
preprocessing procedures—including normalization,
standardization, PCA, and UMAP—35 cellular subclusters were
identified (Figure 5A). Subsequent cell-type annotation revealed
12 major cell populations: FBs, KCs, ECs, CD8+ T cells, CD4+ T cells,
T cells, DCs, macrophages, monocytes, adipocytes, melanocytes, and
neurons (Figure 5B). In the psoriatic group, AKR1B10 expression
was predominantly enriched in KCs, with minimal expression
observed in fibroblasts, melanocytes, adipocytes, and other
clusters (Figure 5C). ST analysis further demonstrated that
AKR1B10 expression was almost absent in the control group but
was markedly elevated in the psoriatic group, primarily localized
within the epidermal layer (Figure 5D).

3.5 XYJDY-medicated serum inhibits
AKR1B10 expression in IL-17A-induced
HaCaT cells

As shown in Supplementary Figure S1A, no significant changes
in HaCaT cell proliferation were observed across varying IL-17A
concentrations after 24 h of exposure. However, after 48 h of
stimulation, treatment with 200 ng/mL IL-17A resulted in a
markedly increased proliferation rate compared to the untreated
control group (P < 0.01; Supplementary Figure S1B). Based on these
findings, 200 ng/mL IL-17A stimulation for 48 h was established as
the optimal induction condition for HaCaT cells in this study.

To evaluate the therapeutic effect of XYJDY on the psoriasiform
inflammatory model of HaCaT cells, cells were stimulated with IL-
17A (200 ng/mL for 48 h) and subsequently treated with either blank
control serum or XYJDY-medicated serum. As shown in
Supplementary Figure S2A,B, treatment with blank control serum
at all tested concentrations significantly enhanced HaCaT cell
proliferation at both 24 h and 48 h when compared to the
normal group (P < 0.001). However, no significant differences
were observed among the 5%, 10%, 15%, and 20% blank serum
groups relative to the IL-17A-treated model group. In contrast, after
24 h of intervention, treatment with 15% and 20% XYJDY-
medicated serum significantly reduced HaCaT cell proliferation
compared to the model group (P < 0.001; Supplementary Figure
S2C). After 48 h, a significant reduction in proliferation was
observed in the 5%, 10%, and 15% XYJDY-medicated serum
groups (P < 0.001; Supplementary Figure S2D). Therefore, 15%
XYJDY-containing serum was used in this study to intervene in
HaCaT cells for 24 h as the optimal administration concentration
and time for subsequent experiments.

As predicted, WB and RT-qPCR analyses revealed significantly
lower AKR1B10 expression in IL-17A-induced HaCaT cells
following 24 h treatment with XYJDY-medicated serum
compared to the model group (Figures 6B,C). This suggests that
XYJDY-medicated serum may exert its anti-psoriasis effect through
inhibition of AKR1B10.

4 Discussion

Although the pathophysiological mechanisms of psoriasis
remain incompletely understood, current evidence highlights key
pathological features, including hyperproliferation of KCs, immune
cell infiltration, dysregulated proinflammatory cytokine networks,
and aberrant dermal angiogenesis (Gao et al., 2025). Given the
disease’s multifaceted and multitargeted nature, the pursuit of novel
treatment strategies with both robust efficacy and favorable safety
profiles remains a critical priority in dermatology. TCM, in contrast
to conventional therapies, offers distinctive advantages in treating
psoriasis, including syndrome differentiation, individualized
diagnostic approaches, and therapeutic flexibility. Backed by
centuries of clinical practice, TCM’s diverse treatment principles,
herbal formulas, and medicinal components have consistently
demonstrated reliable efficacy and safety, underscoring their
potential clinical value and research relevance (Su et al., 2021).

To clarify the core molecular mechanisms underlying XYJDY, a
traditional Chinese medicine formula, in the treatment of psoriasis,
we employed a variety of strategies. First, we integrated
bioinformatics and network pharmacology approaches to predict
the potential targets of XYJDY in treating psoriasis. Following this,
we applied several machine learning algorithms to systematically
cross-screen the predicted targets, ultimately identifying
AKR1B10 as a key candidate target mediating the
pharmacological activity of XYJDY. This data-driven approach
significantly narrowed down the scope of potential targets,
providing a clear direction for subsequent research. We then
validated the expression pattern of AKR1B10 in psoriasis and its
association with the disease using immune cell infiltration analysis,
scRNA-seq, and ST. Finally, in vitro experiments were conducted
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using XYJDY-containing serum to intervene in the IL-17A-induced
HaCaT cell psoriasis-like inflammation model, confirming the
impact of XYJDY on AKR1B10 expression.

GO and KEGG enrichment analyses of XYJDY-related targets
suggest that its core therapeutic mechanisms in psoriasis may
involve the regulation of key pathogenic pathways and biological
processes. Specifically, KEGG analysis demonstrated significant
enrichment in the IL-17 signaling pathway, TNF signaling
pathway, and cytokine-cytokine receptor interaction pathway.
Complementary GO analysis revealed that XYJDY targets are
notably enriched in biological processes such as cell chemotaxis,
chemokine activity, G protein-coupled receptor (GPCR) binding,
and chemokine receptor activity. Overall, these findings underscore
the multifaceted therapeutic potential of XYJDY, indicating that its
efficacy is achieved through the coordinated regulation of multiple
signaling pathways and molecular targets.

Importantly, although AKR1B10 has been previously recognized
as a key regulatory molecule in the onset and progression of
inflammatory diseases (Guo et al., 2024; Sumantran et al., 2016),
including psoriasis, our study provides substantial new evidence that
establishes it as a core functional target of XYJDY. AKR1B10 is
involved in NF-κB, MAPK signaling, and retinoid metabolism,
driving the expression of pro-inflammatory cytokines such as IL-
6 and IL-1β. Additionally, AKR1B10 contributes to the biosynthesis
of long-chain fatty acids and the regulation of lipid metabolism,
highlighting its potential central role in mediating the interaction

between inflammation and metabolic processes (Cheng et al., 2018;
Endo et al., 2021). The expression of AKR1B10 is regulated by
various mechanisms, including KEAP1 mutations, EGF exposure,
and IRAK1 overexpression. In vitro experiments have demonstrated
that silencing AKR1B10 effectively suppresses excessive
proliferation and migration of HaCaT cells (Gao et al., 2017),
further highlighting the potential therapeutic value of this target
in psoriasis treatment.

Our integrated immune infiltration analysis further revealed
that the expression of AKR1B10 in psoriatic lesions is significantly
positively correlated with pro-inflammatory Th17-associated
immune cells (including activated CD4+ memory T cells and Tfh
cells), γδ T cells, and M1 macrophages, while negatively correlated
with immune-regulatory M2 macrophages and NK cells. This
strongly suggests that AKR1B10 promotes a pro-inflammatory
immune microenvironment that sustains psoriasis inflammation.
Furthermore, scRNA-seq and ST analyses offered novel insights at
both spatial and cellular resolutions: compared to normal skin,
AKR1B10 expression is significantly upregulated in psoriatic
lesions. scRNA-seq precisely localized its major enrichment to
keratinocytes (KCs), while ST revealed its expression extending
from the epidermis into the dermis. This spatial expression
pattern indicates a potential role for AKR1B10 in mediating
immune crosstalk between different skin layers. To determine
whether AKR1B10 acts as a target of XYJDY, we established an
IL-17A-induced HaCaT inflammatory model. Treatment with

FIGURE 6
(A) CCK-8 Detection of cell proliferation rate in a psoriasis-like inflammation model of HaCaT cells after 24 24h of intervention with XYJDY drug-
containing serum; (B)Western blot analysis of AKR1B10 expression in HaCaT cells induced by IL-17A in different treatments; (C)Western blot detection of
AKR1B10 expression in each group (n = 3/group); (D) RT-qPCR analysis to detect the expression of AKR1B10 mRNAs in each group (n = 3/group); **P <
0.01, ***P < 0.001, ****P < 0.0001.
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XYJDY-containing serum resulted in a significant reduction in
AKR1B10 expression. The observed downregulation of
AKR1B10 provides crucial experimental support for our
computational predictions and pharmacological hypotheses,
suggesting that XYJDY can effectively regulate the expression of
this critical target in a psoriasis-like inflammation model.

In summary, this study, which integrates network
pharmacology, computational predictions, multi-omics validation,
and in vitro experiments, provides evidence supporting AKR1B10 as
a potential key target mediating the anti-psoriatic effects of XYJDY.
Furthermore, in vitro experiments using the IL-17A-inducedHaCaT
inflammatory model demonstrated that XYJDY-containing serum
significantly reduced AKR1B10 expression. As a molecule
confirmed to drive pro-inflammatory signaling and lipid
metabolism dysregulation in psoriatic lesions, the downregulation
of AKR1B10 offers a plausible mechanistic link to explain the
therapeutic activity of XYJDY. Based on our findings, we propose
a hypothesis: XYJDY may (at least partially) exert its beneficial
effects by targeting AKR1B10, thereby potentially inhibiting its
downstream pro-inflammatory and metabolic pathways. This
targeted mechanism may contribute to the restoration of
keratinocyte homeostasis and the regulation of the dysregulated
immune microenvironment, providing molecular insights into
multi-pathway synergistic interventions for psoriasis.

Although the preliminary findings presented in this study
provide a foundation for future research, several limitations must
be acknowledged. First, some of the analytical data were sourced
from public databases, which may be impacted by incomplete
annotations and inconsistent quality control. Additionally, the
variability in literature sources introduces a risk of systematic
bias. To mitigate this, we utilized high-resolution single-cell and
spatial transcriptomics validation (scRNA-seq and ST), achieving
cell-type-specific and spatial cross-validation of the expression
patterns of key targets, which strengthened the robustness of our
conclusions. Second, while in vitro evidence demonstrates that
XYJDY-containing serum significantly inhibits
AKR1B10 expression in HaCaT cells, its downstream signaling
networks have not been fully mechanistically validated. Future
research will focus on this aspect to comprehensively evaluate its
pharmacodynamic effects and target involvement. Lastly,
considering that the pharmacological effects of traditional
Chinese medicine may partially rely on in vivo metabolites,
future studies could use LC-MS/MS and spatial metabolomics to
explore the metabolic transformation and tissue-specific
distribution of XYJDY-containing serum. Such analyses may
further enrich our understanding of its pharmacological basis
in psoriasis.

5 Conclusion

In conclusion, this study demonstrates that XYJDY exerts anti-
psoriatic effects through multi-target and multi-pathway
mechanisms, with AKR1B10 emerging as a potential core target.
Our findings provide a scientific foundation for clinical translation
and mechanistic research of this TCM formula. Further
investigation into AKR1B10-dependent signaling networks is

warranted to validate the proposed mechanisms and their
pathophysiological relevance.
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