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Toxicity, defined as the potential harm a substance can cause to living organisms,
requires the implementation of stringent regulatory standards to ensure public
safety. These standards involve comprehensive testing frameworks, including
hazard identification, dose-response evaluation, exposure assessment, and risk
characterization. In drug discovery and development, these processes are often
complex, time-consuming, and also resource-intensive. Toxicity-related failures
in the later stages of drug development can lead to substantial financial losses,
underscoring the need for reliable toxicity prediction during the early discovery
phases. The advent of computational approaches has accelerated a shift toward
in silico modeling, virtual screening, and, notably, artificial intelligence (AI) to
identify potential toxicities earlier in the pipeline. Ongoing advances in databases,
algorithms, and computational power have further expanded AI’s role in
pharmaceutical research. Today, AI models are capable of predicting wide
range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity,
nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular
representations ranging from traditional descriptors to graph-based methods.
This review provides an in-depth examination of AI-driven toxicity prediction,
emphasizing its transformative impact on drug discovery and its growing
importance in improving safety assessments.
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1 Introduction

Toxicity refers to the extent to which a substance can cause harm to living organisms,
including animals, plants, bacteria, and humans (Duffus, 1993; McNaught and Wilkinson,
2025). While many chemicals enhance our quality of life, they can also pose significant toxic
risks. To ensure public safety, various regulatory frameworks have been established to
mitigate these hazards. Given the potential health risks associated with chemical exposure,
thorough evaluation of such substances in the environment is essential. Regulatory
standards typically mandate toxicity testing, encompassing hazard identification, dose-
response assessment, exposure evaluation, and risk characterization (Krewski et al., 2010).
As part of hazard identification, it is necessary to determine the specific toxicity endpoints
associated with each chemical. In parallel, in vitro and in vivo studies aim to elucidate the
conditions under which these toxic effects may occur in humans, often drawing on
epidemiological insights. Dose-response assessments examine the relationship between
chemical exposure and adverse effects, using benchmarks such as the no-observed-adverse-
effect level (NOAEL), lowest-observed-adverse-effect level (LOAEL), and potential
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carcinogenicity (NRC, 1994). While this approach focuses on the
magnitude of exposure required to produce harmful effects, the
adverse outcome pathway (AOP) framework provides a
complementary mechanistic perspective (Ankley et al., 2010).
AOPs begin with a molecular initiating event, such as a chemical
binding to a receptor, and proceed through a series of causally
connected key events (KEs) until an adverse outcome (AO) is
reached at the organism level (Villeneuve et al., 2014). By linking
mechanistic insights with experimental data, AOPs exemplify how

diverse information sources can be integrated to better understand
chemical toxicity (Villeneuve et al., 2014). This growing emphasis on
data integration has also driven the development of AI-basedmodels
with both experimental and computational inputs to support early-
stage toxicity prediction.

The advent of computational approaches, combined with the
growing availability of experimental data, has paved the way for
more cost-effective, time-efficient strategies in early-stage drug
discovery (Mak and Pichika, 2019; Vamathevan et al., 2019). By

FIGURE 1
Overview of the AI-based toxicity prediction pipeline. (A) Integration of AI-based toxicity prediction into the drug development process. (B)
Workflow of model development, including data collection, preprocessing, algorithm selection, and performance evaluation.
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incorporating AI-based toxicity prediction models into virtual
screening pipelines, compounds likely to exhibit toxicity can be
filtered out before in vitro assays. This strategy increases the success
rate of candidates advancing through toxicity evaluations, thereby
enhancing the overall efficiency of drug development (Figure 1A).
AI models can be trained on large-scale public databases such as
ChEMBL (Gaulton et al., 2017), DrugBank (Wishart et al., 2018),
and BindingDB (Liu et al., 2007), which contain in vitro and in vivo
experimental results. In addition to open-source datasets,
proprietary data generated from in vitro assays, in vivo studies,
clinical trials, and post-marketing surveillance can further enrich
these models (Pognan et al., 2023). Integrating AI-based toxicity
prediction into virtual screening and then feeding back the
experimental outcomes from downstream studies (in vitro, in
vivo, and clinical), creates a virtuous cycle. This feedback process
includes prospective and external validations, which evaluate model
performance using newly generated or independent datasets and are
essential for demonstrating generalizability and robustness in
regulatory submissions. This continuous feedback loop improves
model performance over time and supports more informed
decision-making in early toxicity assessment (Pognan et al., 2023).

To develop such models, a systematic workflow is essential,
typically consisting of four key stages: data collection, data
preprocessing, model development, and evaluation (Figure 1B).
The first step involves gathering drug toxicity data from a variety
of sources. These data sources, including both public databases and
proprietary collections, provide extensive information on chemical
structures, bioactivity, and associated toxicity profiles, forming a
rich foundation for supervised learning (Pognan et al., 2023). Once
the data is collected, preprocessing is carried out to transform raw
experimental results into formats suitable for machine learning. This
includes handling missing values, standardizing molecular
representations (e.g., SMILES strings or molecular graphs), and
performing feature engineering such as calculating molecular
descriptors (e.g., molecular weight, clogP, number of rotatable
bonds) (Wigh et al., 2022). Toxicity labels are also encoded
appropriately. These steps ensure data consistency and help
extract informative features for training predictive models. The
next stage involves selecting and training appropriate modeling
techniques. Depending on the data structure and task complexity,
a variety of algorithms can be applied, including Random Forest,
XGBoost, Support Vector Machines (SVMs), neural networks, as
well as more recent approaches such as Graph Neural Networks
(GNNs). GNNs align well with the graph-based nature of molecular
structures, which contributes to their strong predictive performance
in various molecular property prediction tasks (Jiang et al., 2021;
Reiser et al., 2022). In addition, they facilitate the identification of
substructures or motifs associated with specific biological effects,
thereby enhancing both the accuracy and interpretability of toxicity
prediction models (Jiang et al., 2021; Reiser et al., 2022; Wu Z. X.
et al., 2023). Transformer-based models, originally developed for
natural language processing, have also shown strong potential in
cheminformatics (Schwaller et al., 2019; Tibo et al., 2024).

In the evaluation phase, performance metrics are selected based
on the type of prediction task. For classificationmodels, metrics such
as accuracy, precision, recall, F1-score, and area under ROC curve
(AUROC) are used to evaluate the model’s ability to correctly
distinguish toxic from non-toxic compounds. For regression

models that predict continuous values like LD50 or IC50,
commonly used metrics include MSE, RMSE, MAE, and R2. In
addition to these quantitative measures, interpretability techniques
such as SHAP or attention-based visualizations can provide insights
into the features driving model predictions, supporting both model
validation and decision-making in drug development (Rodríguez-
Pérez and Bajorath, 2020; Wang Y. M. et al., 2023).

Driven by the growing need for early toxicity screening, advances
in AI model architectures, and the emergence of robust development
frameworks, a number of AI-based toxicity prediction models have
recently been proposed. These models vary in scope and specificity,
often categorized based on the target organ or the type of assay data
used for training. This review summarizes representative toxicity
prediction models that cover a broad range of toxicological
endpoints. In particular, it focuses on models developed for
ADMET profiling, hepatotoxicity, cardiotoxicity, neurotoxicity, and
mutagenicity/genotoxicity prediction. Each category reflects distinct
biological concerns and methodological approaches. Model
development within these domains has evolved in response to
challenges such as data scarcity, protocol heterogeneity, and class
imbalance (Cavasotto and Scardino, 2022; Liu et al., 2023). To address
these issues, various strategies have been employed, including multi-
task learning, multimodal integration, and active learning. These
strategies are discussed in more detail in later sections. In addition,
scaffold-based data splitting is also commonly used to evaluate model
generalizability across novel chemical structures while minimizing
data leakage. In summarizing these models, this review also highlights
differences in data sources, input representations, model architectures,
and evaluation strategies and interpretability techniques used across
toxicity endpoints. These aspects reflect howAImodels are tailored to
meet the distinct challenges of each toxicological domain.

2 Benchmark datasets

A wide range of publicly available datasets have been developed
to support toxicity prediction using machine learning and deep
learning approaches (Table 1). Among the most widely used is
Tox21, which comprises qualitative toxicity measurements of
8,249 compounds across 12 biological targets, primarily focused
on nuclear receptor and stress response pathways (Richard et al.,
2021). A related resource, ToxCast provides high-throughput
screening data for approximately 4,746 chemicals tested across
hundreds of biological endpoints, offering broad mechanistic
coverage for in vitro toxicity profiling (Richard et al., 2016).
These datasets are frequently employed as benchmarks for
evaluating classification models in predictive toxicology.

To assess clinical toxicity risks, the ClinTox dataset offers labeled
data differentiating compounds that were approved by regulatory
agencies from those that failed in clinical trials due to toxicity
(Gayvert et al., 2016). Several datasets have been curated for
evaluating cardiotoxicity associated with the human Ether-à-go-
go–related gene (hERG) channel blockade. The hERG dataset
(Wang et al., 2016; Karim et al., 2021) includes over
13,000 compounds annotated with binary labels based on a
10 µM inhibition threshold, while the hERG blockers dataset
provides a smaller set of 648 compounds (Wang et al., 2016;
Karim et al., 2021). A more extensive resource, hERG Central,
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encompasses over 300,000 experimental records and supports both
classification and regression tasks based on various hERG inhibition
assays (Du et al., 2011). Liver toxicity is addressed in the DILIrank
(Drug-Induced Liver Injury) dataset, which contains
475 compounds annotated for their hepatotoxic potential, an
important factor in post-market drug withdrawals (Xu et al.,
2015). The SIDER dataset presents multi-label side effect
annotations for more than 1,400 marketed drugs, enabling the
prediction of clinically observed adverse drug reactions (Kuhn
et al., 2016). For dermatological toxicity, the Skin Reaction
dataset includes 404 compounds evaluated for their potential to
cause skin sensitization (Alves et al., 2015). Genotoxicity is
commonly assessed using the AMES dataset, which comprises
7,255 compounds labeled based on the Ames test—a standard
assay for detecting mutagenic potential (Xu et al., 2012). The
Carcinogens dataset contains 278 compounds classified as
carcinogenic or non-carcinogenic, serving as a benchmark for
cancer risk prediction (Lagunin et al., 2009). Finally, acute
systemic toxicity is represented by the LD50_Zhu dataset, which
includes LD50 values for 7,385 compounds and supports regression
modeling of lethal dose responses (Zhu et al., 2009). Collectively,
these datasets span a broad range of toxicological endpoints and data
modalities and have become foundational resources for the
development, validation, and comparison of AI-driven toxicity
prediction models.

At the same time, their widespread adoption has revealed several
practical challenges that impact real-world applications. For
instance, data scarcity in certain toxicity endpoints can hinder

the performance of machine learning models that depend on
sufficient training data. In some cases, limited data may fail to
represent diverse chemical scaffolds, reducing model
generalizability. When class imbalance is also present, such as a
higher proportion of non-toxic compounds, the effects of data
scarcity can be further amplified (Cavasotto and Scardino, 2022).
Since toxicity labels are typically derived from experimental
measurements, inconsistencies across assay protocols often lead
to a lack of data uniformity. This protocol heterogeneity can
make it difficult to merge datasets from different sources.
Furthermore, annotation noise resulting from experimental
variability or ambiguous labeling can introduce additional
challenges during model training (Liu et al., 2023).

To overcome these issues, expanding datasets through newly
generated experimental data and literature-based curation can help
improve coverage and diversity. In parallel, standardizing toxicity
testing protocols and documentation practices may enhance data
consistency and interoperability. These efforts are expected to
contribute meaningfully to the development of more robust and
reliable AI-based toxicity prediction models in drug discovery.

3 Computational models for ADMET
and toxicity prediction

Several publicly accessible ADMET prediction tools, including
ADMETLab 3.0, Deep-PK, ProTox 3.0, Helix-ADMET, FP-
ADMET, and admetSAR 2.0 (Yang et al., 2019; Venkatraman,

TABLE 1 Summary of publicly available benchmark datasets for toxicity prediction.

Dataset Name Task Type Description Ref.

Tox21SL Binary
Classification

Predicts toxicity across 12 biological targets using qualitative measurements (based on the EPA
CompTox Dashboard)

Richard et al.
(2021)

ToxCast Binary
Classification

Provides high-throughput screening (HTS) data across hundreds of assays to evaluate the potential
toxicity of chemicals (based on the EPA CompTox Dashboard)

Richard et al.
(2016)

ClinTox Binary
Classification

Predicts clinical trial toxicity outcomes, distinguishing between approved and failed drugs Gayvert et al.
(2016)

hERG (Karim et al., 2021) Binary
Classification

Integrated dataset predicting hERG channel blockade (<10 µM) or not (≥10 µM) Karim et al.
(2021)

hERG blockers Binary
Classification

Predicts if a compound blocks the hERG channel, which is crucial for heart rhythm Wang et al.
(2016)

hERG Central Binary &
Regression

Provides multiple assays: hERG_at_1uM, hERG_at_10uM (regression), and hERG_inhib
(classification)

Du et al. (2011)

DILIrank Binary
Classification

Predicts drug-induced liver injury, a common cause of drug withdrawal Chen et al. (2016)

SIDER Multi-label Predicts clinical adverse drug reactions associated with marketed drugs Kuhn et al.
(2016)

Skin Reaction Binary
Classification

Predicts if a compound can cause skin sensitization reactions Alves et al. (2015)

AMES (Xu et al., 2012) Binary
Classification

Predicts mutagenicity based on the Ames test, indicating potential genetic alterations Xu et al. (2012)

Carcinogens (Lagunin et al.,
2009)

Binary
Classification

Predicts if a compound is carcinogenic Lagunin et al.
(2009)

LD50 (Zhu et al., 2009) Regression Predicts acute toxicity (LD50) values, indicating lethal dose levels Zhu et al. (2009)
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2021; Zhang et al., 2022; Banerjee et al., 2024; Fu et al., 2024; Myung
et al., 2024), provide a wide array of toxicity prediction models, each
differing in scope, algorithmic strategy, and coverage. ADMETLab
3.0 offers predictive models for 119 endpoints, including toxicity-
related properties such as hERG inhibition, carcinogenicity, and
respiratory toxicity. These models are built using directed message-
passing neural networks (DMPNNs) and incorporate uncertainty
estimation features. The toxicity models, such as the one for hERG
inhibition, have demonstrated strong performance with AUROC
values approaching 0.94. In terms of interpretability, ADMETLab
3.0 provides uncertainty scores alongside predictions, uses colored
indicators to represent empirical decision states, and highlights
structural alerts contributing to toxicity (Fu et al., 2024). Deep-
PK is a deep learning–based framework that predicts 73 endpoints,
including 35 toxicity-related endpoints, 29 other ADMET
properties, and 9 general molecular descriptors. While its
primary focus lies in pharmacokinetic regression tasks and
ADMET optimization, it offers comprehensive support for
toxicity assessment through GNN-based pipelines that accept
SMILES, SDF, and molecular descriptor inputs. The model also
provides interpretability by identifying key molecular subgraphs
that contribute to prediction outcomes (Myung et al., 2024). ProTox
3.0 is particularly comprehensive in its treatment of toxicity,
providing 61 predictive models covering a broad spectrum of
endpoints. These include organ-specific toxicities such as
hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity,
along with models for clinical, immunological, and nutritional
toxicities. The platform integrates mechanistic insights through
AOPs, molecular initiating events, and target-specific toxicities,
and supports ontology-driven, systems-level interpretation
(Banerjee et al., 2024). Helix-ADMET is a flexible ADMET
prediction platform that combines self-supervised and multi-task
learning to enhance generalizability across diverse chemical
scaffolds. It supports fine-tuning on user-defined endpoints and
classifies toxicity into macro- and micro-level categories (Zhang
et al., 2022). FP-ADMET is an open-source tool that focuses on over
50 ADMET-related endpoints, including drug-induced liver injury,
hERG inhibition, hemolytic toxicity, mitochondrial toxicity, and
cell-specific cytotoxicity. The models are constructed using random

forest classifiers trained on 20 different types of chemical
fingerprints, enabling broad chemical space coverage and
compound exploration (Venkatraman, 2021). admetSAR
2.0 provides 47 curated endpoints, including Ames mutagenicity,
carcinogenicity, immunotoxicity, and hERG inhibition. It employs
traditional machine learning algorithms such as random forest,
SVM, and k-nearest neighbors (KNNs) applied to molecular
descriptors and fingerprints (Yang et al., 2019).

The comprehensiveness of these tools not only facilitates broad
ADMET screening but also enables prioritization of drug candidates
with favorable safety profiles. The development of such general-
purpose prediction tools has been largely driven by advances in
molecular representations that effectively capture compound features,
along with the availability of benchmark datasets annotated with a
wide range of ADMET endpoints. On the other hand, tools that focus
on specific toxicity types such as hepatotoxicity, cardiotoxicity,
nephrotoxicity, neurotoxicity, and genotoxicity/carcinogenicity
often require task-specific datasets and tailored feature engineering
strategies to enhance predictive performance. The following sections
introduce these organ- and mechanism-specific toxicity models and
discuss how specialized data and domain-informed approaches
contribute to their effectiveness.

4 Endpoint-specific toxicity prediction

Each endpoint is characterized by differences in data properties,
sources including databases, and overall data volume. Furthermore,
depending on the specific toxicity pathways involved, areas of
interest such as the level of interpretability required can also
vary. As a result, models for each endpoint have been designed
to reflect these unique characteristics, leading to differences in the
features used and the methodological approaches adopted (Figure 2
and Table 2). While many of these models share a common
foundation in molecular data, it is important to note that the
choice of features and modeling techniques is often tailored to
the distinct goals and nature of each endpoint.

In hepatotoxicity prediction, physicochemical properties of
molecules are known to be influential and are often incorporated

FIGURE 2
Representative toxicity endpoints categorized into six major classes.
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TABLE 2 Summary comparison table across different toxicity endpoints.

Endpoint Data Featurea Methodsa

Hepatotoxicity DILIrank (Chen et al., 2016)
DILIst (Thakkar et al., 2020)
LiverTox (Hoofnagle et al., 2013), Hepatox
(Quinton et al., 1993)
Proxy-DILI (Mulliner et al., 2016)
SIDER (Kuhn et al., 2016)
LTKB (Chen et al., 2011)
Greene et al. (2010)
Xu et al. (2008)
Liew et al. (2011)
Yan et al. (2022)

Molecular structure
- Molecular graph
- Molecule image
- Molecular fingerprints (e.g., ECFP, MACCS keys)

Descriptors
- Molecular descriptors (e.g., PaDEL)
- Physicochemical descriptors

Task-specific or specialized features
- Predicted PK parameters
- Predicted Proxy-DILI labels

Deep learning models
- GeoGNN + ResNet
- ResNet
- Fully connected neural network (FCNN)

Tree-based Models
- Random forest
- Light gradient boosting machine (LGBM)
- Decision trees

Bayesian models
- Bayesian network

Cardiotoxicity ChEMBL (Gaulton et al., 2017), BindingDB
(Liu et al., 2007)
PubChem (Kim et al., 2016)
Didziapetris and Lanevskij (2016)
Wang et al. (2016)
Liu et al. (2020)
Li et al. (2008)
Munawar et al. (2019)
Negami et al. (2019)
Lanevskij et al. (2022)
Ryu et al. (2020)
Karim et al. (2021)
Zhang Y. M. et al. (2019)
Kim et al. (2022)
Konda and Kristam (2019)
Cai et al. (2019)
Doddareddy et al. (2010)

Molecular structure
- Molecular fingerprints
- AtomPairs2DFingerprintCount (APC2D)
- SMILES embedding vector

Descriptors
- Molecular descriptors (Mordred, AlvaDesc)
- 2D + 3D descriptors (Mordred)

Deep learning models
- GNN (Attentive FP)
- Graph attention networks (GAT) +

Gated recurrent units (GRU)
- GAT
- FCNN
- GCN
- Meta-ensemble model combining GCN,
FCNN, and 1D - Convolutional neural
network (CNN)

Tree-based Models
- XGBoost

Renal/nephrotoxicity SIDER (Kuhn et al., 2016)
DrugBank (Wishart et al., 2018)
ChEMBL (Gaulton et al., 2017)
PubChem (Kim et al., 2016)
TCM (Chen, 2011)
ChemIDplus

Molecular structure
- Molecular fingerprints (Morgan, EstateFP,
CDK FP, CDK extended FP, CDK graph -
only FP, Klekota–Roth FP, MACCS keys,
PubChem FP, Substructure FP)

- APC2D
- Fragmentor
- SMILES embedding vector

Descriptors
- Molecular descriptors (Chemaxon, Mordred,
RDKit, QNPR, alvaDesc, PyDescriptor,
GSFrag)

Deep learning models
- CNN
- FCNN

Tree-based models
- Random forest
- LGBM
- XGBoost

SVM
Ensemble/hybrid models
- Combination of genetic algorithm and
Naïve Bayes classifier

- Consensus model of random forest,
XGBoost, and CNN

Neurotoxicity PubChem (Kim et al., 2016)
ChEMBL database (Gaulton et al., 2017)
U.S. EPA dataset (Albert, 1994)
SIDER (Kuhn et al., 2016)
Liu et al. (2021)
Mazumdar et al. (2023)
Tang et al. (2022)
Storchi et al. (2023)
ChemIDplus

Molecular structure
- Molecular graph
- SMILES embedding
- Molecular fingerprints (e.g., ECFP, MACCS
keys, PubChem FP, substructure FP,
Klekota–Roth FP, Estate FP, CDK FP, CDK
ECFP)

Descriptors
- Molecular descriptors (e.g., PaDEL, CDK,
Dragon descriptors)

Task-specific or specialized features
- MIE predictions

Deep learning models
- DMPNN
- MFBERT
- MLP -NNET

Tree-based Models
- Random forest
- Extra -trees regressor
- C4.5 decision tree

SVM
kNN
Naïve Bayes

Genotoxicity/
Carcinogenicity

TOXRIC (Wu W. X. et al., 2023)
Li’s dataset (Li T. et al., 2021)
Xu et al. (2012)
Hansen et al. (2009)
Benigni et al. (2013)
Dimitrov et al. (2016)
CPDB (Gold et al., 2005)
CCRIS database, ISSCAN (Benigni et al.,
2008)

Molecular structure
- Molecular fingerprints (e.g., ECFP2, ECFP4,
ECFP6, MACCS keys, PubChem FP, CDK FP,
CDK extended FP, Klekota–Roth FP, AP2D,
AP2DC, Estate FP, FP4, FP4C)

- Mol2vec
Descriptors
- Molecular descriptors (e.g., RDKit2D,
computed molecular descriptors)

Task-specific or specialized features
- Structural alerts

Deep Learning Models
- 2D-CNN with active learning
- Capsule network with self -attention
routing

- Multitask DNN
Tree-based Models

- Extremely randomized trees
SVM
Ensemble/hybrid models
- Consensus model (averaging)
- Recursive molecular similarity +
extremely randomized trees

aFeatures and methods refer to those used in the reviewed models; additional options may be applicable.
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into models (Chen et al., 2013a; Kotsampasakou and Ecker, 2017;
Lee and Yoo, 2024). Both deep learning and tree-based methods
have been used with comparable frequency. For cardiotoxicity,
particularly related to hERG channel blockade, the availability of
larger datasets has encouraged the use of more data-intensive deep
learning approaches. GNNs are frequently applied due to their
structural compatibility with molecules and their ability to offer
interpretability through substructure-level attention (Jiang et al.,
2021; Yang et al., 2024; Lee and Yoo, 2025). In renal or
nephrotoxicity prediction, traditional machine learning models
are more commonly used, as they tend to perform better than
deep learning when data are limited (Xu et al., 2023). In
neurotoxicity studies, a single study may develop multiple models
to address distinct tasks such as BBB permeability, neuronal
cytotoxicity, neural activity interference, and general
neurotoxicity, enabling broader predictive coverage (Pang et al.,
2025). For genotoxicity and carcinogenicity, multi-task learning has
been applied to predict outcomes across several Ames test strains
within a single model. This approach outperformed single-task
models by leveraging shared parameters across tasks (Martínez
et al., 2022). These variations, driven by endpoint-specific
requirements, are elaborated in the subsequent sections.

4.1 Hepatotoxicity

The physiological functions of the liver, a fundamental organ in
maintaining systemic homeostasis, include detoxification, plasma
protein synthesis, regulation of lipid and glucose metabolism, bile
production, and immune modulation (Gu and Manautou, 2012).
While the liver’s metabolic processes can render many chemicals less
toxic, it has the potential to enhance their toxicity as well, thereby
exerting a detrimental effect on the liver (Gu and Manautou, 2012).
Pathologies of the liver, such as hepatic steatosis and fibrosis, can
adversely impact the metabolism of nutrients, endocrine substances
and pharmaceuticals resulting in pronounced systemic implications
for overall physiological homeostasis (Foulds et al., 2017; Heeren
and Scheja, 2021). Due to its multifaceted physiological roles and
vulnerability to chemical-induced damage, the liver frequently
experiences drug toxicity. Consequently, it becomes imperative to
accurately assess the hepatotoxicity of drugs, commonly referred to
as drug-induced liver injury (DILI), an area of active research
(Regev, 2014). Both in vitro and in vivo methods are employed
to evaluate the hepatotoxicity of drugs, although these approaches
can be laborious and costly (Ai et al., 2018; Walker et al., 2020).
Moreover, the level of agreement between liver toxicity in animals
and humans averages approximately 55% (Babai et al., 2021).
Consequently, there exists a demand for predictive models that
can foresee liver toxicity and help mitigate development risk and
late-stage failure.

Various machine learning approaches have been proposed to
address the limitations of traditional DILI assessment, particularly in
terms of scalability and interpretability (Table 3). InterDILI focused
on enhancing interpretability by employing permutation feature
importance and attention mechanisms to identify both general and
compound-specific substructures and physicochemical properties
contributing to DILI, using five publicly available datasets and
multiple machine learning algorithms (Lee and Yoo, 2024).

DILIPredictor employed a two-stage modeling approach by
integrating proxy-DILI labels with chemical structure features. By
identifying the most contributing MACCS substructures to DILI
toxicity, it further provided insights into species-specific
hepatotoxicity and mechanistic causes through substructure
interpretation. The model also provides a web interface for easy
access to DILI predictions and their interpretation without the
need for local installation (Seal et al., 2024). GeoDILI introduced
an interpretable graph neural network that leverages 3D molecular
geometry and gradient-based attribution to identify atom-level
toxicophores, addressing the lack of geometric and mechanistic
considerations in previous models (Wu W. X. et al., 2023). It
encodes molecular structures using a fine-tuned geometry-based
GNN (GeoGNN), with the resulting vector passed through a
ResNet for binary DILI classification. Notably, it applies to a rare
attention-free interpretationmethod forGNNs, offering an alternative
to attention-based approaches. OvA-QSTR utilized a one-vs-all
classification strategy based on PaDEL-derived molecular
descriptors and feature selection via correlation heatmaps, aiming
to isolate DILI-related features with statistical clarity (Celik and
Karaduman, 2023). The model proposed by Rao et al. predicted
DILI severity by integrating physicochemical descriptors with off-
target profiles, highlighting the importance of drug-target interactions
and promiscuity in distinguishing between different levels of
hepatotoxicity (Rao et al., 2023). Lastly, ResNet18DNN converted
SMILES codes into molecular images and applied deep neural
networks to learn abstract chemical features from visual input,
offering a novel image-based perspective in DILI prediction (Chen
et al., 2022).

4.2 Cardiotoxicity prediction

Cardiotoxicity is a major concern in drug development, often
leading to late-stage failures or market withdrawals. Compounds
posing cardiovascular risks have been withdrawn, while others face
increasing regulatory scrutiny, underscoring the need for early risk
assessment strategies. An illustrative case involves Janus kinase
(JAK) inhibitors, namely, tofacitinib, baricitinib, and
upadacitinib, used to treat rheumatoid arthritis. In 2021, the U.S.
FDA issued a boxed warning for these agents due to elevated risks of
cardiovascular events, malignancies, thrombosis, and mortality
(Kragstrup et al., 2022). Such examples highlight the importance
of identifying cardiotoxic compounds early in the drug discovery
process. A common mechanism of cardiotoxicity involves QT
interval prolongation and ventricular arrhythmias, often resulting
from inhibition of the hERG potassium channel, which is critical for
cardiac repolarization (Yang et al., 2020). To mitigate these risks,
evaluation of hERG liability is required at the preclinical stage per
ICH S7B guidelines (FDA, 2005), and is increasingly recommended
during earlier stages, including lead optimization. Early
identification enables structural refinement to avoid cardiotoxicity
before costly development steps.

Several recently developed computational tools for
cardiotoxicity prediction are summarized in Table 4, with a
particular focus on assessing hERG channel blockade—a critical
concern in early drug development. hERGBoost presents a
quantitative modeling approach using gradient boosting to
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predict IC50 values of potential hERG inhibitors, allowing a more
nuanced evaluation of cardiotoxic risk beyond binary classification.
Although the model is easily accessible through a web interface, it
does not provide interpretability for its predictions (Yu et al., 2025).
The following models, though not web-accessible, are designed to
provide interpretability. hERGAT employs a hybrid architecture
combining GAT and GRU to capture both atomic-level and
molecule-level interactions, enhancing interpretability through
attention-based substructure identification (Lee and Yoo, 2025).
AttenhERG incorporates uncertainty estimation within a graph
neural network framework, aiming to improve the reliability of
predictions and assist compound optimization. It provides
interpretability through atom-level attention weight visualizations,
highlighting which molecular substructures contribute to hERG
inhibition (Yang et al., 2024). DMFGAM integrates both
fingerprint-derived and graph-based features using a SMILES
graph attention network and fully connected neural layers,
reflecting the advantage of multimodal input representations
(Wang T. Y. et al., 2023). CardioTox Net utilizes a meta-
ensemble strategy that merges outputs from multiple deep

learning architectures (GCN, FCNN, 1D-CNN), each trained on
diverse molecular encodings, to enhance prediction robustness
across varying datasets and evaluation criteria (Karim et al.,
2021). Lastly, DeepHIT focuses on minimizing false negatives by
training multiple deep neural networks on a large gold-standard
dataset, and includes a chemical transformation module for
generating safer analogs based on known cardiotoxic compounds
(Ryu et al., 2020).

4.3 Renal/nephrotoxicity prediction

The kidneys are vital excretory organs that maintain
homeostasis by producing urine, eliminating waste, and
regulating water, electrolytes, and acid–base balance. During
renal clearance, pharmaceutical compounds undergo filtration,
reabsorption, and secretion, contributing to their metabolism and
excretion (Gong et al., 2022). However, this process also increases
the kidneys’ exposure to potentially harmful substances, giving rise
to drug-induced nephrotoxicity (DIN). The prevalence of DIN in the

TABLE 3 Summary of recently published prediction tools of DILI.

Approach Year Dataset Features Algorithm Performance Ref. Availability

InterDILI 2024 FDA NCTR (Chen et al.,
2013b)
Greene et al. (2010)
Xu et al. (2008)
Liew et al. (2011)
DILIrank (Chen et al.,
2016)

Morgan fingerprints,
Physicochemical
descriptors (RDKit)

Random forest,
LGBM,
Logistic
regression (LR),
FCNN

DILI prediction
[Hold-out]
- AUROC: 0.97
- AUPRC: 0.95
- ACC: 0.90
[10-fold CV]

- AUROC: 0.87
- ACC: 0.78
- AUPRC: 0.87

Lee and Yoo
(2024)

https://github.com/
bmil-jnu/InterDILI

DILI Predictor 2024 DILIst (Thakkar et al.,
2020)
DILIrank (Chen et al.,
2016)
Proxy-DILI (Mulliner et al.,
2016)

Morgan fingerprints,
MACCS keys,
Physicochemical
descriptors (RDKit),
Predicted PK
parameters,
Predicted proxy-DILI
labels

Random forest DILI prediction
- AUROC: 0.63
- LR+: 1.40

Seal et al.
(2024)

https://dili.serve.
scilifelab.se/
https://github.com/
srijitseal/DILI_
Predictor?tab=readme-
ov-file

GeoDILI 2023 DILIst (Thakkar et al.,
2020)
DILIrank (Chen et al.,
2016)
Yan et al. (2022)

Molecular graph GeoGNN +
ResNet

DILI prediction
- AUROC: 0.908
- ACC: 0.975
- F1-score: 0.905
- MCC: 0.732

Wu W. X. et al.
(2023)

https://github.com/
CSU-QJY/GeoDILI

OvA-QSTR 2023 LiverTox (Hoofnagle et al.,
2013), PubChem (Kim
et al., 2016)

Molecular descriptors
(PaDEL)

Bayesian network,
Decision trees,
Random forest

DILI prediction
BayesNet
- AUPRC: 0.718 to
0.869

Celik and
Karaduman
(2023)

Rao et al. 2023 DILIrank (Chen et al.,
2016)

Physicochemical
descriptors (RDKit +
QikProp)

Random forest,
SVM, FCNN, LR

DILI prediction
- AUROC: 0.88
- Sensitivity: 0.73
- Specificity: 0.9

Rao et al.
(2023)

ResNet18DNN 2022 DILIrank (Chen et al.,
2016), LiverTox
(Hoofnagle et al., 2013),
Hepatox (Quinton et al.,
1993)
SIDER (Kuhn et al., 2016),
LTKB (Chen et al., 2011),
Literature (Chen et al.,
2013b; Xu et al., 2015)

Smiles converted in
images by RDKit

ResNet DILI prediction
- AUROC: 0.958

Chen et al.
(2022)
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adult population has been reported to range from 14% to 26% (Shi
et al., 2022). Drug-induced renal failure accounts for approximately
25% of acute kidney injury (AKI) cases in hospitalized patients, with

aminoglycoside antibiotics, NSAIDs, contrast agents, and
angiotensin-converting enzyme inhibitors (ACEi) among the
most common causative drugs (Ghane Shahrbaf and Assadi,

TABLE 4 Recently published prediction tools of cardiotoxicity.

Approach Year Dataset Features Algorithm Performance Ref. Availability

hERGBoost 2025 ChEMBL (Gaulton
et al., 2017)
BindingDB (Liu et al.,
2007)
Didziapetris and
Lanevskij (2016)
Wang et al. (2016)
Liu et al. (2020)
Li et al. (2008)
Munawar et al. (2019)
Negami et al. (2019)
Lanevskij et al. (2022)
Ryu et al. (2020)
Karim et al. (2021)

Descriptors (AlvaDesc),
Molecular fingerprints

XGBoost hERG channel
inhibition
[Regression]
- R2: 0.622
- RMSE: 0.595
- MAE: 0.383
[Classification]
- ACC: 0.814
- MCC: 0.614

Yu et al.
(2025)

http://ssbio.cau.ac.kr/
software/hergboost/

hERGAT 2025 ChEMBL (Gaulton
et al., 2017)
PubChem (Kim et al.,
2016)
Li et al. (2008)
Wang et al. (2016)
Zhang H. et al. (2019)
Kim et al. (2022)

Descriptors,
Molecular fingerprints,
Molecular graph

GAT + GRU hERG channel
inhibition
- AUROC: 0.907
- AUPRC: 0.904

Lee and
Yoo
(2025)

https://github.com/
bmil-jnu/hERGAT

AttenhERG 2024 ChEMBL (Gaulton
et al., 2017), PubChem
(Kim et al., 2016),
BindingDB (Liu et al.,
2007)
Kim et al. (2022)

Molecular graph GNN
(Attentive FP)

hERG channel
inhibition
- AUROC: 0.835
- BAC: 0.767
- MCC: 0.543

Yang
et al.
(2024)

https://github.com/
Tianbiao-Yang/
AttenhERG

DMFGAM 2023 CHEMBL (Gaulton
et al., 2017)
Liu et al. (2020)
Konda and Kristam
(2019)
Munawar et al. (2019)
Negami et al. (2019)

Morgan fingerprints (ECFP2)
AtomPairs2DFingerprintCount
(APC2D)

SMILES graph
attention network
(SGAT),
FCNN

hERG channel
inhibition
- AUROC: 0.894
- ACC: 0.817
- MCC: 0.630
- Sensitivity: 0.847

Wang Y.
M. et al.
(2023)

https://github.com/
zhaoqi106/DMFGAM

CardioTox net 2021 BindingDB (Liu et al.,
2007)
ChEMBL (Gaulton
et al., 2017)
Cai et al. (2019)
Didziapetris and
Lanevskij (2016)
Doddareddy et al.
(2010)

Molecular graph,
Morgan fingerprints (ECFP2),
2D+3D Descriptors (Mordred),
SMILES embedding vector,
Fingerprint embedding vector

meta-ensemble
combining,
GCN,
FCNN and
1D-CNN

hERG channel
inhibition
[Test set-I]
- ACC: 0.810
- BAC: 0.810
- MCC: 0.599
Sensitivity: 0.833
[Test set-II]
- ACC: 0.755
- BAC: 0.754
- MCC: 0.452
- Sensitivity: 0.909
[Test set-III]
- ACC: 0.746
- BAC: 0.746
- MCC: 0.220
- Sensitivity: 0.794

Karim
et al.
(2021)

https://github.com/
Abdulk084/
CardioTox

DeepHIT 2020 BindingDB (Liu et al.,
2007)
ChEMBL (Gaulton
et al., 2017)
Cai et al. (2019)
Didziapetris and
Lanevskij (2016)
Doddareddy et al.
(2010)
In-house dataset

Molecular Fingerprints
(PyBioMed),
Descriptors (Mordred),
Molecular Graph

GCN,
FCNN

hERG channel
inhibition
- ACC: 0.773
- Sensitivity: 0.833
- BAC: 0.738
- MCC: 0.476

Ryu et al.
(2020)

https://academic.oup.
com/bioinformatics/
article/36/10/3049/
5727757
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2015; Gong et al., 2022). The underlying mechanisms of DIN are
multifactorial, involving damage to tubular epithelial cells, ureteral
obstruction, interstitial nephritis, and disruption of intra-glomerular
hemodynamics (Shi et al., 2022).

Assessing DIN risk remains challenging due to the vast
diversity of pharmaceutical agents with nephrotoxic potential.
Many compounds, beyond the commonly recognized
nephrotoxic drugs, can elicit kidney injury through distinct
mechanisms and at varying sites within the renal architecture
(Shi et al., 2022). These include selective damage to proximal or
distal tubules, glomeruli, or the renal interstitium, depending on
the drug’s chemical properties, metabolites, and mechanisms of
accumulation or transport within renal tissues. Given these
complexities, traditional toxicological methods remain
indispensable; however, they are often impractical for efficiently
screening large number of compounds in the early stages of drug
development. As a result, computational approaches that integrate
diverse molecular features are increasingly recognized as valuable
tools for the early identification of nephrotoxic risk (Table 5).

The predictive model proposed by Gong et al. (Gong et al., 2022)
was developed by utilizing the technique of fingerprinting chemical
drugs and Chinese herbal medicines. This model aimed to provide a
comprehensive prediction of nephrotoxicity. On the other hand, Shi
et al. (Shi et al., 2022) developed a nephrotoxicity prediction model
based on physicochemical property analysis. Among the approaches
tested, the model utilizing QNPR descriptors with a random forest
algorithm achieved the highest accuracy of 87.16%. Notably, the
consensus model outperformed individual models, attaining a
superior AUROC of 0.93. The model is accessible via a web
interface and provides interpretability by identifying structural
alerts associated with nephrotoxicity, using f-score and positive
rate analysis of each fragment derived from KRFP fingerprints.
Lastly, Zhang et al. (Zhang H. et al., 2019) categorized molecular
features based on factors such as the number of nitrogen atoms,
AlogP, molecular weight, hydrogen bond acceptors and donors, and
fractional polar surface area. Among the evaluated algorithms, the
Naïve Bayes classifier demonstrated superior performance and was
ultimately selected for nephrotoxicity prediction.

TABLE 5 Recent examples of nephrotoxicity prediction tools.

Approach Year Dataset Features Algorithm Performance Ref. Availability

Gong et al. 2022 SIDER (Kuhn et al.,
2016), DrugBank
(Wishart et al., 2018),
ChEMBL (Gaulton et al.,
2017)
TCM (Chen, 2011)

Atom Pair 2D,
fingerprint, Estate FP,
CDK extended FP,
CDK FP,
CDK graph only FP,
Klekota–Roth FP,
MACCS keys,
PubChem FP,
substructure FP

FCNN, LGBM,
SVM

DIN prediction
[Herbal Medicines (Test
set-I)]
- ANN_PubChemFP
- AUROC: 0.911
- ACC: 0.867
- MCC: 0.740
- SVM_GraphFP
- AUROC:0.902
- ACC: 0.867
- MCC: 0.761
[Chemical Medicines
(Test set-II)]
- LGBM _KRFP
- AUROC:0.896
- ACC: 0.861
- MCC: 0.721
- SVM_GraphFP
- AUROC:0.894
- ACC: 0.814
- MCC: 0.629
[Mixed Medicines (Test
set-III)]
- SVM_GraphFP
- AUROC:0.915
- ACC: 0.857
- MCC: 0.723
- ANN_PubChemFP
- AUROC:0.903
- ACC: 0.857
- MCC: 0.718

Gong et al.
(2022)

Shi et al. 2022 SIDER (Kuhn et al.,
2016), Pubchem (Kim
et al., 2016)

Chemaxon descriptors,
Fragmentor,
GSFrag descriptors,
Mordred descriptors,
PyDescriptor,
QNPR descriptors,
RDKit descriptors,
alvaDesc descriptors

Consensus model of
random forest
XGBoost
CNN

DIN prediction
- AUROC: 0.93
- MCC: 0.72
- Accuracy (Q): 0.86
- Sensitivity: 0.85
- Specificity: 0.87
- Enrichment Factor
(EF): 1.72

Shi et al.
(2022)

http://www.
sapredictor.cn/

Zhang et al. 2019 ChemIDplus Morgan fingerprints
(ECFP6),
Molecular descriptors

Naïve Bayes
classifier,
Genetic algorithm

Chemical-induced urinary
tract toxicity
- ACC: 0.84

Zhang Y. M
et al. (2019)
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4.4 Neurotoxicity prediction

Neurotoxicity refers to the toxicity that affects both central and
peripheral nervous systems leading to their impaired function and
structure (Legradi et al., 2018). The mechanisms of neurotoxicity are
broadly categorized into neuronopathy, axonopathy, myelinopathy,
and neurotransmission-associated toxicity (Valentine, 2020; Kocot-
Kepska et al., 2021). Even therapeutic drugs can exhibit neurotoxic
effects; for instance, vincristine, a plant-derived chemotherapeutic
alkaloid, is known to cause peripheral neuropathy, which manifests
as numbness, tingling, and motor weakness. Given these risks, it is
essential to screen for neurotoxicity during drug development to
ensure the safety of new chemical entities. To this end, the OECD
Test Guidelines 418, 419, and 424 are internationally recognized as
standard protocols for assessing neurotoxic effects. However, these
in vivo testing methods are time-consuming, costly, and reliant on
animal use. Consequently, there is a growing demand for faster and
more efficient in silico approaches to complement traditional testing
methods in predicting neurotoxicity (Jiang et al., 2020).

In response to this need, several computational models have
recently been developed to improve the prediction of neurotoxicity

(Table 6). NeuTox 2.0 employs a hybrid deep learning framework
that integrates molecular fingerprints, descriptors, and GNNs
through multimodal feature fusion. It was trained on four
neurotoxicity-related datasets and demonstrated strong
generalizability and robustness, enabling its use in large-scale
chemical screening. This design allows the model to predict
various facets of neurotoxicity, offering a broader perspective on
neurotoxic effects. However, since all input features are derived from
the same molecular structure, the model’s multimodal nature is
limited in scope (Pang et al., 2025). DINeuroTpredictor is a web-
based model built on clinical neurotoxicity data using multiple
machine learning algorithms and molecular fingerprints. It also
provides insights into key physicochemical features and structural
alerts associated with neurotoxic potential (Zhao et al., 2022).
Gadaleta et al. proposed a QSAR-based approach linked to
AOPs, modeling molecular initiating events to support
mechanistic neurotoxicity prediction (Gadaleta et al., 2022).
Lastly, Jiang et al. developed regression models using PyBioMed
descriptors and ensemble learning methods, focusing on chemical
diversity and model applicability domains to enhance prediction
reliability (Jiang et al., 2020).

TABLE 6 Recent examples of neurotoxicity prediction tools.

Approach Year Dataset Features Algorithm Performance Ref. Availability

NeuTox 2.0 2025 PubChem Bioassay
database (Kim et al.,
2016)
ChEMBL database
(Gaulton et al., 2017)
U.S. EPA dataset
(Albert, 1994)
SIDER (Kuhn et al.,
2016)
Liu et al. (2021),
Mazumdar et al. (2023)
Tang et al. (2022)
Storchi et al. (2023)

Molecular graph,
Molecular fingerprint
(ECFP),
Molecular descriptor (Padel)

DMPNN,
MFBERT

Blood–Brain Barrier
Penetration
- AUROC: 0.9708
- ACC: 0.9120
- MCC: 0.8157
- F1 Score: 0.9274
Neuronal Cytotoxicity
- AUROC: 0.9637
- ACC: 0.9093
- MCC: 0.8171
- F1 Score: 0.8969
Neural Activity
Interference
- AUROC: 0.8509
- ACC: 0.8007
- MCC: 0.5292
- F1 Score: 0.6651
Neurotoxicity
- AUROC: 0.8297
- ACC: 0.7945
- MCC: 0.5140
- F1 Score: 0.8539

Pang et al.
(2025)

https://github.com/
xuejunhe/NeuTox-
2.0

DINeuro
Tpredictor

2022 SIDER (Kuhn et al.,
2016), PubChem (Kim
et al., 2016)

Estate FP, CDK FP, CDK
ECFP,
Klekota–Roth FP,
MACCS keys,
PubChem FP,
substructure FP

Random Forest,
SVM,
C4.5 decision,
tree, kNN,
Naïve Bayes

Neurotoxicity
5-fold CV
- AUROC: 0.83
- BAC: 0.7651
- MCC: 0.52

Zhao et al.
(2022)

http://dineurot.
sapredictor.cn/

Gadaleta et al.
(2022)

2022 ChEMBL (Kim et al.,
2016), Literature
(Kosnik et al., 2020)

MIE predictions, Dragon
descriptors,
ECFP

Random forest,
kNN,
MLP-NNET

Neurotoxicity
- AUROC: 0.91
- MCC: 0.66

Gadaleta
et al. (2022)

Jiang et al. (2020) 2020 ChemIDplus MATSp2, bcutv10, MRVSA5,
GATSe2, Rpc, EstateVSA1,
Geto, Smax15, MTPSA,
bcute2, J, Chiv10, Chiv9,
mChi1, Smin8, Hy, Smin32,
MATSv3, MATSe3, MACCS
keys

Extra-trees
regressor

Autonomic
Neurotoxicity (pLD50)
- q2: 0.784
- RMSE: 0.201
- MAE: 0.159

Jiang et al.
(2020)
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4.5 Genotoxicity/carcinogenicity

Genotoxicity is defined as the capacity of deleterious agents to
induce harm to the genetic material within cells (Ren et al., 2017).
Mutagenicity pertains to the capacity of a substance to induce alterations
in genetic material, which could potentially instigate diverse ailments,
such as cancer (Ferguson, 2010; Basu, 2018). Carcinogenicity is the
potential of a compound to cause cancer (Schrenk, 2018). These three
concepts, i.e., genotoxicity, mutagenicity, and carcinogenicity, exhibit a
strong correlation due to the fact that substances that possess genotoxic
properties frequently result in mutations, and these mutations can
induce the development of cancer (Barnes et al., 2018; Nohmi,
2018). Given the fact that cancer is one of the most prominent
reasons contributing to mortality on a global scale, it becomes
imperative to thoroughly scrutinize the plausible factors that give rise
to this ailment. Unlike other forms of toxicity, carcinogenicity is distinct

in that it does not exhibit a threshold in the assessment of dose-response.
This phenomenon arises from the fact that a lone anomaly through
interactions with DNA, instigated by a specific compound, can yield a
protracted consequence and engender the formation of neoplastic
growth (Nohmi, 2018). Numerous principles are established in light
of this, particularly the guidelines of S1B(R1) (ICH, 2022), S2 (R1) (ICH,
2020), and M7 (R1) (ICH, 2023) outlined by the ICH. The course of
action typically takes 2 years and involves around 500 rodents, making it
a rigorous, time-consuming, and resource-intensive task (Li T. et al.,
2021). Furthermore, the test’s complexity depends on whether it is
analyzing the genetic, DNA, or chromosomal level, and whether it is
intended for somatic or germline cells (Ren et al., 2017). Due to these
obstacles, there is a growing demand for AI-assisted prediction to
overcome these challenges.

Currently available AI prediction tools of mutagenicity and
genotoxicity are summarized in Table 7 muTOX-AL proposed a

TABLE 7 Recent examples of Genotoxicity/carcinogenicity prediction tools.

Approach Year Dataset Features Algorithm Performance Ref. Availability

muTOX-AL 2024 TOXRIC (Wu Z.
X. et al., 2023)
Li’s dataset (Li S.
M. et al., 2021)

Molecular fingerprints
(ECFP2, ECFP4, ECFP6)
MACCS keys
Molecular descriptors
(RDkit2D)

2D-CNN
Active learning

Mutagenicity (Ames test)
Full training (5,988 samples)
- AUROC: 0.9093
- ACC: 0.8476
- F1 Score: 0.8383
- Recall: 0.8350
Active learning
(1,438 samples)
− 95% of the full-model
accuracy using
1,438 samples (~24% of the
training data)

Xu et al.
(2024)

https://github.com/
Felicityxuhy/
muTOX-AL

Fournier et al.
(2023)

2023 Xu et al. (2012)
Hansen et al.
(2009)
Benigni et al.
(2013)
Dimitrov et al.
(2016)

2D descriptors
MACCS keys

Recursive
molecular
similarity,
Extremely
randomized trees

Mutagenicity (Ames test)
- AUROC:
0.9208 chromosomal
abnormalities
- AUROC: 0.9191
mammalian cell gene
mutation test

- AUROC: 0.9722

Fournier
et al.
(2023)

DCAMCP 2023 CPDB (Gold et al.,
2005), CCRIS
database, ISSCAN
(Benigni et al.,
2008)

Various molecular
fingerprints
MACCS keys
PubChem FP
CDK FP
CDK extended FP
Klekota-Roth FP
AP2D
Klekota-Roth count
AP2DC
Substructure (FP4)
Substructure count
(FP4C)
Estate FP

A capsule network
with a self-attention
routing algorithm

Carcinogenicity
- AUROC: 0.793
- ACC: 0.718
- Sensitivity: 0.721
- Specificity: 0.715

Chen et al.
(2023)

https://github.com/
zhaoqi106/DCAMCP

Shinada et al.
(2022)

2022 Hansen et al.
(2009)

MACCS, ECFP, Mol2vec,
Computed molecular
descriptors, structural
alerts relevant to
mutagenicity, DFT-based
descriptors

SVM Mutagenicity (Ames test)
AUROC: 0.926

Shinada
et al.
(2022)

https://bitbucket.org/
sbx-publication/
enhanced_
representation_
mutagenicity/src/
master/

Martínez et al.
(2022)

2022 ISSSTY v1-a
database (Benigni
et al., 2013)

0D, 1D, and 2D molecular
descriptors

Multitask-FCNN
Consensus model
(averaging)

Mutagenicity (Ames test)
Balanced ACC: 0.93
MCC: 0.89
H1 Score: 0.92
Specificity: 0.86
Sensitivity: 0.99

Martínez
et al.
(2022)

https://github.com/
VirSabando/MTL_
DNN_Ames
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deep active learning framework to address the challenge of limited
labeled data in mutagenicity prediction. By actively selecting the
most informative molecules from a vast chemical space and
presenting them for annotation, the model significantly reduces
the number of training samples required. It also demonstrates strong
discriminative power by identifying structurally similar molecules
with opposing mutagenic properties (Xu et al., 2024). Fournier et al.
introduced amodel capable of predicting genotoxicity across various
assays, including Ames test results, chromosomal aberrations, and
gene mutations, thereby expanding the scope of genotoxicity
evaluation. Despite its broad predictive scope, the model
introduced by Fournier et al. does not provide executable tools
or source code, limiting its immediate applicability and
reproducibility (Fournier et al., 2023). DCAMCP employed a
self-attention routing capsule network to improve generalizability
while reducing the number of trainable parameters, demonstrating
balanced performance across multiple evaluation metrics (Chen
et al., 2023). Shinada et al. constructed a model using descriptors
derived from density functional theory (DFT). Although its
performance was modest, the study highlighted opportunities to
improve computational approaches (Shinada et al., 2022). Martínez
et al. developed the first predictive model based on Ames test
standards (OECD TA98, TA100, TA1535, TA1537, and TA102),
setting a precedent for mutagenicity prediction using standardized
experimental protocols. The multi-task learning framework with
shared parameters enabled information transfer across tasks,
improving mutagenicity prediction for each strain (Martínez
et al., 2022).

5 Emerging AI innovations in toxicity
prediction

As previously discussed, AI model design is significantly affected
by both the characteristics and the volume of data available for
training. In the context of toxicity prediction for drug discovery,
input data typically comprises molecular structures,
physicochemical properties, and task-specific features. However,
these tasks are often constrained by the limited availability of
labeled data. To address this challenge, a variety of data-efficient
learning strategies have been developed to maximize predictive
performance under label-scarce conditions.

In data-scarce settings, transfer learning strategies use pre-trained
parameters to boost toxicity prediction performance. For instance,
HelixADMET employs a three-stage training framework that
incorporates self-supervised pretraining on large-scale unlabeled
molecular data, followed by multi-task and fine-tuning stages to
transfer learned chemical knowledge to various ADMET endpoints,
significantly improving extrapolation to novel chemical scaffolds
(Zhang et al., 2022). Multimodal models ingest diverse data types
(e.g., chemical structures, omics profiles, and bioactivity assays)
simultaneously to capture complementary information. For
example, M2REMAP is a multimodal deep learning framework that
predicts drug indications, mono-drug side effects, and drug–drug
interaction side effects by integrating molecular chemical structures
with clinical semantic embeddings derived from large-scale electronic
health records (EHR). By learning joint representations across these
heterogeneous modalities, M2REMAP achieves superior predictive

accuracy and generalizability over unimodal baselines (Wen et al.,
2023). Martínez et al. developed multi-task deep neural networks to
simultaneously predict Ames mutagenicity across multiple Salmonella
typhimurium strains (Martínez et al., 2022). They demonstrated that
shared representations improved performance, especially on the strains
with limited training data. Active learning enhances data efficiency by
strategically selecting the most informative samples, enabling high
model performance even with limited labeled data. For example, the
muTOX-AL framework integrates structure-based and activity-based
selection strategies to guide experimental toxicology, significantly
improving model performance with fewer labeled compounds
compared to random sampling (Xu et al., 2024). Federated learning
enables multiple institutions to collaboratively train a global toxicity
prediction model on decentralized datasets in which each party keeps
its raw data locally and only sharesmodel updates, thus preserving data
privacy and regulatory compliance while benefiting from a much
larger, heterogeneous training pool. The MELLODDY project
exemplifies this approach, demonstrating that federated QSAR
models trained across ten pharmaceutical companies achieved
comparable or superior predictive performance to local models,
while maintaining strict data confidentiality (Heyndrickx et al., 2023).

In parallel, interpretability techniques are also advancing to
better inform and guide decision-making in drug discovery based
on model predictions. SHAP estimates the contribution of each
input feature to the output, providing insight into which molecular
properties influence model decisions (Lundberg and Lee, 2017). For
graph-based models, methods like EdgeSHAPer extend this concept
by identifying important substructures within molecular graphs
(Mastropietro et al., 2022). Attention-based visualizations,
commonly used in transformer and graph neural network
models, highlight which parts of the input the model focuses on
during prediction (Ying et al., 2019; Zheng et al., 2019). For example,
in SMILES-based models, attention heatmaps can reveal which
atoms or functional groups are most influential in predicting
toxicity. Counterfactual explanations, on the other hand, offer
intuitive and sparse insights by showing the smallest alteration to
input features that would change a model’s prediction, particularly
useful for understanding how minimal molecular changes affect
outcomes. In drug design, small structural modifications can often
result in counterfactual cases with significant impact on activity or
toxicity, leading to growing interest in counterfactual explanation
methods to better capture such subtle yet meaningful variations
(Wellawatte et al., 2022).

Building on these recent advances, the next phase of toxicity
prediction may be driven by foundation models and large-scale
language-based systems. Looking ahead, emerging foundation
models such as MoleculeGPT (Liu et al., 2024), BioT5 (Pei et al.,
2023), and ChemCrow (Bran et al., 2024) could be applied to toxicity
prediction. Even before the advent of large language models (LLMs),
Papamokos and Silins demonstrated that integrating QSAR
modeling with text mining improved the mechanistic
understanding of carcinogenicity and helped compensate for
limited structure–activity data on non-genotoxic compounds
(Papamokos and Silins, 2016). By linking chemical structures
with literature-derived modes of action, their hybrid approach
offered more biologically meaningful interpretations to support
mechanism-based toxicity evaluation. Today, with the advent of
powerful LLMs, such strategies can be further scaled and
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generalized. Fine-tuning these large, pre-trained models enables
researchers to integrate broad and transferable chemical and
biological knowledge into downstream toxicity prediction tasks,
while producing mechanistically interpretable results even in
data-scarce domains. These AI-driven methods not only improve
predictive accuracy in data-scarce scenarios but are also continuing
to advance rapidly, expanding the possibilities for mechanism-
informed toxicology.

6 AI in regulatory toxicology

The use of AI-based models in regulatory toxicology is drawing
growing interest, especially as agencies seek alternatives to animal
testing. Yet, adoption remains limited due to the absence of clear
validation standards and acceptance criteria. ICH guidelines,
including M7 (R2), S2 (R1), and S1B(R1), provide frameworks for
using in silico approaches such as AI-based models and advanced
QSAR tools (ICH, 2022; 2023). These can support mutagenic
impurity screening, genotoxicity testing, and carcinogenicity
assessment, provided they are properly justified and validated. In
this context, the FDA NCTR’s AI4TOX program is specifically aimed
at applying AI to toxicology to develop new tools that support FDA
regulatory science and strengthen the safety review of FDA-regulated
products (An FDA Artificial Intelligence, 2024). It focuses on
leveraging AI for tasks like developing virtual animal models,
evaluating toxicological endpoints, and analyzing complex data
from FDA documents and histopathology. For broader adoption,
AI models must align with regulatory expectations, demonstrate
consistent performance, and offer interpretability.

As the use of AI in regulatory toxicology continues to expand, it
becomes increasingly important to consider how existing validation
principles can be adapted or extended to ensure these models meet
regulatory standards. To enhance the reliability and regulatory
acceptance of AI-based toxicity prediction models, it is useful to apply
the OECD QSAR validation principles (OECD, 2014). Originally
developed for traditional QSAR models, these principles outline key
elements such as defined endpoints, transparent algorithms, applicability
domains, performance metrics, and mechanistic interpretation when
possible. While these criteria remain broadly relevant, the guidance was
established before the advent of modern AI techniques. Given the rapid
development of AI and its increasing integration into the drug discovery
process, there is a growing need for updated validation frameworks that
explicitly address the unique challenges and opportunities presented by
AI-based modeling approaches.

7 Limitations, challenges, and future
directions

The efficacy and safety of chemical compounds are fundamental
considerations in drug discovery, with toxicity representing a key
determinant of clinical success or failure. AI-based prediction
models have emerged as powerful tools for toxicity assessment
during the early stages of drug discovery. As databases continue to
grow, computational resources become more accessible, and AI
architectures evolve, these models have significantly advanced
beyond traditional computational methods and enable reliable

predictions across various toxicological endpoints, including
hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and
genotoxicity. This review has systematically examined both general-
purpose ADMET prediction tools and endpoint-specific toxicity
models, highlighting rapid progress, increasing methodological
sophistication, and expanding diversity within the field of
computational toxicology. Nevertheless, several critical challenges
persist. First of all, despite significant advances, current AI models
frequently struggle with accurately predicting complex and rare
toxicity events due to intrinsic biological complexities. The scarcity
of high-quality labeled data, particularly data that accurately reflects
clinical outcomes or rare toxicological events, severely constrains
model training and validation. Also, generalizability to novel
chemical scaffolds remains uncertain, limiting confidence in AI
predictions for structurally diverse or innovative drug candidates.
Finally, interpretability also remains a crucial bottleneck; although
advanced AI models offer powerful predictive capabilities, their
complex inner workings often limit the clarity and transparency
required by regulatory bodies and clinical practitioners.

To overcome these limitations, future research can be focused on
the integration of diverse data types, including detailed chemical
structures, comprehensive biological assay outcomes, multi-omics
profiles, and real-world clinical datasets. Such integration will
enable AI models to capture the multifaceted nature of
toxicological responses in a better way. Harmonizing toxicity
annotations across multiple databases will also significantly
enhance data interoperability, enabling more extensive and efficient
utilization of available data resources. In parallel, fostering deeper
cross-disciplinary collaboration among computational scientists,
toxicologists, medicinal chemists, clinical pharmacologists, and
regulatory experts is essential. Such collaborations can facilitate the
development of predictive models that are not only robust and
accurate but also practically interpretable, ensuring that model
insights can directly inform discovery and regulatory decisions.

As AI technologies continue to evolve, it would be definite that they
hold significant potential for enhancing early-stage decision-making,
substantially reducing late-stage drug development failures, and
accelerating the delivery of safer, more effective therapeutic solutions
to patients. To fully employ this potential, it is crucial to foster a deeper
understanding of the real-world implications and limitations of
predictive outcomes. Practical integration requires not just
technological advances but also a comprehensive awareness of
pharmaceutical, clinical realities and regulatory standards. Thus,
ongoing dialogue and knowledge-sharing between computational
developers, experimental toxicologists, clinical researchers, and
regulatory stakeholders will be indispensable in shaping the next-
generation of AI-driven predictive toxicology tools that meaningfully
improve drug discovery outcomes in both academic research and
industry practice.
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Glossary
ACC Accuracy

AEs Adverse Events

ADME Absorption, Distribution, Metabolism, and Excretion

ADMET Absorption, Distribution, Metabolism, Excretion, and Toxicity

AKI Acute Kidney Injury

AI Artificial Intelligence

AlogP Logarithm of Partition Coefficient

ANN Artificial Neural Network

AO Adverse Outcome

AOPs Adverse Outcome Pathways

AUROC Area Under the Receiver Operating Characteristic Curve

AUPRC Area Under the Precision–Recall Curve

BAC Balanced Accuracy

BBB Blood–Brain Barrier

CDK Chemistry Development Kit fingerprint

C4.5 DT C4.5 Decision Tree

CYP Cytochrome P450

CNN Convolutional Neural Network

DILI Drug-Induced Liver Injury

DIN Drug-Induced Nephrotoxicity

DMPNN Directed Message-Passing Neural Networks

DNN Deep Neural Network

ECFP Extended-Connectivity Fingerprint

EPA The U.S. Environmental Protection Agency

EHR Electronic Health Records

FCNN Fully Connected Neural Network

FDA The U.S. Food and Drug Administration

FP Fingerprint

GAT Graph Attention Networks

GCN Graph Convolutional Networks

GCNN Graph Convolutional Neural Network;

GeoGNN Geometry-based Graph Neural Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

hERG Human Ether-à-go-go Related Gene

HTS High-Throughput Screening

IC50 Half Maximal Inhibitory Concentration

ICH The International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use

JAK Janus Kinase

KEs Key Events

kMedoids k-Medoids Clustering Algorithm

kNN k-Nearest Neighbor

LD50 Lethal Dose for 50% of the Population

LGBM Light Gradient-Boosting Machine

LOAEL Lowest-Observed-Adverse-Effect Level

LR Linear Regression

LTKB Liver Toxicity Knowledge Base

MACCS Molecular ACCess System

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MCC Matthews Correlation Coefficient

MIEs Molecular initiating events

MMP Matrix metalloproteinase

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide Assay

NCTR National Center for Toxicological Research

NOAEL No-Observed-Adverse-Effect Level

NSAIDs Non-Steroidal Anti-Inflammatory Drugs

OECD Organization for Economic Co-operation and Development

OECD TA OECD Toxicity Assays

PK Pharmacokinetic

PPB Plasma Protein Binding

PRC Precision–Recall Curve

QNPR Quantitative Name–Property Relationship

QSAR Quantitative Structure–Activity Relationship

RF Random Forest

RMSE Root Mean Square Error

SGAT SMILES Graph Attention Network

SHAP SHapley Additive exPlanations

SIDER Side Effect Resource

SMILES Simplified Molecular Input Line Entry System

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

XGBoost Extreme Gradient Boosting
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