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Disulfide bonds are indispensable structural motifs in bioactive peptides,
stabilizing conformations which are critical for molecular recognition and
biological activity. However, their intrinsic chemical lability under physiological
and manufacturing conditions has long presented challenges in peptide drug
development. Efforts to address these limitations have yielded a diverse array of
disulfide bond surrogates, each with distinct advantages and constraints. Among
these, methylene thioacetal linkages have recently emerged as a particularly
promising method offering a favorable balance of structural fidelity, synthetic
accessibility, and chemical stability. This review summarizes the biological
importance and limitations of native disulfide bonds, surveys established
strategies for disulfide bond mimicry, and provide a comprehensive summary
of research leveraging methylene thioacetal chemistry as an emerging tool in the
design of next-generation peptide therapeutics.
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1 Introduction

Peptide-based therapeutics have emerged as a rapidly expanding class of drug
candidates, offering high target specificity, favorable pharmacokinetic properties and
unique ability to modulate complex biological targets (Wang et al., 2022). Advances in
peptide synthesis technologies, including solid-phase peptide synthesis (SPPS) and liquid-
phase peptide synthesis (LPPS), as well as the emerging field of green and sustainable
techniques, have enabled the efficient design and production of complex and challenging
peptide targets (Ferrazzano et al., 2022; Stefanucci et al., 2025). Recent advances in synthetic
methodology, formulation technologies, and delivery systems have revitalized the interest in
therapeutic peptides, prospering their clinical relevance across oncology, endocrinology,
infectious diseases, and immunotherapy (Anand et al., 2023). Distinguished by their
conformationally constrained structures and potent, often exquisitely selective biological
activities, disulfide-containing peptides represent a highly privileged class of bioactive
molecules which continues to inspire innovative approaches to therapeutic development
(Hogg, 2003). These structural features, conferred by disulfide bonds, endow the peptides
with the ability to engage challenging biological targets (Erak et al., 2018). Therefore, a
versatile class of disulfide-containing peptides, such as hormones and toxins, has been
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widely explored as valuable pharmacophore templates and starting
points in the development of peptide therapeutics (Tyler et al.,
2023). Beyond nature’s repertoire, advances in combinatorial and
display technologies, such as phage, mRNA, and yeast display, have
enabled the generation of artificial disulfide-containing peptides and
mini-proteins with tailored binding specificities and improved
pharmacokinetic profiles (You et al., 2024). These engineered
scaffolds harness the structural advantages of disulfide bonds and
expand chemical space beyond linear peptides (Li et al., 2022). Most
recently, the artificial intelligence (AI)- or machine learning-driven
rational design has emerged as another powerful tool in peptide
therapeutics, enabling the de novo generation and optimization of
disulfide-containing peptides (Ye et al., 2023).

As the therapeutic landscape for peptides continues to evolve,
improving the chemical and metabolic stability of disulfide-
containing peptides has emerged as a critical priority in peptide
drug development (Al Musaimi et al., 2022). Accordingly, the
development of novel, broadly applicable and cost-effective
peptide modification methodology has become a central focus in
the field (Gori et al., 2017). This review aims to provide a
comprehensive framework for understanding the opportunities,
challenges and current art associated with disulfide bond
surrogate. Particular emphasis is placed on methylene thioacetal
linkage which offer exceptional chemical stability, redox inertness

and conformational control. Through selected case studies, we
highlight the versatility and broad applicability of methylene
thioacetal linkage in stabilizing disulfide-containing peptides,
positioning it as a compelling platform for next-generation
peptide therapeutics.

2 The function and limitations of native
disulfides in bioactive peptides

A defining feature of many bioactive peptides is the formation
of disulfide bond, a covalent linkage formed between the thiol
groups of two cysteine residues (Cys) (Narayan, 2012). These
disulfide-containing molecules, spanning native hormones
(insulin, salmon calcitonin, human growth factor), venom
toxins (ziconotide, spider toxin ProTx2), and plant derived
cysteine knot mini-proteins (cyclotides), represent a
structurally and functionally diverse class of peptides and
mini-proteins exhibiting distinct biological activities, which are
often regarded as privileged scaffolds in peptide drug discovery
(Figure 1a) (Tyler et al., 2023; Mollica et al., 2014). Several have
advanced directly to clinical application, highlighting their
substantial therapeutic value and scientific significance (Dang
and Sussmuth, 2017).

FIGURE 1
(a) Representative bioactive disulfide-containing peptides. The peptide backbones were represented in cartoon colored in grey and disulfide bonds
were represented in stick colored in yellow. Structures generated from PDBs (insulin 1EVR; salmon Calcitonin 7TYN; endothelin1 8XVH; human growth
factor 1HGU; ziconotide 7MIX; ProTx2 6N4R; Cycloviolacin O14 2GJ0; S597 8DTL. (b) The development of disulfide bond surrogates and (c) their
application in disulfide-rich peptide compounds, exemplified by conotoxins.
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Disulfide bonds play a central role in stabilizing the three-
dimensional structures by constraining conformational flexibility,
thereby preserving bioactive peptide conformations essential for
molecular recognition, receptor binding, and enzymatic regulation
(Fass, 2012). In peptides lacking extensive hydrophobic cores,
disulfide bridges are particularly vital in conferring resistance to
thermal denaturation and proteolytic degradation. By dictating the
precise spatial arrangement of pharmacophoric residues, disulfide
linkages enable high-affinity and selective interactions with
biological targets (Nagahara, 2011). Moreover, in certain
physiological contexts, disulfide bonds serve as redox-sensitive
molecular switches, thereby modulating peptide activity in
response to changes in cellular oxidative stress or redox signaling
(Chiu and Hogg, 2019).

Despite their structural and functional advantages, disulfide-
containing peptides face notable limitations that restrict their
broader therapeutic applications (Fass, 2012). The inherent redox
sensitivity of disulfide bonds renders these peptides vulnerable to
reduction in the intracellular environment, leading to premature
cleavage and substantial loss of structural integrity and
corresponding bioactivity. Disulfide bond scrambling, particularly
during peptide synthesis, folding or in vivo circulation, can generate
heterogeneous mixtures of isomers with variable or undesired
biological activity. In peptides with multiple disulfide bonds, the
combinatorial increase in possible regioisomeric arrangements
further complicates the synthesis and folding, posing significant
challenges for follow-up therapeutic development (Akondi et al.,
2014). Furthermore, disulfide-containing peptides often exhibit
limited metabolic stability due to susceptibility to enzymatic
degradation by thiol-disulfide exchange reactions. Collectively,
these drawbacks have spurred efforts to develop chemically
robust, redox-stable surrogates and alternative covalent
constraints that preserve or enhance the conformational and
functional properties conferred by native disulfide bridges.

3 Reported disulfide surrogates in
peptide modification

To address the limitations of native disulfide bonds, a broad
array of chemical surrogates has been developed, each designed to
emulate the structural and conformational constraints imposed by
disulfide linkages while providing superior stability under
physiological and manufacturing conditions (Figures 1b,c) (Gori
et al., 2017).

Dicarba bonds, comprising alkyne, olefin or saturated
hydrocarbon linkages, are among the most studied disulfide
surrogates (Walensky and Bird, 2014). These chemically non-
reducible all-carbon bonds, typically introduced via ring-closing
metathesis (RCM) or ring-closing alkyne metathesis (RCAM), serve
as effective surrogates for labile disulfide bonds, enhancing both the
structural stability and metabolic resilience of peptide therapeutics
(Blackwell and Grubbs, 1998). However, although several reported
successful applications of dicarba analogues that resulted in
improved stability while maintaining the original activity profile,
their altered electronic and steric properties may occasionally
perturb native-like peptide conformations, leading to reduced
bioactivities (Stymiest et al., 2005; Hossain et al., 2009; MacRaild

et al., 2009; Ma et al., 2024; Chhabra et al., 2014; Martin-Gago et al.,
2014; Chen et al., 2023; Belgi et al., 2021).

Triazole linkages, generated through Cu(I) or Ru(I)-catalyzed
azide-alkyne “click” cycloaddition, offer remarkable metabolic
stability and synthetic versatility (Angell and Burgess, 2007).
Nevertheless, the rigid, planar nature of the triazole moiety may
introduce conformational constraints distinct from those imposed
by native disulfide bonds, requiring careful optimization in
structure-activity relationship studies (White et al., 2020;
Williams et al., 2015; Gori et al., 2015; Knuhtsen et al., 2019;
Tomassi et al., 2020).

Thioether bridges, formed via alkylation or native chemical
ligation, introduce a non-reducible C-S bond that generally
preserves native peptide topology (Cui et al., 2021). Although
relatively straightforward to install, thioether linkages possess
subtle differences in bond length and polarity that can influence
peptide folding and biological activity (Dekan et al., 2011). Besides,
thioether bonds replacement may lead to reduced hydrophobicity
compared with native disulfide bonds. Notably, ether and
selenoether bridges are more similar in structure and reactivity
with the native disulfides and are oxidation resistant compared with
thioether bridges (Zhao et al., 2020; Cui et al., 2021; de Araujo et al.,
2014). Recently, a diaminodiacid (DADA) strategy was developed
for streamlined and efficient synthesis of thioether replaced
analogues (Cui et al., 2013; Zhao et al., 2023a; Zhao et al., 2023b).

Lactam bridges, created through amide bond formation between
amine side chains (lysine, ornithine) and acid side chains (glutamic
acid, aspartic acid), offering a highly efficient means of stabilizing
cyclic or constrained peptides (Houston et al., 1996; Hargittai et al.,
2000; Xu et al., 2024; Trotta et al., 2024). However, replacing a
disulfide with an amide linkage may alter local hydrogen bonding
networks and affect peptide dynamics.

The cysteine-penicillamine (Cys-Pen) bridges introduce steric
hindrance via gem-dimethyl substituents on penicillamine, thus
enhancing reductive stability while preserving native disulfide
bond geometry (Hunt et al., 1993; Gajewiak et al., 2021; Li et al.,
2024a; Di Maro et al., 2017). Despite these advantages, their
application is constrained by synthetic complexity and potential
steric effects on peptide conformation.

Diselenide bonds (Se-Se), formed by substituting cysteine
residues with selenocysteine (Sec), have emerged as promising
disulfide surrogates due to their unique redox properties and
structural similarity to disulfide bonds (Mousa et al., 2017;
Muttenthaler et al., 2010). The lower bond dissociation energy
and redox potential of diselenide bonds facilitate more efficient
oxidative folding pathways, enhancing the foldability and stability of
peptides and proteins. For instance, replacing an internal disulfide
bridge with a diselenide in human insulin significantly improved its
folding efficiency and thermodynamic stability without
compromising receptor binding affinity (Arai et al., 2023; Arai
et al., 2017).

Besides the above-mentioned technologies, other methods
constraining target peptides, or referred as peptide stapling
techniques by cysteine or lysing conjugations, have provided
alternative means for peptide drug designs (Li et al., 2024a;
Stefanucci et al., 2017). While these surrogate strategies have
advanced peptide drug discovery, many involve trade-offs in
synthetic accessibility, conformational fidelity, or pharmacological
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performance. As such, the search for chemically robust, synthetically
tractable, and biologically compatible alternatives remains a central
pursuit in peptide therapeutics research.

4 Methylene thioacetal as disulfide
surrogate in peptide therapeutics

Methylene thioacetal linkage has attracted growing interest for
its favorable balance of chemical robustness, structural mimicry, and
synthetic accessibility. In this strategy, the native disulfide bond is
inserted with a minimal “one-carbon” unit CH2, preserving the
spatial and conformational features of the original S-S bond while
imparting resistance to both reductive cleavage and oxidative
degradation. Several synthetic strategies have been developed to
install the methylene thioacetal bonds, typically involving the
selective reduction of native disulfides followed by alkylation of
the resulting free thiols with methylene donors (Ueki et al., 1999;
Kourra and Cramer, 2016). The most widely adopted method
utilizes dihalomethane reagents, such as diiodomethane (CH2I2)
and dibromomethane (CH2Br2), under mildly basic or neutral
conditions. While methylene thioacetals are isosteric to disulfide
bonds, subtle yet important differences in bond geometry and
physicochemical properties influence peptide structure and
function. Methylene thioacetals feature slightly longer S-S
distance (2.9 Å) compared to native disulfide bonds (2.0 Å), and
the additional methylene group introduces subtle changes to bond
angles and local conformational preferences. This results in a

marginally increased rigidity in certain peptide macrocycles and
loops, which can be leveraged to enhance receptor binding affinity,
proteolytic stability and plasma half-life (Figure 2a).

Investigations have revealed that methylene thioacetal
substitution frequently preserves peptide folding and biological
activity relative to their native disulfide-containing counterparts,
with markedly enhanced serum stability and proteolytic resistance
across a range of scaffolds, including conotoxins, anti-tumor peptides
and hormone analogues. Notably, several methylene thioacetal
modified lead compounds have advanced into clinical evaluation,
underscoring the high translational potential of this strategy.

Cramer et al. introduced a mild, biocompatible one-pot
methodology for converting native disulfide bonds in peptides
into highly stable methylene thioacetal linkages (Kourra and
Cramer, 2016). This straightforward and selective post-synthetic
transformation occurs under aqueous conditions at ambient
temperature, accommodating unprotected peptides with a range
of functional groups. As a key application, the authors synthesized a
methylene thioacetal-stapled analogue of oxytocin (SCS-OXT),
which exhibited a dramatic enhancement in chemical and
metabolic stability. In comparison to native oxytocin, SCS-OXT
demonstrated complete resistance to reduction in glutathione-rich
environments and significantly prolonged half-lives in human
serum and at elevated temperatures. Notably, at physiological
pH, SCS-OXT’s stability increased approximately 5-fold. Despite
the minor structural modification, SCS-OXT retained full agonist
activity at the oxytocin receptor, with a nanomolar EC50 in a uterine
contraction assay (Figure 2b).

FIGURE 2
(a) Converting native disulfide into methylene thioacetal linkage by inserting the minimal “one-carbon” unit; Strategic applications of methylene
thioacetal bonds as disulfide surrogates in bioactive peptides: (b) oxytocin; (c) conotoxin RgIA; (d) insulin; (e) BPTI; (f) human amylin; (g) human
endothelin 1; (h) KRAS inhibitor; (i) interleukin 2 (j) HIV inhibitor.
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Conotoxins are a diverse family of small, disulfide-rich peptides
derived from the venom of marine cone snails, evolved to target ion
channels, receptors, and transporters with remarkable potency and
selectivity (Jin et al., 2019). Their distinct ability to modulate
neuronal signaling pathways has made conotoxins invaluable
both as pharmacological tools and as leads for therapeutic
development. However, the therapeutic exploitation of conotoxins
faces significant challenges, chiefly due to their susceptibility to
disulfide bond scrambling and oxidative instability under
physiological and manufacturing conditions, which can
compromise their structural integrity and bioactivity. As such,
chemical modifications and alternative bond surrogates are
increasingly recognized as necessary strategies to enhance their
stability and broaden their clinical applicability. Chou et al.
developed α-RgIA analogues incorporating methylene thioacetal
bonds to enhance peptide stability and potency against human
α9α10 nicotinic acetylcholine receptors (nAChRs), a promising
non-opioid target for analgesic drug development (Zheng et al.,
2021). The study revealed distinct regioselectivity in disulfide bond
replacement: substitution of the disulfide in loop I (Cys2–Cys8)
markedly impaired activity, whereas replacement in loop II
(Cys3–Cys12) preserved potency. The lead analogue, RgIA-5524,
incorporating a methylene thioacetal in loop II, demonstrated
potent inhibition of human α9α10 nAChRs (IC50 = 0.9 nM),
exceptional selectivity across a wide range of pain-associated ion
channels and receptors, and significantly improved serum stability
by preventing disulfide scrambling. Notably, in vivo studies showed
that RgIA-5524 effectively prevented cold allodynia in a mouse
model of oxaliplatin-induced neuropathic pain, an effect absent in
α9 knockout mice, confirming robust target engagement. These
findings position RgIA-5524 as a promising, stable, and selective
α9α10 nAChR antagonist for neuropathic pain treatment. This work
underscores how the strategic incorporation of methylene thioacetal
surrogates can optimize the therapeutic potential of conotoxin-
based, disulfide-rich peptides. However, replacing a disulfide
bond in another conotoxin lead candidate Mr1.1 [S4Dap] with a
methylene thioacetal, ether by loop I, loop II or both, resulted in
complete loss of activity (Li et al., 2024b). This indicates that the use
of methylene thioacetal as a disulfide bond surrogate still faces
challenges in terms of selectivity and sequence compatibility, even in
the same case of α-conotoxins (Figure 2c).

Insulin, a disulfide-rich peptide hormone, plays a crucial role in
the regulation of blood glucose levels, with its biological activity and
structural integrity critically dependent on three conserved disulfide
bonds, including the A6-A11 linkage within the A-chain (Sims et al.,
2021). However, insulin’s inherent instability, particularly its
propensity to fibrillate and degrade under physiological and
stress conditions, presents significant challenges for storage,
handling, and therapeutic application (Richter et al., 2023). In
response to these issues, Chou et al. engineered a human insulin
analogue, SCS-Ins, by replacing the native A6-A11 disulfide bond
with a methylene thioacetal surrogate (Zheng et al., 2019). Notably,
SCS-Ins exhibited markedly improved resistance to fibrillation
compared with native insulin, coupled with enhanced thermal
and serum stability, showing superior resistance to degradation
under both physiological and elevated temperature conditions.
Importantly, SCS-Ins preserved its bioactivity, as confirmed by
both in vitro assays and in vivo insulin tolerance tests in mice,

where it exhibited comparable efficacy to native insulin. These
results highlight the potential of methylene thioacetal
incorporation at the A6-A11 position as a promising strategy to
enhance the stability of insulin formulations. It is noteworthy that
the SCS-Ins represents the limited examples of potent insulin
analogues with A6-A11 disulfide replacement. Substitution of this
interchain disulfide with either lactam, triazole bridge and dicarba
bonds all led to potency deprivation (Figure 2d).

Understanding the process of protein folding is fundamental to
deciphering how peptide chains acquire their functional structures
and how misfolding can lead to disease (Hidaka and Shimamoto,
2013). Metanis et al. investigated the effect of substituting a native
disulfide bond in bovine pancreatic trypsin inhibitor (BPTI) with the
methylene thioacetal bridge. Remarkably, replacing the
14–38 disulfide bond preserved the native fold while revealing an
alternative folding trajectory not observed in the wild-type protein
(Mousa et al., 2018). This discovery highlights the subtle yet critical
role individual disulfide bonds play in directing protein folding
pathways and demonstrates that the methylene thioacetal
substitution can maintain structural integrity while uncovering
new mechanistic insights. The study underscores the value of
methylene thioacetal as a versatile chemical tool for probing
protein folding and stability (Figure 2e).

Amylin, a peptide hormone co-secreted with insulin by
pancreas, plays a pivotal role in regulating glucose metabolism
and appetite (Hay et al., 2015). The N-terminal disulfide bond in
native amylin is crucial for its structural integrity and biological
activity. However, amylin is highly prone to aggregation and
fibrillation, particularly under physiological conditions, which
limits its therapeutic potential (Wilkinson et al., 2023).
Eloralintide (LY3841136), a long-acting amylin analogue, was
developed to address these challenges, offering enhanced stability
and prolonged action compared to native amylin. To improve its
stability and mitigate aggregation, Eloralintide incorporates a
methylene thioacetal surrogate in place of the native disulfide
bonds. This modification significantly enhances resistance to
fibrillation and improves its pharmacokinetic profile compared
with native amylin. Currently, eloralintide is undergoing clinical
evaluation in Phase 1 and Phase 2 trials for the treatment of obesity
and overweight conditions, aiming to assess its safety, tolerability,
and efficacy, both as a monotherapy and in combination with other
agents such as tirzepatide (Figure 2f).

Endothelin-1 (ET-1) is a potent, 21-residue vasoconstrictive
peptide that plays a key role in the regulation of vascular tone
and cardiovascular homeostasis (Lankhorst et al., 2016). Its
biological activity and structural integrity rely on two conserved
disulfide bonds, which form a characteristic bicyclic scaffold
essential for high-affinity receptor engagement. However, like
many disulfide-rich peptides, ET-1 is prone to chemical
instability and disulfide scrambling under physiological
conditions, which can limit its therapeutic potential. In a recent
study, a methylene thioacetal surrogate was introduced to replace
one of the native disulfide bonds in ET-1, yielding a chemically
stabilized single-loop analogue (Wolf and Beck-Sickinger, 2021).
Notably, this modified peptide retained vasoconstrictor potency
comparable to native ET-1, demonstrating that selective
methylene thioacetal incorporation can preserve biological
function while enhancing chemical stability (Figure 2g).
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Beyond its established role as a disulfide bond surrogate in
natural disulfide-containing peptides, methylene thioacetal has
also been effectively applied to the optimization of bioactive
macrocyclic peptides and lead compounds identified through
library-based screening strategies. In a notable example, Heinis
et al. reported the discovery of macrocyclic peptide inhibitors
targeting KRAS, a historically challenging oncogenic protein
implicated in a wide range of human cancers (Figure 2h).
Through phage display-based selection and structure-guided
optimization, the team incorporated methylene thioacetal
bridges to constrain peptide conformation, significantly
improving proteolytic stability while preserving high-affinity
binding and enabling cell-active inhibition of KRAS signaling
(Lim et al., 2021; Garrigou et al., 2022). Similarly, in efforts to
target viral RNA structures, methylene thioacetal was employed in
the design of macrocyclic peptide inhibitors against the HIV trans-
activation response (TAR) RNA element (Chavali et al., 2020). Co-
crystal structures of TAR RNA bound to the lead molecule TB-CP-
6.9a revealed key arginine-mediated contacts essential for high-
affinity binding, insights that guided the development of cyclic
peptides stabilized with methylene thioacetal to maintain bioactive
conformations while enhancing chemical and metabolic stability
(Figure 2j). Together, these studies underscore the versatility of
methylene thioacetal as a valuable tool not only for stabilizing
natural peptides but also for advancing the development of
structurally defined, pharmacologically robust macrocyclic
peptide therapeutics.

Methylene thioacetal has emerged not only as a stabilizing
modification for disulfide-rich peptides but also as a
biocompatible surrogate for disulfide bonds within larger protein
scaffolds. Bode et al. achieved the total chemical synthesis of
interleukin-2, and the modified analogue incorporating a
methylene thioacetal bridge in place of a native disulfide bond
(Murar et al., 2020). Notably, the resulting analogue, compound
14, retained in vitro bioactivity comparable to the recombinant IL-2.
This work highlights the broader applicability of methylene
thioacetal in the chemical synthesis and stabilization of disulfide-
containing proteins, while preserving their functional
properties (Figure 2i).

5 Conclusion and outlook

Disulfide-containing peptides represent a valuable class of
bioactive molecules with high target selectivity and potent
pharmacological activities. However, the inherent instability of
disulfide bonds, particularly their susceptibility to reduction and
scrambling under physiological and manufacturing conditions, has
long posed a barrier to their broader therapeutic application.
Methylene thioacetal has emerged as a promising disulfide bond
surrogate, offering a chemically robust, non-reducible alternative
that preserves the native-like conformation and bioactivity of
peptide scaffolds. However, despite these advances, challenges
remain regarding sequence-specific compatibility and potential
effects on target binding and functional activity.

Moving forward, comprehensive in vivo studies addressing
immunogenicity, toxicity, and pharmacodynamics, developing
predictive guidelines for sequence compatibility, and integrating

these chemistries into modern peptide display and screening
platforms will be essential to fully realize the therapeutic
potential of this promising strategy. In this landscape, methylene
thioacetal stands as a powerful and versatile tool not only for
stabilizing natural peptides but also for enabling the next-
generation of chemically resilient, bioactive macrocycles in
peptide drug discovery.
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