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Volatile esters are key flavor components in most plants, including Lavandula x
intermedia (lavandin). The final step in ester biosynthesis is catalyzed by Lavandula
x intermedia alcohol acyltransferases (LiAATases), which attach alcohols to acyl
groups. However, the functional role andmechanism of LiAATases remain poorly
understood. Here, we predicted their structural models using AlphaFold2 and
identified potential active site residues through theGalaxyWEB program. Catalytic
assays were optimized at pH 7.5 and 30 °C. Substrate specificity for alcohols was
assessed for both enzymes. Gene expression analysis revealed that LiAATase1 and
LiAATase2 were most highly expressed in the petals and pistils, respectively, with
peak expression occurring at stage 4 for LiAATase1 and stage 1 for LiAATase2. Our
study aims to elucidate the functional properties of alcohol acyltransferases in
Lavandula x intermedia, contributing to an understanding of ester biosynthesis
and specificity in this species.
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Introduction

Esters are a key class of volatile compounds that play a significant role in the formation
of plant aromas (Liu et al., 2023; Aschariyaphotha et al., 2024). Alcohol acyltransferase
(AATase) catalyzes the transfer of an acyl group from acyl-CoA to an alcohol, resulting in
ester production (Aharoni et al., 2004; Defilippi et al., 2005; Seixas et al., 2023). This enzyme
plays a critical role in the biosynthesis of volatile esters in various plant species, including
climacteric fruits such as melons, bananas, and apples, as well as non-climacteric plants like
strawberries, passionfruit, pineapple, and certain flowers like Gypsophila, Clarkia breweri,
and Karawek (Beekwilder et al., 2004; Canessa et al., 2004; Defilippi et al., 2005; Guterman
et al., 2006; Khanom and Ueda, 2008; Mascarell-Creus et al., 2009; de Jong et al., 2010; Shah
et al., 2012; Ghezzi et al., 2017; Moon et al., 2021; Wang et al., 2021; Liu et al., 2023; Saez
et al., 2024).

Plant lavender essential oils (EOs) primarily consist of volatile monoterpenes and
sesquiterpenes, which may include alcohols (Patrignani et al., 2021; Wani et al., 2021;
Bavarsad et al., 2023; Liu et al., 2024a; Liu et al., 2025c). These oils serve various
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physiological and ecological functions, such as allelopathy,
plant defense, and pollinator attraction (Benabdelkader et al.,
2011; Ebadollahi et al., 2020; Karpiński, 2020). Additionally,
lavender EOs possess considerable economic importance due to
their extensive applications in cosmetics, personal care products
and alternative medicine (Lesage-Meessen et al., 2015; de Groot
and Schmidt, 2016a; de Groot and Schmidt, 2016b). The enzyme
Lavandula x intermedia alcohol acetyltransferase (LiAATase) is
essential for the biosynthesis of volatile esters by catalyzing the
transfer of acyl groups from acyl-CoA to alcohols. LiAATase is
part of a larger enzyme family responsible for alcohol
acetylation. Despite its importance in aroma production, the
function and mechanism of LiAATases in lavender remain
poorly understood.

Herein, we used the NPS@ server to predict the secondary
structures of LiAATase1 and LiAATase2, and structural models
were generated using AlphaFold2. The GalaxyWEB program was
employed to identify potential active site residues. Optimal catalytic
conditions for both LiAATase1 and LiAATase2 were determined to
be pH 7.5 at 30 °C. Alcohol substrate specificities for both enzymes
were assessed. Gene expression analysis revealed that LiAATase1
and LiAATase2 exhibited the highest expression in the petals and
pistils, respectively. Furthermore, peak expression of LiAATase1
occurred at stage 4, while LiAATase2 showed highest expression at
stage 1, among the five developmental stages analyzed. This study
aimed to characterize alcohol acetyltransferases in Lavandula x
intermedia, contributing to the understanding of their role in
ester biosynthesis and specificity.

FIGURE 1
Sequence alignment of alcohol acetyltransferase family. The sequence alignment employs the ClustalW default color scheme, where conserved
amino acids are highlighted with more intense colors than non-conserved residues. The reference proteins included in the alignment are as follows:
A0A0K0LBP0, Lavandula x intermedia (Lavandin, Lavandula angustifolia x Lavandula latifolia); D0QJ94, Vasconcellea cundinamarcensis (Mountain
papaya, Carica candamarcensis); Q64FJ6, Malus domestica (Apple, Pyrus malus); Q6QLX4, Solanum lycopersicum (Tomato, Lycopersicon
esculentum); P0DO25, Actinidia deliciosa (Kiwi); A0A0K0LCG5, Lavandula x intermedia (Lavandin, Lavandula angustifolia x Lavandula latifolia); Q9FVF1,
Fragaria ananassa (Strawberry, Fragaria chiloensis x Fragaria virginiana).
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Results

Secondary structure prediction of
LiAATase1 and LiAATase2

Using the amino acid sequences of LiAATase1 (UniProt code
A0A0K0LCG5) and LiAATase2 (UniProt code A0A0K0LBP0)
(Figure 1), we predicted their secondary structures via the NPS@
server (Combet et al., 2000). The predicted secondary structures of
LiAATase1 and LiAATase2 consist of alpha helices (37.17% and
33.78% of residues, respectively), along with multiple strands and
coils (Figure 2). LiAATase1 contains 155 residues in helices, while
LiAATase2 has 151.

Prediction and quality assessment of
LiAATase1 and LiAATase2 structures

The three-dimensional (3D) structures of LiAATase1 and
LiAATase2 were predicted using AlphaFold2 (Jumper et al.,
2021; Wayment-Steele et al., 2023), a deep learning-based tool
that provides highly accurate and reliable protein structure
predictions, surpassing traditional homology modeling methods.

To evaluate the quality of the predicted structures (Figures 3a,d),
we employed the Ramachandran plot to analyze the dihedral angles
of the protein backbones, ensuring they fell within acceptable
regions, which indicates a valid protein conformation. For
LiAATase1, 88.7% of the residues were in the most favored

FIGURE 2
Prediction of secondary structure models of LiAATases (Lavandula x intermedia alcohol acyltransferases). The secondary structure predictions for
LiAATase1 and LiAATase2 are shown in (a,b) respectively.
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region, 10.8% in the additionally allowed region, 0.5% in the
generously allowed region, and none in the disallowed region
(Figure 3b; Table 1). For LiAATase2, 90.5% of residues were in
the most favored region, 9.2% in the additionally allowed region,
0.3% in the generously allowed region, and none in the disallowed
region (Figure 3e; Table 1).

ProSA analysis of the models showed Z-scores of −10.90 for
LiAATase1 and -10.79 for LiAATase2 (Figures 3c,f). Both Z-scores
were well below −10.00, demonstrating excellent model quality.
However, the slight difference between the two Z-scores does not
suggest a significant structural discrepancy in the model.

Although the overall fold of LiAATase1 closely resembles that of
LiAATase2 (Figure 4), the root mean square deviation (RMSD) for all
atoms was 2.25 Å, and the sequence identity was 27.47% (Figure 4).

Predicting LiAATase1 and
LiAATase2 active sites

Using the predicted models (Figures 3a,d, 4, 5a,b), we
employed the GalaxyWEB program (Ko et al., 2012; Heo et al.,
2013; Heo et al., 2016; Seok et al., 2021) to identify the active sites
of LiAATase1 and LiAATase2. The analysis revealed that the
active site residues of LiAATase1 include I156, R225, P238, S239,
R240, V241, H273, A274, V275, N276 (Figures 5a,c). For
LiAATase2, the active site residues are T254, S256, K257,
F258, N285, T286, V287, N288, K334, and D368 (Figures
5b,c). These residues are likely involved in interactions with
the alcohol substrate, potentially forming bonds with the
substrate’s side chain atoms.

FIGURE 3
Structural prediction and quality assessment of LiAATase1 and LiAATase2. The three-dimensional (3D) structures of (a) LiAATase1 and (d)
LiAATase2 were predicted using AlphaFold2. Both models are depicted as cyan ribbon diagrams from two distinct orientations, with α-helices in pink and
β-sheets in cyan. Structural validation was performed using Ramachandran plot analysis [(b) for LiAATase1, (e) for LiAATase2], where the most favorable
residue conformations are highlighted in red, and less favorable regions are shown in progressively lighter shades. Additionally, (c, f) ProSA analysis
yielded Z-scores of −10.90 (LiAATase1) and −5.68 (LiAATase2), confirming the high quality of the predicted models.

TABLE 1 Ramchandran plot analysis of structural models of the two alcohol acetyltransferases using PDBsum.

Constructs Residues in most
favored regions

Residues in additional
allowed regions

Residues in generously
allowed regions

Residues in disallowed
regions

Residues Number of
residues

% of
residues

Number of
residues

% of
residues

Number of
residues

% of
residues

Number of
residues

% of
residues

LiAATase1a 338 88.7 41 10.8 2 0.5 0 0

LiAATase2b 353 90.5 36 9.2 1 0.3 0 0

aNumber of end-residues (excl. Gly and Pro): 2; Number of glycine residues (shown as triangles): 13; Number of proline residues: 21.
bNumber of end-residues (excl. Gly and Pro): 2; Number of glycine residues (shown as triangles): 28; Number of proline residues: 27.
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Effects of temperature and pHon the activity
of LiAATase1 and LiAATase2

To determine the optimal conditions for alcohol
acetyltransferase activity of LiAATase1 and LiAATase2, we
examined the effects of temperature and pH on enzyme activity
(Figure 6). Activity was tested across a temperature range of
21–39°C, revealing an increase in activity up to 30°C, after which
it declined (Figures 6a,b). The enzymes showed optimal activity
within a pH range of 5.5–9.5, with peak activity occurring at
pH 7.5 before decreasing (Figures 6c,d). Based on these results,
we selected pH 7.5 and 30 °C as the optimal conditions for further
activity assessments.

Alcohol substrate specificities of
LiAATase1 and LiAATase2

Alcohol acetyltransferases are well-known for their role in
producing acetate esters and are often associated with ethylene-
dependent or ripening-specific processes in many plants
(Beekwilder et al., 2004; Defilippi et al., 2005; Aschariyaphotha
et al., 2024). The activity of LiAATases was determined under
the optimal conditions (pH 7.5 at 30 °C). We found that both
LiAATase1 and LiAATase2 demonstrated high activity with
medium-chain alcohols, particularly 1-hexanol, while showing
minimal activity with short-chain alcohols like methanol and
ethanol. The enzyme activity increased with the length of the

FIGURE 4
Comparative structural analysis of LiAATase1 (inmagenta) and LiAATase2 (in cyan). LiAATase1 adopted an overall fold similar to that of LiAATase2, but
the root mean square deviation (RMSD) value for all atoms was large (2.25 Å), and the amino acid sequence identity was only 27.47%.

FIGURE 5
Predicting (a) LiAATase1 and (b) LiAATase2 active site residues using the GalaxyWEB program. LiAATase1 and LiAATase2 were colored in magenta
and cyan, respectively. (c) The residues in the active site of LiAATase1 and LiAATase2.
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FIGURE 6
The effects of temperature and pH on the relative activity (%) of LiATTase1 and LiATTase2. Both enzymes exhibited maximal activity at 30 °C (a,b).
Similarly, their optimal pH was 7.5 (c,d).

FIGURE 7
Specific activity and relative activity of LiAATase1 and LiATTase2 using different alcohols. The catalytic activity of both enzymes was determined
under pH 7.5 and 30 °C.
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alcohol chain, with 1-hexanol exhibiting 4.1 to 5.5 times higher
activity than methanol (Figure 7). This trend may be attributed to
alcohol acyltransferase’s preference for utilizing acyl-CoA residues,
as the enzyme tends to react more readily with acyl-CoA substitutes
other than acetyl-CoA.

Spatial and temporal analyses of genes
LiAATase1 and LiAATase2

To establish a detailed spatial and temporal expression profile, RT-
qPCR (real-time quantitative polymerase chain reaction) was used to
quantify the expression levels of the target genes LiAATase1 and
LiAATase2 across different flower organs and developmental stages.
The results showed that LiAATase1 expression was highest in the
petals (Figure 8a), while LiAATase2 expression peaked in the pistils
(Figure 8b). Regarding developmental stages, LiAATase1 expression
was greatest at stage 4 (Figure 8c), whereas LiAATase2 expression was
highest at stage 1 (Figure 8d). This tissue- and stage-specific expression
pattern highlights the significant role of LiAATase1 and LiAATase2 in

lavender essential oil biosynthesis, with flower tissues being the
primary site of expression.

Discussion

In this work, the secondary structures of LiAATase1 and
LiAATase2 were predicted using the NPS@ server, and their
structural models were generated with AlphaFold2. Active site
residues were identified through the GalaxyWEB program.
Optimal catalytic conditions for both enzymes were determined to
be pH 7.5 and 30 °C. Substrate specificity assays revealed the alcohol
preferences of LiAATase1 and LiAATase2. Gene expression analysis
indicated that LiAATase1 was most highly expressed in petals, while
LiAATase2 showed peak expression in pistils. Additionally,
LiAATase1 had its highest expression at stage 4, whereas
LiAATase2 peaked at stage 1 among the five developmental stages
examined. This study highlights key characteristics of alcohol
acetyltransferases in lavender, offering insights into their roles in
ester biosynthesis and specificity in Lavandula x intermedia.

FIGURE 8
Gene expression profiles of LiAATase1 and LiAATase2. (a,b) Expression levels of genes LiAATase1 and LiAATase2 in different flower organs (petals,
stamens, pistils and sepals). (c,d) Expression levels of LiAATase1 and LiAATase2 genes during different flowering stages. Flower developmentwas classified
into five stages, i.e., flowers with tightly closed buds (stage 1), flowers with slightly open buds (stage 2), flowers beginning to open (stage 3), flowers in full
bloom (stage 4), and flowers completely wilted (stage 5). The relative expression levels of genes LiAATase1 and LiAATase2were quantified using RT-
qPCR (real-time quantitative polymerase chain reaction). Expression ratios are shown as log2 values, and values above zero indicate upregulation of gene
expression.

Frontiers in Chemistry frontiersin.org07

Liu et al. 10.3389/fchem.2025.1627286

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1627286


Alcohol acetyltransferase (EC 2.3.1.84) plays a crucial role in
aroma biosynthesis by catalyzing the formation of esters from acyl-
CoA and alcohols (Beekwilder et al., 2004; Defilippi et al., 2005;
Khanom and Ueda, 2008). Despite their low sequence identity,
alcohol acetyltransferases share highly conserved three-
dimensional structures, with partially conserved active sites.
These active sites bind acyl-CoA and alcohol, generally featuring
an HXXXXD motif that forms a substrate reaction channel (Bayer
et al., 2004; Galaz et al., 2013; Zheng et al., 2016). These differ from
LiAATases, suggesting that alcohol acetyltransferases may employ
distinct catalytic mechanisms. To further investigate these, we are
exploring the structural and mechanistic features of LiAATase-
catalyzed reactions using experimental approaches such as
crystallography. This structural arrangement allows independent
binding of the substrate and co-substrate, catalyzing C-O bond
formation and promoting the synthesis of corresponding ester
compounds (Bayer et al., 2004; Ma et al., 2005; Morales-
Quintana et al., 2011; Cumplido-Laso et al., 2012; Morales-
Quintana et al., 2012; Galaz et al., 2013; Morales-Quintana et al.,
2013; Morales-Quintana et al., 2015; Zheng et al., 2016; Liu et al.,
2023; Saez et al., 2024). These enzymes are capable of pairing various
alcohols with acyl-CoA, resulting in the production of a diverse
array of esters, which contributes to the complexity of ester profiles
(Horton et al., 2003; Guterman et al., 2006; Lilly et al., 2006). The
alcohol component of an ester corresponds to the alcohols primarily
synthesized in the plant, while the acyl component reflects the
specificity of the alcohol acetyltransferases for different acyl-CoA
molecules. For instance, strawberry alcohol acetyltransferase shows
strong activity with hexanol and both acetyl- and butyl-CoA, while
banana alcohol acetyltransferase is highly active with butanol and
acetyl-CoA but less so with butyl-CoA (Zhang et al., 2014; Hu et al.,
2016). Therefore, alcohol acetyltransferases from different plants
exhibit unique substrate specificities for both alcohols and acyl-CoA.

Additionally, alcohol acetyltransferase has also been identified in
the native Californian flower C. breweri, where it plays a key role in
the esterification of benzyl alcohols within the flower (Defilippi et al.,
2005; Wang et al., 2021; Liu et al., 2023). A strong affinity for
aromatic alcohols, including benzyl alcohol and cinnamyl alcohol.
Benzyl acetate, a significant compound in the fragrance industry, is a
prominent aroma in this flower. It is the primary component of
jasmine and gardenia essential oils and is commonly used as a minor
constituent in various other oils.

The engineering of volatile emissions in plants has primarily
focused on terpenoids. For example, a tomato variety with low
endogenous linalool levels in the fruit was transformed with C.
breweri linalool synthase under the control of the fruit-specific
E8 promoter (Beekwilder et al., 2004). This led to significantly
elevated levels of S-linalool in the fruit. The same gene was
introduced into carnation flowers to induce linalool emission.
However, overexpression of C. breweri linalool synthase in
carnations resulted in the accumulation of linalool as a
nonvolatile glucopyranoside conjugate, suggesting that
endogenous enzymes in petunia sequester volatile linalool as a
nonvolatile form (Moon et al., 2021; Lee and Trinh, 2022). In
Arabidopsis leaves constitutively expressing a strawberry linalool
synthase, linalool production occurred alongside its glycosylated
and hydroxylated derivatives. Furthermore, overexpression of
alcohol dehydrogenase in tomato fruit increased the levels of

hexanol and cis-3-hexenol, at the expense of aldehyde production
(Beekwilder et al., 2004).

In conclusion, our study presents a novel approach to
comprehensively explore the functional mechanisms of alcohol
acetyltransferases in Lavandula x intermedia, aiming to improve
the quality of lavender essential oils.

Materials and methods

Bioinformatics analysis

The amino acid sequences of LiAATase1 (UniProt code
A0A0K0LCG5) and LiAATase2 (UniProt code A0A0K0LBP0)
were analyzed using the ProtParam online server (https://web.
expasy.org/protparam/) to predict their chemical properties and
physicochemical parameters.

Prediction of structural models

Structural predictions for LiAATase1 and LiAATase2 were
performed using the AlphaFold2 program (Jumper et al., 2021;
Wayment-Steele et al., 2023). Secondary structures were predicted
with the NPS@ server (Combet et al., 2000), while active site residues
were identified using the GalaxyWEB program (Ko et al., 2012; Heo
et al., 2013; Heo et al., 2016; Seok et al., 2021). Multiple sequence
alignment data were obtained from the LSQKAB program within the
CCP4 suite (Collaborative Computational Project, 1994), and the root
mean square deviation (RMSD) for Cα atoms was calculated. Structural
images were generated using PyMOL 2.3.4 (https://www.pymol.org/2/).

Quality assessment of structural models

To validate the tertiary structures, Ramachandran plots for
LiAATase1 and LiAATase2 were generated using the PDBsum
database (Laskowski, 2004; de Beer et al., 2014; Laskowski et al.,
2017; Laskowski, 2022). This tool assesses protein structure quality
by detecting geometric errors, thereby improving the accuracy of the
models. The Ramachandran plot specifically evaluates the
stereochemical properties of the structures by displaying the
dihedral angles of amino acid residues, highlighting the allowed
conformational regions and identifying disallowed orientations.

Additionally, ProSA (Protein Structure Analysis) is a widely used
tool for analyzing and validating predicted proteinmodels (Wiederstein
and Sippl, 2007). The z-score reflects overall model quality and is
plotted against the z-scores of all experimentally determined protein
chains in the current PDB. The plot distinguishes between structure
groups (e.g., X-ray, NMR) using color-coding. This allows assessment
of whether the input structure’s z-score falls within the expected range
for native proteins of comparable size.

Protein isolation and purification

LiAATase1 and LiAATase2 were isolated and purified with slight
modifications to previously described methods (Egea-Cortines et al.,
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2019; Nazeer et al., 2019). Fresh flowers were first washed with tap
water, then with distilled water, and dried in the shade for 5–6 days at
room temperature. The dried samples were powdered in liquid nitrogen
using a mortar and pestle. Total protein was extracted using a Tris-
buffer saline solution (150 mM NaCl, 20 mM Tris-HCl, PVP, pH 7.4),
with a slight adjustment to the extraction buffer ratio (1:7, w/v). The
sample was filtered through three layers of muslin cloth, and the filtrate
was stirred magnetically at 4 °C overnight. The sample was then
centrifuged at 18,000 rpm for 30 min at 4°C, and the supernatant
was collected while discarding the pellet.

For protein purification, the crude extract was precipitated using
varying ammonium sulfate saturation levels (20%, 35%, 55%, 75%,
and 90%). A 75% saturated ammonium sulfate solution yielded the
best quality pellet after centrifugation at 18,000 rpm for 30min at 4 °C.
The supernatant was then precipitated with 75% ammonium sulfate
saturation and stored at −20 °C overnight to ensure complete protein
precipitation. The following morning, the sample was centrifuged
again at 18,000 rpm for 30min at 4°C, with the supernatant discarded.
The resulting pellet was washed six times with acetone and then dried.
The protein was dialyzed against distilled water for 12 h at 4°C, and
purified using size exclusion chromatography (SEC).

Enzymatic activity assays

Enzyme assays were conducted in 25-mL glass syringes with Luer
lock caps, following a previously described method with minor
modifications (Hu et al., 2016; Stribny et al., 2016; Egea-Cortines
et al., 2019). The reactionmixtures contained a glycerol buffer (50mM
potassium phosphate, pH 7.5, 10% (w/v) glycerol), which included
higher alcohol as a co-substrate, acetyl-CoA as the second co-
substrate, and a cell extract. The volume ratio of higher alcohol,
acetyl-CoA, and cell extract was 10:1:4, with a final reaction volume of
1.5 mL. Isoamyl alcohol (0.01–100 mM final concentration),
isobutanol (60 mM), or 2-phenylethanol (30 mM) were used as
substrates, along with 0.8 mM acetyl-CoA. Substrate concentrations
were carefully measured. After adding all components, entrapped air
was removed using the plunger, and the syringe was attached to an
orbital shaker. Following a 30-min incubation, 1.5-mL samples were
transferred to 15-mL vials containing 0.35 g NaCl for ester
quantification via gas chromatography. Enzyme activity was
terminated by adding 60 mL of a saturated KSCN solution.

RT-qPCR analysis of gene expression levels

Gene expression of LiAATase1 and LiAATase2 was quantified
using real-time quantitative polymerase chain reaction (RT-qPCR)
with PowerUp SYBR Green Master Mix (Applied Biosystems). Total
RNA was extracted from various developmental stages and tissues
using the Universal Plant Total RNA Extraction Kit (Bioteke, Beijing,
China) according to the manufacturer’s instructions. cDNA was
synthesized from the RNA samples using the PrimeScript first
Strand cDNA Synthesis Kit (Takara, Kyoto, Japan). The primers
used in the experiments are listed in Table 2. RT-qPCR analysis was
performed on an Applied Biosystems QuantStudio five instrument.
Data were analyzed using the 2−ΔΔCT method (Livak and Schmittgen,
2001; Schmittgen and Livak, 2008; Hawkins and Guest, 2017; Green

and Sambrook, 2018; Liu et al., 2024a; Liu et al., 2024b; Liu et al.,
2025a; Liu et al., 2025b; Liu et al., 2025c), and relative expression ratios
were presented as log2 values in histograms. A ratio greater than zero
indicated upregulation, while a ratio less than zero indicated
downregulation. Beta-actin was used as a reference gene for
normalization, and a positive control with beta-actin was included
in the analysis.

Statistical analysis

All experiments were conducted at least in triplicate. The data were
expressed asmean ± SD. Statistical analysis was conducted using Origin
8.5,Microsoft Excel 2013 and SPSS 19.0. In the all statistical evaluations,
p < 0.05 was considered statistically significant, and p < 0.01 was
considered high statistically significant.
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