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Introduction: Existing epidemiological and experimental evidence have unveiled
individual PBDE congeners facilitate the initiation of breast cancer. However, the
comprehensive molecular mechanisms by which PBDE mixtures contribute to
breast cancer pathogenesis remains poorly understood. This study aims to
identify the PBDE congeners that preferentially accumulate in female adipose
tissues and to intricate their interactions and key targets and molecular pathways
implicated in breast cancer tumorigenesis.

Materials and methods: Adipose tissue specimens were collected from
183 patients with breast cancer and 145 women with benign breast disease or
non breast-related diseases. Adipose PBDEs concentrations were determined by
gas chromatograph-mass spectrometer. The ChEMBL, STITCH, GeneCards,
OMIM, TCGA-BRCA databases, as well as a protein-protein interaction (PPI)
network, were utilized to identify the primary targets of PBDEs and their
interactions. Molecular docking was performed using Autodock Vina to
validate the binding affinities between chemicals and targets. Functional
enrichment analysis was then performed based on Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Machine
learning strategies were applied to refine core genes involved in pathogenesis of
breast cancer.

Results: BDE-47, BDE-138, BDE-153, BDE-183 and BDE-209 were recognized as
the major PBDE congeners accumulated in adipose tissues. The top 20 candidate
target genes were enriched for response to chemical stress, gland development,
protein ligase binding, lipid and atherosclerosis and chemical carcinogenesis. The
intersected genes and pathways between breast cancer and chemical
carcinogenesis revealed significant associations with pathways in the PD-1/
PD-L1 checkpoint and the HIF-1 signaling pathway. Machine learning
strategies nominated CASP3, ESR1, MMP9, PARP1, and PPARG as crucial genes
involved in breast cancer pathogenesis, exhibiting high-affinity binding to the
major PBDE congeners.
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Conclusion: This integrative network study uncovers a mechanistic framwork
linking adipose-accumulated PBDE mixtures to breast cancer pathogenesis.
These findings provide insights for preventive and therapeutic interventions
against PBDE-associated breast cancer.

polybrominated diphenyl ethers, breast cancer, network toxicology, molecular docking,
gas chromatograph-mass spectrometer

1 Introduction

Polybrominated diphenyl ethers (PBDEs), a class of flame
retardants extensively utilized in industrial products such as
textiles, electronic appliances, furniture, and electronic devices,
have been associated with a range of adverse health -effects,
including endocrine disruption, hepatotoxicity, neurotoxicity,
reproductive toxicity, and potential carcinogenicity (Dong et al.,
2023; Kostenko et al., 2024; Lan et al., 2024; Li et al., 2019; Wu et al.,
2023; Yuan et al., 2021; Zhang et al., 2023). Due to their high lipid
solubility and diverse exposure pathways, PBDEs can readily
accumulate in adipose tissue, particularly in breast tissue (Author
anonymous, 2017). PBDEs consist of 209 congeners, which are
characterized by varying numbers and positions of bromine atoms
on the aromatic ring. While bans and restrictions on PBDEs have
been implemented in some countries and regions since 2003
(Programme, 2012), the lipophilic nature and resistance to
degradation of PBDEs contribute to their ubiquitous presence in
global environmental matrices, including soil, sediment, and air, as
well as their detection in wildlife and human specimens (e.g., serum,
urine, breast milk, umbilical cord blood, hair) (Alaee et al., 2003; de
Wit, 2002; Li et al.,, 2018; Tang and Zhai, 2017; Xu et al.,, 2015).

Breast cancer remains the most commonly diagnosed cancer and the
leading cause of cancer death among women in the world (Bray et al,,
2024). Exposure to environmental chemicals, particularly persistent
organic pollutants (POPs), have been linked to both the initiation and
progression of breast cancer. Notably, the accumulation of POPs in breast
adipose tissue has been more robustly associated with increased breast
cancer incidence (Ennour-Idrissi et al,, 2019). PBDEs, especially certain
congeners, have been also identified as independent risk factors for breast
cancer occurrence (He et al, 2018). The Endocrine-disrupting effects,
DNA impairment and the inflammatory response have involeved in the
primary mechanisms underlying PBDEs-induced cancer (Renzelli et al,,
2023). However, the existing studies predominantly focused on the
carcinogenic mechanisms of individual PBDE congeners rather than
PBDEs mixtures (Dunnick et al., 2018; Lamkin et al., 2022), whereas the
real-world human exposure scenarios typically involve complex mixtures
of PBDEs.

Network toxicology is an emerging interdisciplinary field that
integrates bioinformatics, systems biology, and chemical informatics
to investigate the effects of chemicals on biological systems, by which
how substances interfere with molecular networks thereby leading to
cellular dysfunction and diseases could be elucidated (He et al.,
2024). Molecular docking is a computational technique used to
simulate interactions between environmental toxins and key
proteins, facilitating  insights into binding sites and
conformations, thereby revealing the molecular underpinnings of
pollutant toxicity (Trott and Olson, 2010). Critically, while studies
on mechanism of individual PBDE congener in vitro or in vivo are
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abundant, the application to decipher the mechanisms of real-world
human exposure to PBDE mixtures, based on congener profiles
identified in actual patient tissues, remains unexplored. Herein, we
hypothesize that exposure to environmentally relevant mixtures of
major PBDE congeners contributes to breast cancer initiation by
dysregulating specific pathways and key hub genes. To test the
hypothesis and to elucidate the mixed carcinogenetic mechanisms of
the major PBDE congeners (BDE-47, BDE-138, BDE-153, BDE-183,
and BDE-209) in breast cancer patients, we employed an integrative
approach combining epidemiological profiling, network toxicology
and molecular docking.

2 Materials and methods

The workflow was presented in Figure 1.

2.1 Acquisition of common PBDE congeners
profiles in adipose tissues

A total of 183 patients with pathologically diagnosed Breast Cancer
and 145 women with benign breast disease or non-breast-related diseases
were retrospectively enrolled in our study from January 2014 to April
2015. Inclusion criteria of patients were as follows: (1) newly diagnosed
with breast cancer; (2) born and residing in the eastern region of southern
China. Two grams of human breast adipose tissue were collected and
determined for PBDEs concentrations by an Agilent 7890A gas
chromatograph coupled with an Agilent 5975C mass spectrometer
(Agilent Technologies, USA). The procedures have previously been
described in detail (He et al, 2017). To ensure a good linear
relationship (r > 0.99), we established a set of multipoint standard
curves (5-level for BDE-209 and 7-level for the other PBDE
congeners). Clinical data, including age at diagnosis, menopause
status, and family history of breast cancer, were retrospectively
obtained from the hospital records and regularly interviews. This
study was approved by the Human Ethics Committee of Shantou
University Medical College (SUMC-05-2014), and all participants
provided written informed consent after being fully informed of the
study details and potential implications. The PBDEs profiles were
visualized using radar charts. The five most abundant congeners were
recoganized as the major compounds for further analysis.

2.2 Analysis of PBDE congeners mixture
effect on breast cancer

Bayesian kernel machine regression (BKMR) model was utilized
to estimate the mixed effects of the five major PBDE congeners on
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FIGURE 1

Integrative workflow of network toxicology and molecular docking analysis for this study.

the occurrence of breast cancer, with adjusted for several variables
known to be associated with breast cancer including age at diagnosis,
menopausal status, and family history of breast cancer. When
constructing the model with the bkmr (version 0.2.2) package,
10,000 iterations performed by Markov Chain Monte Carlo to
ensure the convergence and stability of parameter estimation.
The posterior inclusion probability (PIP) of each PBDE congener
quantified its individual contribution to the model. The model
evaluates the effect of the other factors maintained at the specific
percentile (range from 0.1 to 0.9), as compared to the effect of their
50th percentile.

2.3 Acquisition of ADMET properties

To predict compound properties, ADMETlab 3.0 employed
models, a novel methodology that was widely used to assess
their absorption, distribution,
metabolism, excretion, and toxicity properties was performed by

environmental hazards for
silico filtering using various machine learning methods (Zdrazil
et al., 2024). To further validate the properties, we conducted the
properties prediction of the congeners by SwissADME (Daina

et al., 2017).

2.4 Acquisition of PBDEs targets

The structures of the major PBDEs congeners—BDE-47, BDE-
138, BDE-153, BDE-183, and BDE-209—were retrieved from
PubChem (Kim et al, 2023). The targets of these compounds
were identified through databases including ChEMBL, STITCH,
PharmMapper, PubChem, Similarity Ensemble Approach, and
SwissTargetPrediction, which were specifically curated for Homo
sapiens (Daina and Zoete, 2024; Keiser et al., 2007; Kim et al., 2023;
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Szklarczyk et al., 2015; Wang et al., 2017; Zdrazil et al., 2024). The
target gained in all databases were accessed in October 2024. Then
the names of the targets were standarized by the UniProt database
(UniProt, 2024). The targets for each compound were then
integrated and deduplicated.

2.5 Acquisition of disease-related targets

Breast cancer-related targets were retrieved from databases
including Online Mendelian Inheritance in Man (OMIM) and
GeneCards (last accessed in October 2024), retaining entries with
relevance scores exceeding 10.0. The disease-related gene list was
then intersected with PBDE-target genes. Subsequently, their
overlap was visualized with a Venn diagram generated using the
ggplot2 package.

2.6 Conduction of protein-protein
interaction network

STRING was employed to identify the relationship among the
intersected genes with an interaction score>0.400 restricted to H.
sapiens (Szklarczyk et al., 2015). Targets predicted by at least two
distinct PBDE congeners were subsequently imported into
Cytoscape 3.10.3 for protein-protein interaction (PPI) network
visualization.

2.7 Candidate genes screening and
functional enrichment analysis

To screen candidate genes from the Protein-Protein Interaction
(PPI) network, we employed a methodological approach inspired by
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He et al., utilizing the CentiScape 2.2 plugin (He et al, 2024;
Scardoni et al,, 2009). In brief, we assessed centrality metrics
including Degree, Betweenness, and Stress for each protein and
standardized the ranks of these three centrality metrics collectively
using Min-Max normalization. By reranking the standardized ranks
in descending order, we selected the top 20 target genes. Functional
enrichment analysis was performed to elucidate the biological
functions and metabolic pathways of the top 20 target genes,
utilizing ClusterProfiler and the ClueGO + CluePedia plugin
(Bindea et al, 2009; Wu et al, 2021). Furthermore, Cytoscape
software and ClueGo + CluePedia plugin were employed to
establish the first
interactome capable of uncovering latent yet potentially pivotal

neighbor pathways for a primary-tier
crosstalk among signaling cascades. Specifically, we first built a
core set that contained all pathways and genes related to the top
20 genes annotated to the keywords “breast cancer” or “chemical
carcinogenesis” (GO Biological Process, GO Molecular Function,
GO Molecular Function and KEGG). CluePedia then retrieved every
pathway that shared at least one gene or pathway with any member
of this core set; these directly connected pathways or genes were

defined as “the first neighbors”.

2.8 Analysis of core genes with machine
learning strategies

Three machine learning strategies were employed to identify
core targets among the top 20 genes: Least Absolute Shrinkage and
Selection Operator (LASSO) analysis, Random Forest (RF)
algorithm, and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) algorithm (Hu and Szymczak, 2023;
Kang et al, 2021; Sanz et al,, 2018). In the LASSO analysis, the
regression model was constructed with the glmnet package. We set
“binominal” in “family” parameter and chose the optimal A
(lambda) value with its minimum value. For the SVM-RFE
analysis, the e1071, kernlab, and caret packages were utilized to
identify feature genes using the svmRadial model, with the
doParallel package accelerating the computations. In the RF
analysis, the randomForest package was employed to build a
model with feature genes according to their importance among
targets. Overall, the core targets were screened using the three
machine learning strategies. The gene expression data used in
this study were sourced from The Cancer Genome Atlas (TCGA)
database from the Breast Invasive Carcinoma (BRCA) project,
which was analyzed and visualized using ggplot2 (Wickham, 2016).

2.9 Molecular docking

The UniProtKB IDs of the top 20 genes, along with their
common names, were retrieved from the UniProt database
(UniProt, 2024). Corresponding human proteins of reviewed
status were subsequently sourced from the Protein Data Bank
(Supplementary Table 1), the protein structures were then
retrieved from AlphaFold Protein Structure Database or
predicted by AlphaFold 3 (Abramson et al., 2024; Varadi et al,
2024). The structures of the top 20 proteins were standardized by

removing water molecules, adding hydrogen atoms. The grid box
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was set by PrankWeb selecting the rank 1 active position as the box
center (Jakubec et al, 2022). The potential binding between
compounds and proteins was analyzed using AutoDock Vina
(Trott and Olson, 2010). Finally, the visualization of ligand-
receptor performed using Maestro Viewer,
Schrédinger (Sankar et al, 2022). To rigorously validate our

binding was

docking protocol, we utilized the agonist/antagonist annotated in
Drugbank (Knox et al., 2024) to conduct molecular docking control
analysis with the same AutoDock Vina parameters used for the
20 target proteins (Supplementary Table 1).

2.10 Validation of core genes

The validation of core genes involved differential mRNA
expression analysis, survival analysis, and quantification of
PBDEs in adipose tissue. We determined an mRNA expression
profile that MCF7 cell expression was exposed to PBDEs (BDE-47,
BDE-100, and BDE-153) in GSE111203 from the Gene Expression
Omnibus (GEO) repository (Kanaya et al, 2019). Differential
expression analysis compared to the dimethyl sulfoxide (DMSO)
control group was conducted using independent samples t-tests for
the PBDEs-exposed profile based on the result of tests of normality
and homogeneity of variance test. Using data from the TCGA-
BRCA database (accessed October 2024), the differential expression
of five core genes (CASP3,ESRI,MMP9,PARP1,PPARG) were
quantitatively analyze in breast cancer tissues compared to
normal control tissues (Camp et al, 2004). Based on our
previous study, we analyzed PBDEs content in human breast
adipose tissue (He et al., 2018).

2.11 Statistical analysis

Statistical analyses were conducted using the ggplot2 package in
R and IBM SPSS Statistics version 27.0.1.0 software (Team, 2024;
Wickham, 2016). Gene expression values are represented as mean +
standard deviation (SD). According to the normal distribution
distribution and homogeneity of variance of gene expression in
GSE111203, significance was assessed using independent samples
t-tests. Given the skewed distribution and heteroscedasticity of gene
expression data from the TCGA-BRCA dataset, the Wilcoxon rank-
sum test was employed. The optimal cutoff values for the expresion
of core genes were determined with X-tile 3.6.1 software, as
presented in Supplementary Figure S1. A p-value of less than
0.05 was considered statistically significant.

3 Results

3.1 Acquisition of major PBDE congeners in
relation to breast cancer risk

BDE-47, BDE-138, BDE-153, BDE-183, and BDE-209 were
identified as the five most abundant PBDE congeners in case
group (Figure 2A). The baseline characteristics of participants are
listed in Table 1. BDE-47, BDE-138, BDE-153, and BDE-209
exhibited significantly different accumulation patterns between
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The common PBDE congeners identification and analysis of their effect on breast cancer. (A) PBDE congeners concentration profile in control
group presents as radar chart. (B) Comparison of individual PBDE concentrations in cases and controls by Wilcoxon signed rank test. (C) Spearman
correlation analysis of the major PBDE congeners. (D) PIPs value for each congener were presented in a bar chart. (F) The interaction analysis among the
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the major PBDE congeners on breast cancer risk using the BKMR model, with adjusted for age at diagnosis, menopause status, as well as family history of
breast cancer. (F) Interaction effect between each two PBDE congeners analyzed by BKMR model. * presents the p-value <0.05. ** presents the

p-value <0.01. *** presents the p-value <0.001.

the case and control groups, while BDE-183 ranked among the top three
PBDE congeners in both groups (Figure 2B). Consequently, BDE-47,
BDE-138, BDE-153, BDE-183, and BDE-209 were identified as the major
PBDE congeners for further study. To evaluate the correlations among
the major PBDE congeners, Spearman correlation analysis was
conducted, confirming strong correlations among them (Figure 2C).
The major PBDE congeners play a role in the mixed effect (Figure 2D),
with BDE-138 (PIPs = 0.969), BDE-183 (PIPs = 0.986), and BDE-209
(PIPs = 0.990) being the top three congeners that contribute the most to
the mixed effect on breast cancer risk, followed by BDE-47 (PIPs = 0.676)
and BDE-153 (PIPs = 0.716). Using the BKMR model, we observed a
significant increase in breast cancer risk when all major PBDE congeners
were fixed at or above their 55th percentile relative to the 50th percentile
reference (Figure 2E). Notably, no significant interactions were found
among congeners (Figure 2F), implying the absence of collinearity in
the model.

3.2 Intersection analysis of the co-target
genes of PBDE congeners and breast cancer

The chemical information for PBDEs, including their SMILES
structures, molecular weights, and chemical formulas, is presented
in Supplementary Table 2. By integrating and de-duplicating the
target genes predicted for breast cancer from various databases, a
total of 2,208 unique genes were retrieved. These genes are depicted
as a grid in the center (Figure 3A), and 233 target genes predicted by
more than two compounds are highlighted in the central grid. A
total of 2058 target genes of breast cancer were identified through the
databases. The intersection of breast cancer and PBDEs target genes
result in 233 interested genes shown (Figure 3B). The 233 interested
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genes are probably contributed to PBDEs induced breast cancer.
Based on that, the PPI network of the interested genes was presented
(Figure 3C). Genes were organized in concentric circles if their
betweenness, stress, and degree centrality values exceeded the
average score. Higher ranks of the genes, indicating larger values,
are depicted in red, while lower ranks are shown in yellow. The top
20 candidate target genes (Table 2) are displayed in the central
concentric circle, suggesting their crucial role in breast cancer.
The detailed results of ADMET analysis using ADMETIlab
3.0 and SwissADME are presented in Supplementary Table 3,
which describe the properties of PBDEs. The symbol “+”
indicates a low relationship between PBDE congeners and
properties, +4+47 strong
relationship. PBDEs exhibit low gastrointestinal absorption and

«

various while indicates a
poor permeability in Madin-Darby Canine Kidney (MDCK) cells
(less than 2 x 107° cm/s), indicating limited absorption potential.
However, PBDEs show high bioactivity by effectively inhibiting
P-glycoprotein and cytochrome P450 enzymes (CYP1A2,
CYP2C19, and CYP3A4). They also demonstrate strong plasma
protein binding (PPB >90%) and good blood—brain barrier (BBB)
penetration (>90%), facilitating plasma protein binding and
distribution. Most PBDEs have low plasma clearance (<5 mL/
min/kg, except BDE-47 at 5.65 mL/min/kg) and short half-lives

(1-8 h), suggesting their poor potential for excretion.
Toxicologically, PBDEs were predicted to inhibit peroxisome
proliferator-activated ~ receptor gamma (PPARG), activate

mitochondrial membrane potential, and affect steroid hormone
receptor function (BDE-47 was predicted to activate estrogen
receptor (ER), other act as receptor
suppressors). Additionally, PBDEs are highly toxic to the heart,

whereas congeners

liver, skin, eyes, and respiratory system.
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TABLE 1 General characteristics and breast cancer risk factors for cases and controls.

Characteristics Cases (n = 183) Controls (n = 145) P
Age (Mean + SD, [range], years) 52.08 + 9.77 [25-83] 43.57 + 11.12 [24-68] 0.014189
PBDE-47 (median (IQR) ng/g) 3.86 (2.29-6.45) 2.55 (1.44-4.54) <0.001
PBDE-138 (median (IQR) ng/g) 2.76 (1.22-7.10) 1.91 (1.01-3.94) 0.005
PBDE-153 (median (IQR) ng/g) 30.04 (18.03-45.15) 26.29 (16.96-38.36) 0.106
PBDE-183 (median (IQR) ng/g) 7.09 (4.52-12.58) 8.28 (4.11-18.71) 0.184
PBDE-209 (median (IQR) ng/g) 24.89 (14.01-37.97) 16.95 (10.85-25.90) <0.001
Family of breast cancer history
Yes 35 1 <0.001
No 148 144
Menopausal status
Premenopause 82 81 0.047
Postmenopause 101 64
Marital status
Yes 182 145 1.00
No 1 0
Place of residence
Shantou 113 102 0.411
Jieyang 35 20
Chaozhou 31 21
Other 4 2
Breastfeeding
Yes 174 123 0.002
No 9 22
Number of children born
0 5 0 0.10
1 39 37
>2 139 108

Independent samplet-test was used for the continuous variables, and chi-square test or Fisher’s exact test was used for categorical data.
“Since the non-normality of the data was confirmed by the Shapiro-Wilk test, we compared the sample median using the Mann-Whitney U test.

3.3 Network analysis of candidate genes in
breast cancer-related enrichment results of
GO and KEGG

The GO analysis (Figures 3D,E) demonstrated the biological
processes including response to chemical stress, response to
oxidative stress, and gland development, all of which are highly
associated with chemical-induced breast cancer. In terms of cellular
component enrichment, vesicle lumen and nuclear envelope were
suggested as the potential target components. Within the molecular
function enrichment analysis, protein ligase binding, including
ubiquitin and ubiquitin-like binding, may play a crucial role in
responding to chemically induced breast cancer. And KEGG
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enrichment analysis (Figures 3D,E) revealed pathways such as
lipid metabolism and atherosclerosis, chemical carcinogenesis,
endocrine resistance, and estrogen signaling pathway, which were
enriched by the top 20 candidate target genes and are highly
associated with PBDEs-induced breast cancer. Based on the
enrichment analysis with ClueGO + CluePedia plugin in
Cytoscape, we subsequently extracted the first neighbor pathways
and genes that were related to breast cancer and chemical
carcinogenesis (Figure 3F). PD-L1 expression and PD-1
checkpoint pathway in cancer and the HIF-1 signaling pathway
were demonstrated to have connectivity between breast cancer and
chemical carcinogenesis. Additionally, ESRI, EGFR, MAPKS3,
MTOR, and MAPK1 were identified to be related genes involved in.
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Candidate genes screening co-targeted by chemicals and breast cancer. (A) Relationship diagram between the five congeners and their target
genes. The red rhombuses represent the major PBDE congeners, while the blue rectangles represent the genes predicted by databases. (B) The venn
diagram shows the interested target genes intersected by PBDEs and breast cancer. (C) Centrality-based hierarchical visualization of key genes in a
protein-protein interaction network. (D) The GO and KEGG enrichment analysis for the top 20 targets conducted by the ClusterProfiler and ggplot2.
(E) The dotplot of the contributed genes in the pathways of GO and KEGG enrichment analysis. (F) The overview of the first neighbor pathways and genes

of breast cancer and chemical carcinogenesis conducted by ClueGO plugin in Cytoscape software.
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TABLE 2 Topological measurements of top 20 genes in the PPl networks, identified utilizing the CentiScape 2.2 plugin of Cytoscape.

Protein Node Betweenness Degree Stress Rank
Epidermal growth factor receptor EGFR 4893.902867 146 49906 1
Estrogen receptor ESR1 3461.765416 126 43664 2
Heat shock protein HSP 90-alpha HSP90AAL 2,134.546215 121 31726 3
Tumor necrosis factor TNF 1846.435182 123 30034 4
Albumin ALB 2088.173552 116 29002 5
Apoptosis regulator Bcl-2 BCL2 1204.545992 117 22582 6
Caspase-3 CASP3 1252.059671 112 22108 7
Nuclear factor NF-kappa-B p105 subunit NFKB1 1293.387255 111 21226 8
Proto-oncogene tyrosine-protein kinase Src SRC 1309.771054 107 20232 9
Mitogen-activated protein kinase 3 MAPK3 1122.746063 103 17982 10
Heat shock protein HSP 90-beta HSP90AB1 1052.03426 102 19524 11
Matrix metalloproteinase-9 MMP9 1006.814487 98 17020 12
Serine/threonine-protein kinase mTOR MTOR 930.4250484 93 15466 13
Serine-protein kinase ATM ATM 878.8977161 84 15900 14
Glycogen synthase kinase-3 beta GSK3B 790.4484594 91 14656 15
E3 ubiquitin-protein ligase Mdm2 MDM2 796.6072172 86 14280 16
Poly [ADP-ribose] polymerase 1 PARP1 789.5238713 79 15578 17
Peroxisome proliferator-activated receptor gamma PPARG 731.2425848 83 12614 18
Mitogen-activated protein kinase 1 MAPK1 621.9825549 85 11946 19
Tyrosine-protein kinase ABL1 ABL1 955.0015405 65 13816 20

3.4 The core targets screened by machine
learning and their expression in
TCGA-BRCA database

SVM-RFE, LASSO regression, and RF machine learning
algorithms were employed to identify core target genes. The
SVM-RFE algorithm pinpointed nine candidate core targets
(Figure 4A). Subsequently, the RF algorithm was utilized to
rank these genes based on their importance (Figure 4B).
Additionally, the LASSO regression algorithm identified
13 candidate core targets, as shown in Figure 4C. The
intersection of these gene sets, comprising five genes (CASP3,
ESR1, MMPY, PARPI1, and PPARG), was determined to be the
core targets through a Venn diagram analysis (Figure 4D).
Thereafter, mRNA expression analysis was conducted on the
TCGA-BRCA database using the Wilcoxon test. The expression
levels of the five core target genes were visualized as box plots
(Figures 4E-I). Notably, these genes displayed markedly
elevated or downregulated expression levels in tumor tissues,
suggesting that their dysregulation may play a significant role in
the pathogenesis of breast cancer.

Frontiers in Chemistry

3.5 Molecular docking of the top
20 candidate proteins

Molecular docking simulations were performed between the top
20 candidate proteins and the major PBDE congeners. Binding
energies between the 5 core proteins (controls, CASP3, ESRI,
MMP9, PARP1, and PPARG) and each compound were
visualized as heatplot (Figure 5A). Representative binding
conformations are then depicted in Figures 5B-F. The red,
yellow, green, blue, and violet ligands represent BDE-47, BDE-
138, BDE-153, BDE-183, and BDE-209,
comprehensive parameters  are

respectively. The
docking provided in
Supplementary Figures S2-S6. The halogen bonds, hydrogen
bonds and hydrophobic interactions participate in the formation
of the binding (Supplementary Figures S2-S6B, D, F, H, ]), and
several amino acid residues such as lysine (LYS), arginine (ARG),
histidine (HIS) and threonine (THR) were got involved in the
bindings between major PBDE congeners and the core proteins.
Interestingly, the five compounds seem to have almost the same
binding sites in each core protein except ESRI (Figures 5B-F),
implying the possibility of shared general toxicological mechanisms.
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FIGURE 4

The core target genes identified by machine learning and TCGA-BRCA database. (A) Nine candidate core targets were identified by SVM-RFE
machine learning algorithm. (B) The RF algorithm randomly selected 18 candidate core targets and ranked them with their importance among the targets.
(C) At the lowest point of the curve, the number of genes were identified is thirteen constructed by LASSO regression model. (D) Veen diagram
demonstrated the five core target for PBDEs-induced breast cancer which were intersected by the three machine learning algorithm strategies. The
expression of key genes, CASP3 (E) ESR1 (F) MMP9 (G) PARP1 (H) and PPARG (I) in TCGA-BRCA database was shown as box plot. Expression analysis of
ESR1 (J3), PARP1 (K) and PPARG (L) was visualized using box plots. **** presents the p-value of the expression analysis result <0.0001. *** presents the
p-value of the expression analysis result <0.001. ** presents the p-value of the expression analysis result <0.01. * presents the p-value of the expression
analysis result <0.05.
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FIGURE 5
Molecular docking of the five core genes/controls with the major PBDEs. (A) The overview of the binding energy between the ligands and the

proteins. CASP3 (B), ESR1 (C), MMP9 (D), PARP1 (E), and PPARG (F) were respectively binding with BDE-47 (red), BDE-138 (yellow), BDE-153 (green), BDE-
183 (blue), and BDE-209 (violet).

3.6 Validation of core genes and
carcinogenesis effect of congeners

We further verified the expression levels of the core genes
utilizing a dataset from the GEO. As a result, three genes were
identified as differentially expressed between primary tumor
specimens and normal tissue samples. Among them, ESR1 and
PARP1 exhibited a significant increase within tumor tissues, while
PPARG were 4]-L;
Supplementary Figures S1), implying that these genes may

significantly ~downregulated (Figures

contribute to the pathogenesis of PBDEs-induced breast cancer.

4 Discussion

This study integrates network toxicology and molecular docking
analyses to elucidate the potential mechanisms underlying the
contribution of PBDEs to breast cancer initiation. Positive
association between PBDEs mixture and breast cancer were
found in BKMR model. Our findings highlight the complex
interplay between PBDE congeners and key molecular pathways
involved in breast carcinogenesis, providing novel insights into the
toxicological basis of PBDEs-induced breast cancer.

Epidemic study revealed that PBDEs contribute to breast cancer
as independent risk factors (Benoit et al., 2022; He et al., 2018)
Confirmed by in vitro experiments, estrogen-like effect of PBDEs
contribute to the proliferation of breast cancer cells (Renzelli et al.,
2023). To further investigate the association between PBDEs
mixture exposure and breast cancer risk, we employed the
BKMR model for assessing mixed pollutant effects. The analysis
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revealed a positive correlation trend between PBDEs mixture
exposure and breast cancer initiation. By constructing exposure-
response surfaces through kernel functions, the BKMR model
effectively addressed potential estimation biases inherent in
traditional statistical methods, which often fail to fully account
for collinearity issues among compounds and between pollutants
and other risk factors in analyzing complex mixture exposure effects.

The results of the ADMET analysis identified potential health
risks associated with PBDEs, including organ toxicity, metabolic
interference, and accumulation in the body. The results revealed that
PBDE congeners share several common characteristics, suggesting
that additive or synergistic effects may occur when these substances
are present in mixtures. In special, the findings of PBDE congeners
exhibiting low absorption but high bioavailability in humans,
implying that even exposure to low doses can induce biotoxicity.
Additionally, we found that these congeners have a strong ability to
bind proteins but are difficult to excrete, which is consistent with
their widespread distribution and accumulation in the body. The
current results also showed that all the substances have potential to
cross the blood-brain barrier, suggesting their potential to reach the
central nervous system. PBDEs that remain covalently or tightly
bound to plasma proteins are indeed too large to traverse the intact
BBB. However, consistent with our finding, an ADMETlab in silico
assessment (Qu et al, 2025) indicated that PBDE-47 is highly
lipophilic (logP

6-7) and has a low polar surface area,
implying a high probability of passive diffusion across the BBB.
Although no direct BBB transport experiment was performed, the
subsequent network toxicology and transcriptomic analyses
dysregulation  of

and cell-cycle-related genes in human neural

revealed  significant neuroinflammation-,

ferroptosis-
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progenitor and neuron-like PC12 cells, providing indirect evidence
that PBDE-47 can accumulate in the brain and exert neurotoxicity.
This finding aligns with the neurotoxicity of PBDEs indicated in
previous studies (Dong et al., 2023; Li et al., 2019). In the perspecive
of toxicological pathways, the carcinogenesis and the genotoxicity of
tumors may be due to the activation of steroid hormone receptors
and changes in mitochondrial membrane potential, which is
consistent with previous in vitro studies of PBDEs (Chen et al.,
2022; Kanaya et al, 2019; Tian et al,, 2024; Zhang et al.,, 2016).
Previous studies have reported associations between PBDEs
exposure and multi-organ toxicity, but there are limited studies
on eye corrosion, irritation, and skin sensitization, providing new
directions for future research (Dong et al., 2023; Kostenko et al.,
2024; Wu et al., 2023; Yuan et al., 2021; Zhang et al., 2023). Based on
ADMET analysis, our study indicated that these substances exhibit
effects,
hepatotoxicity, nephrotoxicity, and genotoxicity, besides eye

multiple  adverse including  respiratory  toxicity,
corrosion and irritation, skin sensitization. The toxicological
metabolic pathways analysis showed that PBDEs had low
absorption but high bioavailability in human body, which may
explain the findings that PBDEs inhibit P-glycoprotein and
cytochrome P450 enzymes, consisting with our analysis (Li et al.,
2017; Yu et al., 2021).

Oxidative stress is a well-acknowledged toxicological mode of
effect for PBDEs (Jiang et al., 2024). In human embryonic stem cells,
BDE-209 upregulated the expression of oxidative stress-related
genes HIFla and HIF2a (Du et al, 2016). With BDE-209
exposure, HIFla expression were also increased in sparus aurata
fibroblast cell line (Du et al., 2016). Notably, HIF-1 has been shown
to drive breast tumorigenesis via Wnt/B-catenin pathway activation
(Liu et al., 2021). Consistant with these observations, our network
toxicology analysis identifies the HIF-1 pathway as a pivotal
mediator of PBDEs-induced breast carcinogenesis. The PD-1/PD-
L1 checkpoint pathway also emerged as a central pathway in PBDE-
induced breast cancer. Although endocrine disruptor compounds
such as bisphenol A, di-ethylhexyl-phthalate, dibutyl phthalate and
4-tert-octylphenol
macrophage responses (Couleau et al., 2015), our work is, to the

have been shown to modulate human
best of our knowledge, the first to implicate PBDEs in tumor
immune evasion circuitry. Rigorous experimental studies are now
warranted to determine whether PBDEs exposure compromises
immune surveillance and to underlying mechanisms.

In the current study, we indicated five core genes, including
CASP3, ESR1, MMP9, PARP1, and PPARG, contribute to the
pathogenesis of breast cancer. CASP3 (caspase-3), serving as an
executor of apoptosis and the critical protein in pyroptosis, has been
closely associated with tumor reproliferation, and the status of PR
and HER2 in breast cancer (Rodriguez-Ruiz et al., 2020; Yang et al.,
2018). Recent evidence indicated that Caspase-3 promotes
oncogene-induced malignant transformation in mammalian cells
via EndoG-dependent Src-STAT3 phosphorylation (Zhu et al,
2024). Caspase-3
cytoprotective autophagy in human breast cancer cells subjected

Moreover, was found to orchestrate
to starvation or proteasome inhibition (Samarasekera et al., 2025).
These findings suggest the potential of caspase-3 in tumor
recurrence. While exposure to PBDEs, such as BDE-47, BDE-153,
and BDE-209, has been indicated to induce upregulation of caspase

3 in hepatocytes, mouse nerve cells, macrophages and neurons
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(Dong et al,, 2024; McDermott et al., 2024; Meng et al., 2020;
Wang and Dai, 2022), the role of caspase 3 in PBDEs-induced
breast cancer initiation remains to be clarified.

MMP9 is a matrix metalloproteinase that allows for the invasion
and metastasis of tumor cells via decomposition of extracellular
matrix (ECM) components and basement membrane (BM).
MMP9 overexpression in tumor cells has been associated with
poor survival, larger tumor size, lymph node metastasis, distant
metastasis, higher clinical stage, and histological grade in patients
with breast cancer (Jiang and Li, 2021). MMP9 has been reported to
exhibit elevated expression levels following exposure to BDE-209
and BDE-47 in melanoma and human neuroblastoma (Silva Filho
et al, 2022; Tian et al, 2016). And the dysregulation of
MMP9 expression was associated with the risk of breast cancer

(Dofara et al, 2020). PBDEs exposure upregulates
MMP9 expression, which may contribute to the breast cancer
initiation. However, limit studies have focused on the

mechanisms by which MMP9 induces breast cancer, indicating
the necessity for further studies.

Previous studies demonstrated that exposore to BDE-209 and
BDE-47 could trigger increased protein levels of cleaved PARP in
hippocampus neuron (Li et al., 2019; Sun et al., 2017). The activation
or the upregulation of PARP plays a role in single-strand DNA
damage repair, and PARP1, the isoenzyme of PARP, repairs over
99% single-strand DNA damage (Ndlovu et al, 2024). PARP
proteins, mainly located in nucleus, may be involved in signaling
cascades, response to intracellular stress, apoptosis, mitochondrial
function and energy metabolism in breast cancer (De et al., 2025),
suggesting PBDEs-inducing breast cancer initiation may be
synergistic with multiple causes.

Breast cancer cells, despite their reliance on an independent
energy metabolism, still depend on mitochondria for DNA
replication. The initiation of breast cancer and the emergence of
drug resistance are influenced by mitochondrial-related genes, such
as PPARG and ESR1 (Strillacci et al., 2022; Xu et al., 2025).
ADMET analysis found that PBDE
associated with mitochondrial membrane potential, suggesting

Interestingly, our is
breast cancer initiation induced by PBDEs may result from the
regulation of mitochondrial regulation by crucial targets.

ESR1 primarily regulates gene transcription by binding to
estrogen (Gui et al,, 2025). PBDEs exposure, especially BDE-47,
exhibits estrogen-like effects and activates estrogen receptor
signaling pathway, aligning with our ADMET and KEGG
analysis (Kanaya et al., 2019; Li et al, 2013). In ER-positive
breast cancer, the activation of ESR1 bypasses the GI-S
checkpoint to promote the tumor growth (Marra et al, 2023).
Additionally, ESR1 mutations are more common in metastatic
breast cancer, leading to constitutive activation of the estrogen
receptor, which contribute to the proliferation and drug
resistance of cancer cell (De Marchi et al., 2024). The findings
suggest that ESR1 may contribute to the initiation of PBDEs-
induced breast cancer.

The expression of PPARG in adipocyte
differentiation and metabolism, probably resulting in PBDEs
toxicological effects. Exposed to BDE-47, BDE-99, and BDE-153,
the upregulation of PPARG influence the lipid metabolism in mice

is involved

adipose tissue or human adipose tissue (Liu et al., 2022; Liu et al.,
2023; Wen et al, 2019), which may contribute to the different
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distribution of PBDEs on adipose and serum (Renzelli et al., 2023).
In breast and gastric cancer, PPARG could inhibit tumor initiation
and growth through regulating Wnt/B-catenin signaling pathway
(Wang et al.,, 2024). The findings suggest that PPARG may result in
the different distribution of PBDEs and the initiation of PBDEs-
inducing breast cancer. In our analysis, the different expression
pattern may result from the cell type, suggesting further experiment
to validate.

Additionally, we explore the binding potential of the 5 crucial
targets utilizing molecular docking analysis. The binding energy
results of PBDE congeners with proteins were all below —5 kcal/mol,
indicating the robust binding potential (Gao et al., 2025). The high-
affinity binding of PBDEs to targets may regulate them through
competitive inhibition (Chen et al., 2016) and conformational
transition (Wang et al., 2013), affecting the initiation of PBDEs-
inducing breast cancer. The binding of PBDEs to proteins may
disrupt the biological function. Several amino acid residues such as
LYS, ARG, HIS and THR were potential binding target residues of
major PBDE congeners, which consist with the findings from other
previous studies (Chen et al., 2023; Li et al., 2022; Wang et al., 2025;
Xu et al., 2024).

Originally, we sought to link PBDE mixture burden with clinical
stage within our cohort and to examine whether the identified core
genes exhibited stage-dependent expression in TCGA-BRCA
dataset. However, no significant relationships were detected
(Supplementary Figures S7). These null findings align with our
earlier report (Xie et al., 2023), where none of the five PBDE
congeners included in the current study correlated with either
clinical stage or TNM grade. Consequently, we cautiously infer
that exposure to BDE-47, BDE-138, BDE-153, BDE-183 and BDE-
209 preferentially influence breast-cancer initiation than subsequent
progression.

Compared with traditional network toxicological analysis, our
study identified research subjects based on epidemiological profiles
of the predominant PBDE congeners that accumulate in female
adipose tissue and subsequently validated crucial target genes in the
TCGA database and GEO dataset, thereby enhancing clinical
translatability. Through and

comprehensive  bioinformatics

molecular docking analyses, we underscore a potential
mechanism by which PBDEs contribute to the molecular etiology
of breast cancer, by altering critical genes, cellular functions and
pathways. The multiple databases and machine learning strategies
partly avoid the potential false positives from single algorithm or
machine learning strategy and reduce the time and cost associated
with traditional animal experiments. However, several limitations
should be warrant consideration. First, the TCGA cohort data lacks
information on PBDE levels in breast adipose tissue, which limits
our ability to draw definitive associations between PBDE exposure
and target genes expression. Second, although BMI, smoking,
alcohol consumption, and diet are well established risk factors for
breast cancer, they were excluded from covariate set in the BKRMR
model because over 40% of control participants had missing data.
This unavoidable omission may bias the exposure-outcome
association. Third, while the silico analyses are comprehensive,
the absence of experimental validation for identified target genes
limits the mechanistic claims. Further research utilizing in vitro and
in vivo models is imperative to solidify the causative relationship

between PBDEs exposure and abnormal regulation of key genes and

Frontiers in Chemistry

12

10.3389/fchem.2025.1630283

pathways involved in breast cancer carcinogenesis. For example,
qRT-PCR and Western blotting could be employed to quantify
transcript- and protein-level alterations of core genes in PBDE-
treated breast cancer cell lines or patient-derived tumor organoids.
Moreover, orthotopic xenograft models subjected to PBDE exposure
will serve as an in vivo validation platform, integrating single-cell
sequencing to elucidate PBDE-induced reprogramming of the
tumor microenvironment. In addition, CRISPR/Cas9-based gene
editing is available for functionally interrogating the role of each
identified gene in PBDE-driven breast carcinogenesis.

5 Conclusion

This study integrates macro-level and micro-level analytical
approaches to identify critical pathways and targets that influence
the initiation of breast cancer with PBDEs exposure. Given the
potential impact of key target expression changes and specific
binding interactions, strategies to reduce PBDE exposure, such as
the development of environmentally friendly flame retardants and
the implementation of stricter regulatory guidelines, are urgently
needed. The limitation of PBDE exposure may reduce breast cancer
risk, increase sensitivity of chemical therapy, and complement
existing treatments.
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SUPPLEMENTARY FIGURE S1

The optimal cutoff values for the survival analysis groups in terms of
CASP3 (A) ESR1 (B) MMP9 (C) PARP1 (D) and PPARG (E) were selected by
X-tile 3.6.1 software.

SUPPLEMENTARY FIGURE S2

Molecular docking analysis of CASP3 visualized in 3D and 2D. The red, yellow,
green, blue, and violet ligands represent BDE-47 (A,B) BDE-138 (C,D) BDE-
153 (E,F) BDE-183 (G,H) and BDE-209 (1,J) respectively. The legend
presents the form of the ligand and receptor bond in 2D.

SUPPLEMENTARY FIGURE S3

Molecular docking analysis of ESR1 visualized in 3D and 2D. The red, yellow,
green, blue, and violet ligands represent BDE-47 (A,B) BDE-138 (C,D) BDE-
153 (E,F) BDE-183 (G,H) and BDE-209 (1,J) respectively. The legend
presents the form of the ligand and receptor bond in 2D.

SUPPLEMENTARY FIGURE S4

Molecular docking analysis of MMP9 visualized in 3D and 2D. The red, yellow,
green, blue, and violet ligands represent BDE-47 (A,B) BDE-138 (C,D) BDE-
153 (E,F) BDE-183 (G,H) and BDE-209 (1,J) respectively.

SUPPLEMENTARY FIGURE S5

Molecular docking analysis of PARP1 visualized in 3D and 2D. The red, yellow,
green, blue, and violet ligands represent BDE-47 (A,B) BDE-138 (C,D) BDE-
153 (E,F) BDE-183 (G,H) and BDE-209 (1,J) respectively. The legend
presents the form of the ligand and receptor bond in 2D.

SUPPLEMENTARY FIGURE S6

Molecular docking analysis of PPARG visualized in 3D and 2D. The red,
yellow, green, blue, and violet ligands represent BDE-47 (A,B) BDE-138 (C,D)
BDE-153 (E,F) BDE-183 (G,H) and BDE-209 (1,J) respectively. The legend
presents the form of the ligand and receptor bond in 2D.

SUPPLEMENTARY FIGURE S7

Association between clinical stage and both breast-adipose PBDE mixture
burden and core-gene expression in breast cancer patients. (A) Overall
effect of the PBDE mixture on the probability of advancing clinical stage
evaluated by BKMR analysis within our cohort, adjusted for age at diagnosis,
menopause status, BMI and family history of breast cancer. (B) Wilcoxon
signed rank test for differential expression of each core gene between
early-stage (Stage I/Il) and late -stage (Stage IlI/IV) tumors in the TCGA-
BRCA dataset.
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