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Background: Chlamydia trachomatis, Gram-negative obligate intracellular
bacteria, are a leading cause of sexually transmitted diseases worldwide, often
causing severe complications. With no vaccine available and concerns about
potential antibiotic resistance, the need for novel treatments is urgent.
Dehydrogenation polymer of coniferyl alcohol in alginate hydrogel (DHP/Alg)
has not yet been tested against chlamydial infections.

Material and Methods: The cytotoxicity of DHP/Alg on A2EN genital epithelial
cells was assessed by measuring cell viability. To investigate its effects on
Chlamydia-infected cells, we employed flow cytometry-based assays,
fluorescence microscopy, and quantitative PCR (qPCR). Additionally, adhesion
assays were performed to examine whether DHP/Alg interferes with Chlamydia
entry into host cells.

Results: No cytotoxic effects of DHP/Alg in tested concentrations on A2EN cells
were observed, confirming its safety. Infection and adhesion assays
demonstrated a significant reduction in infection levels, suggesting that DHP/
Alg directly targets Chlamydia elementary bodies, thereby disrupting their ability
to adhere and initiate infection. Fluorescence microscopy revealed that 75 pg/mL
DHP/Alg is the most effective dose evaluated to reduce chlamydial infection
in vitro, as indicated by the decreased number of inclusions. These findings were
further confirmed by gPCR analysis.

Conclusion: Our results suggest that DHP/Alg is a promising therapeutic option
against chlamydial infections. The significant reduction in adhesion levels
indicates that DHP/Alg effectively interferes with the initial stages of infection.
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chlamydial infection, sexually transmitted infection, Chlamydia trachomatis, treatment,
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1 Introduction

Chlamydia trachomatis (Ct) is a leading cause of sexually
transmitted infections (STIs) and the etiological agent of
trachoma, the world’s most common infectious cause of
blindness (de la Maza et al., 2021; Hu et al., 2013). According to
the World Health Organization, there were an estimated 129 million
new cases of genital chlamydial infection in 2020, making it one of
the most prevalent bacterial STIs globally (WHO, 2025).

Genital Ct infections can lead to severe reproductive health
complications, including pelvic inflammatory disease (PID),
infertility, ectopic pregnancies, and chronic pelvic pain (Sharma
and Khan, 2025). The economic burden is substantial: in the
United  States
Chlamydia and its complications exceed US $500 million, with

alone, the annual direct medical costs of
total lifetime costs for all incident STIs (excluding HIV) reaching
US $2.4 billion; women bear the majority of these costs due to the
high rate of complication-related healthcare use and productivity
losses (Chesson et al., 2021).

Despite decades of research, vaccine development for Ct has
faced significant challenges, including the complexity of eliciting
long-lasting mucosal immunity, antigenic variation among serovars,
and incomplete protection observed in preclinical and early clinical
trials (de la Maza et al., 2021; Poston et al., 2025; de la Maza et al.,
2023; dela Maza et al., 2020; de la Maza et al., 2017; Boje et al., 2016; 1
et al., 2016; Inic-Kanada et al., 2015; Pollock et al., 2024). Given its
public health burden and the lack of an available vaccine (de la Maza
et al., 2020), effective control measures and prophylactic strategies
are urgently needed (Elwell et al., 2016; Murray and McKay, 2021).

Although antibiotic therapy, especially with azithromycin, is
effective for treating Ct infections, its impact is limited to individuals
who actively seek medical care (Murray and McKay, 2021). A
that
asymptomatic (Detels et al., 2011), making regular STIs screening

significant challenge is many Ct infections remain
essential for effective disease management (Murray and McKay,
2021). While antibiotics are highly effective in many cases, there is a
concern that Ct infections may persist despite treatment, potentially
leading to complications like PID and long-term reproductive
health issues.

In addition to targeted treatment of active infections,
prophylactic antibiotic strategies such as doxycycline post-
(DoxyPEP) have been proposed for
While

widespread use of DoxyPEP, which involves lower doses and

exposure prophylaxis

reducing STI incidence. potentially beneficial, the

shorter durations than treatment of active infection, may
contribute to the emergence of antibiotic resistance over time.
that

prophylactic tetracycline use in swine facilitated the spread of

Historical evidence from livestock production shows

tetracycline-resistant bacterial strains in Europe (Van Boeckel

Abbreviations: DAPI, 4',6-diamidino-2-phenylindole; CFSE, Carboxyfluorescein
succinimidyl ester; Ct, Chlamydia trachomatis; CtE, Ct Serovar E; DHP,
Dehydrogenation polymer of coniferyl alcohol; DHP/Alg, DHP in Alginate
hydrogel; DPBS, Dulbecco’s Phosphate-Buffered Saline; EBs, Elementary
bodies; KSFM, Keratinocyte Serum Free Medium; LMW, Low-molecular
weight; MOI, Multiplicity of infection; PID, Pelvic inflammatory disease;
RT, Room temperature; STI, Sexually transmitted infection.
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et al,, 2015), and tetracycline-resistant Chlamydia suis has been
generated and observed in both in vitro and in vivo studies (Borel
et al, 2012; Marti et al, 2021; Unterweger et al, 2020).
Consequently, any implementation of prophylactic antibiotic
should be
surveillance (Bachmann et al., 2024).

measures accompanied by robust resistance

These challenges underscore the need for novel therapeutic
alternatives to mitigate the risks of treatment failure and reduce
reliance on antibiotics.

Natural products have emerged as promising candidates for
anti-Chlamydia therapeutics (Brown et al., 2016; Hou et al., 2022).
Carrageenans, polysaccharides derived from seaweed, have been
shown to reduce Ct infectivity (Inic-Kanada et al, 2018).
Polyphenolic compounds, known for their antioxidant and
antimicrobial properties, have also demonstrated anti-Chlamydia
potential (Yamazaki et al., 2003; Yamazaki et al., 2005), along with
lipid-based (Bergsson et al., 1998) and proteinaceous compounds,
such as antimicrobial peptides (Ballweber et al., 2002). Also,
probiotics like Lactobacillus spp (Mastromarino et al., 2014) and
polyherbal formulations have exhibited notable anti-chlamydial
properties (Talwar et al, 2000). These findings highlight the
potential of natural products and formulations as alternative or
complementary strategies to conventional antibiotics.

Lignin, the second most abundant polymer on Earth after
cellulose, is a complex aromatic biopolymer with known
antimicrobial properties (Lobo et al., 2021; Spasojevi¢ et al,
2016). However, the heterogeneity of natural lignin, resulting
from the diverse sources and extraction methods, poses
challenges for biomedical applications (Sugiarto et al., 2022). To
overcome this, synthetic lignin models, such as dehydrogenation
polymer of coniferyl alcohol (DHP), provide a more uniform and
controllable framework for research and development.

Recent studies have demonstrated that low-molecular weight
(LMW) DHP fractions embedded in a cellulose matrix exhibit
antimicrobial activity against a range of bacterial strains
(Zmejkoski et al., 2018). DHP incorporated into alginate
hydrogel (DHP/Alg) has shown antimicrobial effects against both
Gram-positive and Gram-negative bacteria, while exhibiting no
toxicity toward human epithelial cell lines HCJE and HepG2
(Spasojevi¢ et al., 2016). Furthermore, LMW lignin fractions
(2-3 kDa), suspended in alginate, have been found to promote
wound healing by reducing inflammation and infection while
providing a soothing effect on the skin. These fractions have also
exhibited

spp. (Spasojevi¢ et al., 2024).

antimicrobial  activity  against  Staphylococcus

Alginate, a naturally occurring polysaccharide derived from
algae, forms hydrogels through ionic crosslinking. It is widely
recognized for its biocompatibility, accessibility, and cost-
effectiveness, making it an attractive material for drug delivery
and wound healing application (Pires et al., 2024; Zhang et al,
2021). As a hydrogel matrix, alginate ensures prolonged exposure to
the active DHP component on the site of application (Zhang
et al., 2021).

Given DHP’s demonstrated antibacterial properties, we
hypothesize that it may also exhibit activity against Ct infections.
Although Ct is an obligate intracellular pathogen, its unique
infection mechanisms suggest that lignin-based compounds could

interfere with its adhesion or early infection-stage process.
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Investigating DHP’s potential against Ct could offer a novel
therapeutic approach for intracellular bacterial infections.

2 Materials and methods
2.1 Chlamydial strains

Ct serovar E (CtE) was propagated in McCoy cells, harvested by
mechanical disruption using glass beads, and purified via
ultracentrifugation at 160,000 x g using a discontinuous
Gastrografin (Bayer, Germany) gradient (40/44/54%). Purified
elementary bodies (EBs) were collected from the 40/44%
interface, washed, and stored in Sucrose-Phosphate-Glutamic acid
(SPG) bulffer for further use.

2.2 Labeling of EBs

EBs of CtE were labelled with carboxyfluorescein succinimidyl
ester (CFSE) (eBisocience, 65-0850, Invitrogen, United States) as
described by Schnitger et al. (2007). Briefly, EBs were resuspended in
SPG buffer and incubated with 20 uM CFSE for 90 min at room
temperature (RT) in the dark. Labelled EBs were pelleted (18,000 x g
in a high-speed centrifuge for 10 min) and excess dye was removed
by three washes with 1% BSA in Dulbecco’s Phosphate-Buffered
Saline (DPBS), each followed by centrifugation (18,000 x g, 10 min).
Due to wash-associated losses, the final titer was estimated at 70% of
the starting concentration. CFSE-labelled EBs were then used to
infect A2EN cells.

2.3 Cell culture

Immortalized human endocervical epithelial A2EN cells were
cultured in Keratinocyte Serum-Free Medium (KSFM, 10725-018,
Gibco, Thermo Fisher Scientific, United States) supplemented with
12.5 mg of supplied bovine pituitary extract, 0.2 ng/mL EGF
(Supplements for KSFM, 37000-015, Gibco, Thermo Fisher
Scientific, United States), 0.4 mM CaCl, and 1% penicillin/
streptomycin (P06-07100, Pan Biotech, Germany) at 37 °C/5%
CO, and 95% humidity in standard cell culture flasks (90026 and
90076, TPP, Switzerland). Cells were passaged at 70%-80%
confluency. For passaging, cells were detached using 0.05%
Trypsin/0.02% EDTA (P10-023100, Pan Biotech, Germany) and
neutralized with an equal volume of Neutralization medium
(DMEM/Hams F12 (SH30023.01, Cytiva, US) with 10% FCS
(9665, Sigma, US) and 1% penicillin/streptomycin. Cells were
then centrifuged for 4 min at 2,600 x g at RT, the pellet was
resuspended in KSFM and transferred to a new flask.

2.4 DHP/alg stock preparation

The DHP was synthesized following the method outlined by
Radoti¢ et al. (1994). The obtained compound was air-dried. The
DHP mixture consisted of 65.1% molecules with a molecular
weight >10 kDa, 19.2% between 10 and 3 kDa, 11% between
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3 and 1 kDa, and <4.7% 1 kDa (Spasojevi¢ et al., 2023). For the
stock solution, 10 mg DHP and 20 mg Alg (Sigma-Aldrich,
United States) were solubilized in 50 pL 100% DMSO to ensure
complete dissolution of DHP. This was then filled with 950 uL. dH,O
to reach a 10 mg/mL stock solution of DHP/Alg. This was diluted to
500 pg/mL starting solution in KSFM (without penicillin/
streptomycin) prior to use, which was sterile filtered and further
diluted to desired concentrations in the same medium. The
concentrations mentioned always correspond to the DHP
concentration, and the ratio of DHP:Alg is 1:2.

2.5 Cytotoxicity assay

A2EN cells were seeded at a density of 5,000 cells/well in a 96-
well plate. The following day, medium was removed, and cells were
treated with DHP/Alg (1-100 pg/mL for DHP in KSFM). Controls
included medium-only (no cells), non-treated cells control, and
1 ug/mL azithromycin (treatment control). As an additional control,
heat-inactivated EBs (processed in parallel) were included to test
viability-independent effects; and the absence of inclusions on
passage confirmed loss of infectivity. Here, cells were treated with
DHP/Alg (75 and 100 pg/mL with respect to DHP in KSFM).
Controls included medium-only (A2EN + medium), non-treated
cells control (A2EN + heat-inactivated CtE), and 1 pg/mL
azithromycin (treatment control, A2EN + heat-inactivated CtE +
1 ug/mL azithromycin).

After 48h, 10 pL of the Cell Counting Kit-8 (CCK-8, 96992,
Sigma-Aldrich, US) reagent was added, and the plate was incubated
for 4 h at 37 °C/5% CO, and 95% humidity. Cell viability was
measured at 450 nm using a microplate reader (Varioskan Flash,
Thermo Scientific).

2.6 Infection assay via flow cytometry

Flow cytometric detection of A2EN cells infected with CFSE-
labeled CtE EBs was performed in line with established protocols
(Grasse et al., 2018; Schnitger et al., 2007). We used this assay as a
rapid and cost-efficient pre-screen to compare four experimental
conditions and to identify potential mechanistic differences. This
approach allowed us to prioritize conditions before moving to the
gold-standard cell culture method, which we then used to confirm
quantification under the treatment-relevant condition.

A2EN cells were seeded at a density of 150,000 cells per well in a
24-well plate. The following day, cells were infected with CtE with a
multiplicity of infection (MOI) of 10 and different treatment options
were performed (Figure 1). DHP/AIg concentrations used were
between 25-100 pg/mL with respect to DHP and were diluted to
the needed concentration in KSFM without 1% penicillin/
included (cells
incubated with medium alone) and infected cells without any

streptomycin.  Controls non-infected  cells

treatment (cells were infected with labeled EBs).

2.6.1 Pre-incubation of EBs with DHP/Alg prior to
infection — “CtE pre-treated”

The labeled EBs were incubated with DHP/Alg in different
concentrations for 1 h. These EBs were then used to infect A2EN
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FIGURE 1
Graphical workflow summarizing the four treatment conditions used in infection assays. Infection was conducted with CtE EBs (MOl = 10). Each lane

represents a distinct experimental setup: (A) Pre-incubation of EBs with DHP/Alg prior to infection. (B) Pre-treatment of cell monolayers with DHP/Alg
prior to infection. (C) Treatment with DHP/Alg after infection. (D) Simultaneous addition of EBs and DHP/Alg to cell monolayers. Created with BioRender.
When 'DHP’ is mentioned, it refers to DHP/Alg.

cell monolayers. The plates were centrifuged at 900 g for 0.5 h at RT
after infection to facilitate adhesion, which was followed by a 1.5 h
incubation period at 37 °C/5% CO, and 95% humidity. The medium
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was afterwards replaced by KSFM without 1% penicillin/
streptomycin, and plates were incubated for 48 h at 37 °C/5%
CO, and 95% humidity before harvesting.
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2.6.2 Pre-treatment of cell monolayers with DHP/
Alg prior to infection — “A2EN pre-treated”

DHP/Alg treatment was applied in different concentrations on
the A2EN cell monolayers for 1 h and the medium was removed.
The EBs were then added onto the cells and the plates were
centrifuged at 900 g for 0.5 h at RT after infection to facilitate
adhesion, which was followed by a 1.5 h incubation period at 37 “C/
5% CO, and 95% humidity. The medium was afterwards replaced by
KSEM without 1% penicillin/streptomycin, and plates were
incubated for 48 h at 37 °C/5% CO, and 95% humidity before
harvesting.

2.6.3 Treatment with DHP/Alg after
infection — “standard treatment”

Labeled EBs were used to infect A2EN cell monolayers and the
plates were centrifuged at 900 g for 0.5 h at RT after infection to
facilitate adhesion, which was followed by a 1.5 h incubation period
at 37 "C/5% CO, and 95% humidity. The medium was removed and
replaced by DHP/Alg treatment in different concentrations. Plates
were incubated for 48 h at 37 °C/5% CO, and 95% humidity before
harvesting.

2.6.4 Simultaneous addition of EBs and DHP/Alg to
cell monolayers — “treatment + EBs,
simultaneously”

Labeled EBs and DHP/Alg treatment were simultaneously
added on the A2EN cell monolayers and the plates were
centrifuged at 900 g for 0.5 h at RT after infection to facilitate
adhesion, which was followed by a 1.5 h incubation period at 37 °C/
5% CO, and 95% humidity. The medium was afterwards replaced by
KSEM without 1% penicillin/streptomycin, and plates were
incubated for 48 h at 37 °C/5% CO, and 95% humidity before
harvesting.

For harvesting, the medium was first removed and cells were
washed with PBS. Trypsin (200 uL) was added per well to harvest the
cells. As soon as cells were detached, an equal volume of
Neutralization medium was added. The cell suspension was
transferred to a 96-well plate in two steps: 200 pL was added
first, followed by centrifugation at 2,600 x g for 4 min, then the
remaining 200 uL was layered on top. Medium was then removed
and cells were washed with PBS (centrifuged for 4 min at 2,600 x g).
Then, the cells were fixed in 2% paraformaldehyde for 15 min at RT
and washed again with PBS (centrifuged for 4 min at 2,600 x g).
Pellets were resuspended in 150-180 pL 1% BSA in DPBS and flow
cytometry analysis was performed on a Cytek Northern Lights
cytometer. A minimum of 50,000 events per well were recorded.

The gating strategy included: (i) forward scatter (FSC) and side
scatter (SSC) gating to exclude debris, (ii) FSC-A vs. FSC-H gating to
select singlets, and (iii) CFSE fluorescence gating to identify infected
cells. Quantification was based on the percentage of CFSE-positive
cells in the singlet population. Although chlamydial inclusion size
can vary under different treatments, the CFSE-based detection
identifies infected cells regardless of inclusion morphology or
size, ensuring comparability across conditions.

To complement these analyses, a Live/Dead staining was
performed using the Zombie Red Fixable Viability Kit
(BioLegend, 423109). The dye was diluted 1:2000 in PBS, and
100 pL were added to each well, followed by 20 min incubation
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at RT in the dark. Staining was stopped by adding 100 uL of 1% BSA/
DPBS, and cells were washed with PBS. This step was performed
immediately before fixation. The gating strategy for both the CFSE
infection assay and Live/Dead staining, as well as the corresponding
flow cytometry data, is provided as Supplementary Figures 2A-D.

2.7 Invasion assay

A2EN cells were seeded at a density of 150,000 cells per well in a
24-well plate and grown overnight at 37 °C/5% CO, and 95%
humidity (Figure 2). Cells were pretreated with DHP/Alg
(25-100 pg/mL for DHP) for 5 min prior to infection with CtE
at an MOI of 10 for 1 h (at 37 °C/5% CO, and 95% humidity)
without centrifugation and then harvested. A high inoculum (MOI
10) was chosen to maximize initial infection and create a stringent
condition to assess whether DHP can counteract invasion. Controls,
fixation, and analysis followed Section 2.6.

2.8 Infection assay via fluorescence
microscopy

A2EN cells were seeded at 50,000 cells per well on coverslips
(diameter of 12 mm) in a 24-well plate. The next day, cells were
infected with CtE (MOI of 1), centrifuged for 1 h to facilitate
infection, and incubated for 1 h at 37 °C/5% CO, and 95%
humidity. Then, the medium was removed and replaced with
DHP/Alg treatment at varying concentrations in KSFM (without
penicillin/streptomycin). As a positive control of a working
treatment 1 pg/mL azithromycin diluted in KSFM was used. As a
negative control, instead of adding DHP/Alg treatment, only KSFM
was used. Non-infected cells served as an additional control.

After 48 h, the medium was removed, and cells were washed
with DPBS for 5 min and fixed with ice-cold methanol for 10 min
at =20 °C, following another washing step. Coverslips were stained
with 200 uL FITC-labelled anti-Chlamydia-LPS antibody (MA1-
7339, Invitrogen, US) 1:20 diluted in 5% BSA in DPBS for 30 min at
RT in the dark. The stain was removed, and cells were washed 3 x
5 min with DPBS and counterstained with 1 pg/mL 4’,6-diamidino-
2-phenylindole (DAPI, D9542, Invitrogen, US). Coverslips were
mounted on microscopic slides using DAKO fluorescent
mounting medium and stored overnight at 4 °C. They were
analyzed using the TissueFaxs microscope (TissueGnostics,
Austria). Images were captured using a x63 oil immersion
were counted in 20 fields for

objective, and inclusions

semiquantitative measurement.

2.9 RT-gPCR

To quantify chlamydial load, the levels of 16S and 23S rRNA
were measured using qPCR. A2EN cells were grown in T75 cell
culture flasks until reaching approximately 1-1.5 x 10° cells per
flask. Cells were infected at an MOI of 1. One flask was left
uninfected as a negative control. The flasks were centrifuged to
facilitate infection and incubated for an additional hour at 37 °C/5%
CO, and 95% humidity. The Ct suspension was removed, and KSFM
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FIGURE 2

Graphical workflow of the adhesion assay via flow cytometry. Infection was conducted with CtE EBs (MOI = 10). When 'DHP" is mentioned, it refers to

DHP/Alg. Created with BioRender.

without 1% penicillin/streptomycin was added to the control
group. For treatment groups, DHP/AIg at varying concentrations
diluted in the same medium was added alongside an antibiotic
control (1 ug/mL azithromycin). The flasks were incubated for 40 h
at 37 °C/5% CO, and 95% humidity.

After incubation, CtE was harvested via glass bead disruption.
Cell debris was pelleted and the supernatant was centrifuged at
18,000 x g in high-speed centrifuge tubes, after which the pellet
containing the CtE was resuspended in TE buffer (included in the
Innuprep Kit (845-KS-20400250, Innuscreen GmbH, Germany)
10 mM Tris-HCl; 1 mM EDTA; pH 8.0). Lysozyme and lysis
buffer were added per the InnuPrep Kit protocol for RNA
isolation from Gram-negative bacteria. Subsequent steps were
performed according to the manufacturer’s protocol. After the
RNA
spectrophotometer, DNase treatment was done according to the
manufacturer’s guidelines (DNase I, RNase-free, EN0521, Thermo
Scientific, US). The ¢cDNA was synthesized using iScript cDNA
Synthesis Kit (708891, Bio-Rad, US) according to the manufacturer’s
instructions. Samples were subjected to the following thermal

concentration ~was assessed using a nanodrop

cycling program: Priming for 5 min at 25 °C, Reverse
transcription for 20 min at 46 °C, RT inactivation for 1 min at
95 °C, Hold at 4 °C indefinitely. Primers specific for Ct 16S and 23S
rRNA genes were used to assess bacterial load. The sequences (5 ->
3') were as previously described (Bellmann-Weiler et al.,, 2018;
Blumer et al., 2011). For each primer the qPCR Master mix was
prepared using SYBR Green Supermix kit (1725271, Bio-Rad, US)
and the reaction was performed with the following PCR settings at
the CFX Duet Real-Time PCR System: Denaturation at 95 °C for
3 min, annealing at 95 °C for 15 s, 60 °C for 60 s (40 x), melt curve
analysis 60°-> 95 °C in 5 s.

Relative expression of CtE 16S and 23S rRNA was quantified by
RT-qPCR using the comparative 2-AACr method (ACy = Cr_
target — Cr_GAPDH). GAPDH served as the endogenous control
because its Cr did not vary across untreated, antibiotic-treated,
and DHP/Alg-treated A2EN cells. The CtE (A2EN + CtE) group
was used as the calibrator and assigned a value of 1. For
visualization, we plotted fold reduction vs. CtE (FR = 1/
2-AACt) on a logl0 years-axis. The uninfected A2EN condition

Frontiers in Chemistry

100 } ¢

% viability

[$)]
o

0

A2EN +t 0t ot o+ 4+ o+ o+ o+ o+

DHP/Alg + o+ o+ o+ o+ o+ + - - -
in pyg/mL 6,25 12,5 25 50 75 100

-

Azithromycin - - - - . a = = + -

FIGURE 3

Cytotoxicity test of DHP/Alg treatment on A2EN cells. The DHP:

Alg ratio is 1:2, and the DHP concentrations tested are shown on the
x-axis on the graph (1-100 pg/mL). As controls only cells (A2EN),
antibiotic treatment (A2EN + 1 pg/mL Azithromycin) and only
medium were used. The y-axis shows cell viability as a percentage
relative to untreated cells which were set to 100% viability. Error bars
represent standard deviations from triplicates. Statistical test was done
using a one-way ANOVA.

was omitted from FR plots because its background signal yields
substantial FR values that compress the scale. Statistical
significance was assessed by one-way ANOVA with Dunnett’s
multiple comparisons versus CtE (n = 3). Normalization to f-actin
produced the same conclusions.

2.10 Statistics

One-way ANOVA was used for statistical analysis, with
significance indicated as *p < 0.05, **p < 0.01, **p < 0.001,
#*p < 0.0001. Analyses were conducted using GraphPad Prism
10 software.
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Infection levels measured in the infection and adhesion assays. Infection was conducted with CtE EBs (MOl = 10). The graphs display the percentage

of infection relative to non-treated cells, set as 100%. (A) Infection assay. Three treatment conditions were evaluated: pre-treated EBs, pre-treated cells,
and standard treatment. The level of infection was measured after 48 h. (B) Infection assay with an additional treatment option. Additionally, simultaneous
treatment and infection were evaluated. The level of infection was measured after 48 h. (C) Adhesion assay. This graph illustrates the impact of DHP/

Alg on the initial adhesion phase of CtE infection in host cells. Various concentrations of DHP/Alg (25-100 pg/mL) were tested. The percentage of
infected cells (relative to the untreated control set to 100%) measured 1 h post-infection using flow cytometry is shown. A statistical test was done using a
one-way ANOVA. The levels of statistical significance are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3 Results

3.1 DHP does not exhibit cytotoxic effects on
A2EN cells

A cytotoxicity assay was performed to evaluate whether
DHP/Alg treatment affects A2EN cell viability (Figure 3).
The viability the presence of DHP/Alg
concentrations tested (1-100 pg/mL with respect to DHP)

cells’ in in
was compared with the viability of untreated cells, which was
set to 100% viable cells.

No significant reduction in viability was observed in the

treatment of cells with DHP in the range of 1-100 pg/mL DHP/
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Alg. Treatment with 1-75 pg/mL DHP/Alg maintained viability
close to 100%. A modest decrease in cell viability (<90%) was
detected at 100 pg/mL, indicating limited cytotoxicity of DHP/
Alg at this concentration. Therefore, lower concentrations
(1-75 pg/mL) are preferable to minimize potential cytotoxic effects.

Further, before initiating infection experiments, we tested
whether heat-inactivated CtE could account for cytotoxicity. By
doing this, we wanted to ensure that any effects observed with live
infection could be ascribed to viable Chlamydia rather than cellular
debris. A2EN cells exposed to heat-inactivated showed no loss of
viability, and viability remained unchanged when heat-inactivated
CtE was combined with DHP/Alg (75-100 pg/mL) (CCK-8, 48 h;
p > 0.05) (Supplementary Figure S1).
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Infection assay via fluorescence microscopy. (A) Fluorescent images. A2EN (above panel, left), A2EN + CtE +1 pg/mL Azithromycin (above panel,
right), A2EN + CtE (below panel, left), A2EN + CtE +75 ug/mL DHP/Alg (below panel, right). (B) Semiquantitative analysis of coverslips. The x-axis shows
the different conditions while the y-axis shows the percentage of infection, with untreated cells set as the 100% infection baseline. A statistical test was
done using a one-way ANOVA. The levels of statistical significance are indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

3.2 Comparison of DHP/Alg treatment
strategies highlights simultaneous
administration as most effective

As an initial prescreen, we used a flow cytometry-based infection
assay to rank dosing/timing regimens before confirmatory culture
work. We compared three DHP/Alg treatment strategies (details
described in Section Material and Methods 2.6): 1) CtE pre-treated,
2) A2EN pre-treated cells, and 3) standard treatment (illustrated in
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Figure 1). Infection rates were determined by measuring CFSE-
positive cells via flow cytometry, with the non-treated group set to
100% infection. The gating strategy and validation of cell viability by
Live/Dead staining are shown in Supplementary Figure S2A-D,
confirming that reduced CFSE positivity reflects decreased infection
rather than cytotoxicity.

As depicted in Figure 4A, pre-treated cells showed less infection
reduction (for 100 ug/mL DHP/Alg, p < 0.01; for 75 pug/mL DHP/
Alg, p <0.05) compared to pre-treated EBs (p < 0.001) and standard
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treatment (p < 0.001). The most substantial reduction in infection
could be observed when EBs were pre-treated with DHP/Alg. The
standard treatment also showed a promising decrease in
infection levels.

These results led us to add a fourth treatment strategy, which is
the simultaneous administration of EBs and DHP/Alg treatment
(Figure 1D). As shown in Figure 4B, simultaneous treatment
< 0.0001) in
infection, suggesting a direct effect of DHP on the adhesion of

resulted in a more substantial reduction (p

EBs to the cells. Notably, this treatment group was also more
homogeneous, with relatively small standard deviations between
replicates.

3.3 Adhesion assay reveals anti-chlamydial
activity of DHP/Alg

The adhesion assay via flow cytometry (Figure 4C) showed
that with DHP/Alg treatment, internalization of EBs at 1-h post-
infection is significantly reduced, in all tested concentrations
(25-75 pg/mL) (p < 0.001); (100 pg/mL) (p < 0.01). Under
these conditions, we did not detect a significant, dose-dependent
change in adhesion; the slight shift at 100 pg/mL might be best
explained by the modest viability decrease at that dose
(Figure 3). Reduced viability at the time of measurement
could alter the proportion of cells detected as positive,
without reflecting an actual increase in adhesion. Overall,
these data are most consistent with a direct effect on the
pathogen and/or very early post-entry steps. Given the
clinical relevance of targeting established infections, we
further standard DHP/
Alg treatment.

explored the effectiveness of
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3.4 Treatment with DHP/Alg reduces
chlamydial infection in vitro

Microscopy analysis of A2EN cells infected with CtE revealed
large inclusions characteristic of CtE infection (Figure 5). Control
samples: A2EN cells alone and A2EN cells treated with the antibiotic
displayed no visible inclusions (as expected for uninfected cells).
DHP/Alg treatment resulted in a significant reduction in the
number of chlamydial inclusions. Semi-quantitative assessment
further indicated that 75 ug/mL DHP/Alg had a strong anti-
chlamydial effect (p < 0.01).

To corroborate these findings and quantify the bacterial burden
more precisely, QPCR was performed to measure bacterial 16S and
23S rRNA expression (Figure 6). While the inhibitory effect of DHP/
Alg was less pronounced compared to antibiotic treatment, exposure
to 75 ug/mL DHP/AIg resulted in a highly significant reduction in
both 16S and 23S rRNA levels (p < 0.0001 for each) relative to CtE-
infected untreated controls. This demonstrates that DHP/Alg
effectively reduces the intracellular bacterial load, although not to
the same extent as antibiotics. Also, qPCR detected residual 16S and
23S rRNA transcripts even in antibiotic-treated samples, although
no chlamydial inclusions were visible by microscopy, which most
likely represents traces of non-viable Chlamydia. Taken together,
these results confirm the antibacterial activity of DHP/Alg and
establish 75 pg/mL as the most effective concentration tested for
suppressing CtE infection in vitro.

4 Discussion

Ct infections remain a significant public health concern. Despite
extensive efforts by numerous research groups working on a vaccine
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(Poston et al., 2025; de la Maza et al., 2020; de la Maza et al., 2017;
Ietal, 2016; Inic-Kanada et al., 2015; Olsen et al., 2021; Hafner et al.,
2014; Abraham et al., 2019; Kari et al., 2011), no approved vaccine is
currently available. Antibiotics remain the primary treatment option
and are generally effective, but treatment gaps persist due to
antibiotic shortages and access issues, particularly in low- and
middle-income countries. A 2022 survey of 29 European national
pharmacist organizations revealed that 79% of respondents reported
shortages of anti-infective agents, including antibiotics, in the past
year (Key European Bodies Unite to Prevent Antibiotic Shortages,
Medscape, 18 July 2023). These shortages can lead to incomplete or
inappropriate treatment, such as overuse of broad-spectrum
antibiotics and prolonged infections.

Despite efforts like the WHO’s AWaRe classification of
antibiotics (AWaRe classification of antibiotics for evaluation and
monitoring of use, 26 ]uly 2023), access to antibiotics remains a
significant concern. While Chlamydia has not yet shown widespread
antibiotic resistance, the global rise of antimicrobial resistance in
other bacterial infections highlights the importance of continued
surveillance. Given these challenges, developing novel treatments,
including both antimicrobial and immunotherapeutic strategies,
remains crucial in the fight against Ct infections.

We investigated DHP/Alg as a potential novel therapeutic
option for treating genital Ct infections. Our findings provide
evidence of DHP/AIg’s therapeutic potential against Ct infections.
Importantly, DHP/Alg treatment demonstrated no cytotoxic effect
on A2EN cells in all tested concentrations, aligning with previous
studies that confirmed the safety of similar formulations on ocular
epithelial cells (Spasojevi¢ et al., 2016).

The A2EN cell line, an immortalized endocervical epithelial cell
line, has been used as an in vitro model for studying genital Ct
infections. This model is highly relevant for investigating sexually
transmitted diseases, genital tract pathogenesis, and host immune
2011).
physiologically relevant model for studying genital Ct infections

response (Buckner et al., A2EN cells are a more
than HeLa cells. While HeLa cells, a cervical adenocarcinoma-
derived line, have been widely used in the field of chlamydial
research, they possess significant limitations, including abnormal
chromosome numbers and cancer-associated genetic mutations that
can affect host-pathogen interactions (Lucey et al, 2009). In
A2EN cells are

endocervical epithelial cells and were immortalized using human

contrast, derived from primary human

telomerase reverse transcriptase (hTERT), maintaining key
epithelial characteristics while avoiding the aberrations associated
with cancer cell lines (Buckner et al., 2011). A2EN cells express
relevant receptors and immune-related molecules, such as pattern
recognition receptors (PRRs) and cytokines, which play crucial roles
in the host response to chlamydial infection (Buckner et al., 2011).
Additionally, A2EN cells produce mucus and exhibit tight junction
of the
endocervical epithelium more closely than HeLa cells, which lack
these features (Edwards et al., 2022). Due to these properties, A2EN
cells provide a superior in vitro model for investigating chlamydial

formation, mimicking the physiological conditions

pathogenesis, immune responses, and potential therapeutic
interventions.

Lignin has been recognized for its antibacterial properties (Lobo
et al., 2021), though its effects highly depend on extraction methods
(Das et al., 2024; Ndaba et al., 2020). To address this variability and
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ensure reproducibility, we used a well-defined lignin model, DHP,
which is particularly advantageous for biomedical applications. Our
DHP formulation contained 15.7% LMW fractions (<3 kDa).
Previous studies have shown that such LMW lignin fractions
(0.2-3 kDa) in an Alg suspension promoted wound healing and
showed an antimicrobial effect against Staphylococcus strains
(Spasojevi¢ et al., 2024).

With the safety of the DHP/Alg treatment on A2EN cells
ensured, we moved forward into investigating its anti-chlamydial
properties, focusing on its potential to inhibit infection, disrupt
bacterial adhesion, and reduce intracellular replication.

As an initial prescreen, we used a cost-effective flow cytometry-
based infection assay (Schnitger et al., 2007) to rank dosing/timing
regimens before confirmatory culture work. This assay showed that
DHP/Alg significantly reduces chlamydial infection, with the most
substantial effect when co-administered with CtE. By contrast, in the
invasion assay we detected a significant overall reduction in
adhesion with DHP/Alg, but this effect was not dose dependent;
the slight shift at 100 ug/mL is best explained by the modest viability
decrease at that dose. Together, these results underscore the
importance of timing and duration: when free EBs are present,
they are most likely to be directly affected by DHP, and infectivity is
reduced; once intracellular, effects may accrue only after de novo EB
release, implying that prolonged administration could be
advantageous in practice.

Our results suggest that DHP might directly affect the EBs,
disrupting their ability to adhere to host cells and interfering with
the internalization process. As a lignin model, DHP may destabilize
chlamydial membranes through non-specific mechanisms such as
enzyme inhibition and metal ion complex disruption (Das et al.,
2024). Similar antimicrobial mechanisms have been reported for
olive oil polyphenols, which disrupt the structural integrity of
chlamydial outer layers (Di Pietro et al, 2023). Investigating
potential structural rearrangements in the chlamydial membrane
using targeted staining approaches could provide further
mechanistic insights.

Recognizing the importance of addressing established infections
in clinically relevant scenarios, we focused on evaluating the
“standard treatment” regimen with DHP/Alg. Fluorescence
microscopy revealed a significant reduction in inclusion number,
with the most pronounced effect at 75 pg/mL DHP/Alg. These
findings were further confirmed by qPCR analyses. The anti-
microbial effects of the DHP/Alg treatments are in line with
previous reports demonstrating DHP’s efficacy against a range of
Gram-positive and Gram-negative bacteria (Spasojevic et al., 2016;
Zmejkoski et al, 2018). In addition to these broad-spectrum
antibacterial properties, dehydrogenated polymers of coniferyl
alcohol, such as DHP, exhibit excellent radical stabilization
capacity (Gerbin et al, 2020), which has been associated with
vigorous antibacterial activity in various applications (Makwana
et al, 2015). These intrinsic chemical features may further
contribute to the observed anti-chlamydial effects in our study.

5 Conclusion

In this study, we evaluated the cytotoxicity and anti-chlamydial
potential of DHP/Alg formulations in human A2EN epithelial cells.
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Our results demonstrate that DHP/Alg is well tolerated at
concentrations up to 75 pg/mL, with only modest cytotoxicity
observed at 100 ug/mL. Flow cytometry-based prescreen infection
assays revealed that all treatment regimens reduced Ct infection,
with simultaneous administration of DHP/Alg and EBs exerting the
strongest and most consistent effect. Adhesion assay further
confirmed that DHP/Alg interferes with early infection events,
most likely by directly targeting EBs and/or initial host-pathogen
interactions.

Taken together, our findings highlight DHP/AIg as a promising
candidate for further development as an adjunct or alternative
strategy to combat chlamydial infections. Future studies will
include expanded in vitro analyses against both ocular and
genital Chlamydia serovars to confirm the broader therapeutic
potential of DHP/Alg and to elucidate its mechanism of action,
as well as in vivo safety and efficacy testing in a guinea pig model of
ocular chlamydial infection (Filipovic et al., 2017).
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