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Introduction: Magnetic Resonance Imaging (MRI)-guided photothermal therapy
(PTT) holds significant promise for the treatment of solid tumors, however, its
diagnostic and therapeutic efficacy in malignant pleural mesothelioma (MPM)
remains underexplored. To address the limitations of traditional gadolinium (Gd)-
based MRI contrast agents, such as intolerance in patients with renal insufficiency
and T1 signal attenuation at high field strengths, as well as oxidative stress damage
caused by manganese ion leakage from manganese-based materials, this study
aims to develop highly chelated and stable manganese polydopamine (Mn-PDA)
multifunctional nanoprobes for MRI monitoring and PTT treatment of MPM.
Methods:Mn2+ and dopamine were chelated into Mn-PDA NP nanospheres in an
ethanol-water system. The physicochemical properties were characterized using
Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), zeta
potential, Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron
Spectroscopy (XPS), and Electron Paramagnetic Resonance (EPR). The
photothermal performance under 808 nm laser irradiation was also evaluated.
TheMRI imaging performance (longitudinal/transverse relaxation rates, r1/r2) and
manganese ion deposition quantification of Mn-PDA NPs were evaluated in vitro
and in vivo at 3.0 TMR scanner. Additionally, the PTT efficacy of Mn-PDA NPs was
evaluated in MSTO-211H cells and xenograft tumor models. Biocompatibility was
assessed through H&E staining of major organs and blood biochemical analyses.
Results: Mn-PDA NPs exhibited a spherical morphology with uniform size (~200
nm), along with high photothermal conversion efficiency, favorable T1-weighted
MRI contrast enhancement and low cytotoxicity. At 8 hours post-injection in vivo,
Mn-PDA NPs resulted in a 42.9% enhancement in T1-weighted MRI signals within
MPM tumors, accompanied by specific tumor accumulation. Under 808 nm laser
irradiation, Mn-PDA NPs inhibited MPM tumor growth, as evidenced by reduced
tumor volume, expanded areas of tumor necrosis (H&E staining), and
downregulated Ki-67 expression. Moreover, stable body weight, normal
histological features of major organs, and unaltered blood biochemical
parameters were observed in the animals.
Discussion: These findings indicate that Mn-PDA NPs are effective dual-
functional agents, serving as both MRI contrast agents and photothermal
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therapeutics. They exhibit good tumor targeting ability, excellent imaging
performance, potent therapeutic efficacy, and high biosafety, thereby offering a
promising therapeutic strategy for MPM management.

KEYWORDS

malignant pleural mesothelioma, photothermal therapy (PTT), magnetic resonance
imaging (MRI), polydopamine, manganese(II)

1 Introduction

Malignant pleural mesothelioma (MPM), a highly aggressive cancer
associated with asbestos exposure, has shown an increasing global
incidence (Huang et al., 2023). Its insidious onset and prolonged
latency (20–40 years) mean over 70% of patients present with
unresectable disease, necessitating systemic therapy. However, the
first-line cisplatin-pemetrexed regimen offers limited benefit
(Castagneto et al., 2008). Recent immunotherapies provide
alternatives for refractory disease (Cedres and Felip, 2022), but
profound interpatient heterogeneity results in lower efficacy compared
to malignancies like melanoma or renal cell carcinoma. Combination
strategies, such as cisplatin with bevacizumab (Zalcman et al., 2016) or
pembrolizumab plus chemotherapy (Chu et al., 2023) yield modest
improvements, especially for non-epithelioid MPM. Nevertheless,
median overall survival remains ~18 months, with a 5-year survival
rate of only 10% (Febres-Aldana et al., 2024), underscoring the urgent
need for novel, comprehensive diagnostic and therapeutic approaches.

Photothermal therapy (PTT) nanoplatforms offer promising non-
invasive and precise targeting for solid tumors, particularly superficial
ones (Overchuk et al., 2023), yet their application in MPM remains
underexplored. PTT employs photothermal conversion agents (PTCAs)
to transform light energy into localized heat for tumor ablation. Diverse
PTCAs, including metal-based nanomaterials (Moreira et al., 2025),
carbon nanomaterials (Xing et al., 2025) and sulfides (Wu et al., 2024),
demonstrate efficacy under near-infrared (NIR) light. However, most
inorganic PTCAs suffer from poor biodegradability, raising long-term
safety concerns. Furthermore, conventional high-temperature PTT
(>50 °C) risks damaging healthy tissue and inducing inflammation
(Rybinski et al., 2013), while low-temperature PTT (<42 °C) often
triggers thermoresistance via upregulated heat shock proteins (HSPs)
(Tang et al., 2024). MRI, with its non-invasiveness, absence of ionizing
radiation, superior soft-tissue contrast, and high spatial resolution (Jin
et al., 2021), is ideally suited for crucial high-quality tumor imaging
within PTT workflows, enabling monitoring, precise guidance, and
efficacy/off-target assessment. To develop an MRI-trackable,
biodegradable photothermal nanoplatform, polydopamine (PDA)
nanoparticles were introduced to chelate paramagnetic ions such as
Fe(III), Mn(II), or Gd(III) (Jia et al., 2024; Wang et al., 2017; Zhao et al.,
2025), enhancing MRI contrast and mitigating metal-induced oxidative
stress (Yang et al., 2023). While Gd(III) is the most widely used MRI
contrast agent, it poses risks like nephrogenic systemic fibrosis (NSF)
(Telgmann et al., 2012) and shows reduced T1 efficacy at high magnetic
fields (Jiang et al., 2023). In contrast, Mn, as an essential trace element,
provides strong T1 contrast and activates the cGAS-STING pathway to
enhance tumor immunity (Du et al., 2025), making it an ideal
alternative.

In recent years, researchers have explored the integration of
manganese ions with polydopamine (PDA) through various methods
to enhance MRI-guided photothermal therapy. Notable approaches

include the synthesis of core-shell nanostructures by layering PDA and
manganese oxide (MnO2) onto hollow mesoporous silica nanoparticles
(HS) (Shi et al., 2023), as well as the development of mesoporous
polydopamine nanoparticles (MPDAPs) loaded with manganese ions
(Wu et al., 2021). Some studies have also involved embeddingMn2+ into
cross-linked PDA coatings on rod-like cellulose nanocrystals (Shen
et al., 2022). However, these research efforts have not fully leveraged
magnetic resonance quantitative tracking technology to accurately
determine the distribution and metabolism of Mn2+. Furthermore,
whether adsorbed into the voids of mesoporous PDA nanoparticles
or incorporated into hollow mesoporous silica nanoparticles (HS),
manganese ions face challenges of leakage and unintended
accumulation in normal tissues, especially causing neurological
toxicity (Li et al., 2021). This issue stems from the unstable binding
between the carrier andmanganese ions, highlighting the need for more
robust methods to ensure controlled drug delivery and minimize off-
target effects. To address these limitations, we developed a novel
nanotheranostic probe designed to guide PTT for MPM under high-
frequency MRI monitoring. This probe employs PDA chelated
withMn2+ in an optimal ratio to create size-controlled nanoparticles.
Furthermore, the enhanced EPR effect promotes the accumulation of
nanoparticles in MPM tumors, while the acidic tumor
microenvironment (TME) of MPM facilitates the degradation of
Mn-PDA nanoparticles (NPs), accelerating the release of Mn2+.
Through systematic in vitro and in vivo evaluations, we
demonstrated the potential of this probe for integrated diagnosis and
treatment of MPM.

2 Materials and methods

2.1 Materials

Dopamine hydrochloride (PDA) and Manganese (II) sulfate
monohydrate (MnSO4·H2O) were sourced from Aladdin Reagent
(Shanghai, China). Tris-(hydroxymethyl)-aminomethane (Tris-
HCL) and dimethyl sulfoxide (DMSO) were obtained from
Sigma-Aldrich (Missouri, United States). The CCK-8 reagent was
sourced fromDojindo Laboratories (Japan), and Calcein AM/PI Cell
Staining Kit was supplied by Soleibio (Shanghai, China). All reagents
were analytically pure and used without further modification.
Distilled water was used throughout the experiments.

2.2 Mn-PDA NPs synthesis

Dopamine hydrochloride (90 mg) and manganese (II) sulfate
monohydrate (3 mg) were suspended in deionized water and stirred
continuously for 24 h. Subsequently, this pre-formed chelate
solution (0.6 mL) was introduced into a water/ethanol mixture
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(6 mL each) under ultrasonication. The pH of the mixture was
adjusted to 8.5–9 using Tris buffer and mixed continuously for 6 h.
The resulting Mn-PDA NPs were recovered by centrifugation and
washed sequentially with ethanol and water twice.

2.3 Particle characterization

Size distribution and zeta potential were determined by Malvern
laser diffraction analysis. Transmission electronmicroscopy (TEM, JEM-
2100) revealed morphology. Chemical bond changes were analyzed
using Fourier-transform infrared spectroscopy (FT-IR, Thermo Fisher
Scientific). Manganese oxidation states were determined using X-ray
photoelectron spectroscopy (XPS) and electron paramagnetic resonance
(EPR). The manganese concentration was measured using inductively
coupled plasma atomic emission spectrometry (ICP-AES, Agilent 5100).
Tomonitor the release ofmanganese ions fromMn-PDANPs, theywere
placed in pH 7.4 and pH 6.0 PBS buffer solutions with GSH at 10 mM
respectively, and stirred in a 37 °C water bath. Samples were taken at
fixed time points (0, 2, 4, 6, 8, 10, 12, 24, 48, 72 h) and themanganese ion
content was analyzed using ICP-AES.

2.4 In vitro photothermal experiment

To evaluate photothermal performance, the suspensions of
deionized water (H2O), DOPA NPs, and Mn-PDA NPs were
exposed to an 808 nm laser (1 W/cm2, 5 min) while monitoring
temperature at 30-s intervals. Separately, we assessed the dose-
dependent response by irradiating Mn-PDA NPs at
concentrations of 0, 50, 100, and 200 μg/mL under identical laser
conditions for 10 min. Thermal stability was evaluated by subjecting
Mn-PDA NPs to four consecutive laser irradiation cycles (808 nm,
1 W/cm2), recording temperature throughout.

2.5 In vitro MR imaging

For phantom studies, solutions of Mn-PDA NPs were prepared
at varying Mn(II) concentrations (0, 0.01, 0.03, 0.06, 0.13, 0.25 mM).

Imaging was performed on a 3.0TMRI scanner (GE Signa Architect)
using T1-weighted (T1WI), T2-weighted (T2WI), and MAGiC
sequences, quantitative T1map and T2map were derived from
the MAGiC data (Zhao et al., 2025). Specific scanning
parameters are listed in Table 1. Regions of interest (ROIs) were
consistently positioned across samples at the same level to measure
longitudinal and transverse relaxation times (T1 and T2). Then
longitudinal and transverse relaxivity (r1 and r2) were determined
from linear regressions correlating nanoparticle concentration with
reciprocal relaxation times.

2.6 In vitro cell experiment

2.6.1 Cell culture
In this study, the immortalized mesothelial cell line MET-5A

and the human biphasic MPM cell line MSTO-211H were procured
from the Cell Bank of the Chinese Academy of Sciences. MET-
5A cells were cultured in Procel’s specific complete medium and
MSTO-211H cells were maintained in RPMI 1640 culture medium
enriched with 10% FBS and 100 U/mL penicillin-streptomycin. All
cells were maintained at 37 °C under a 5% CO2 atmosphere.

2.6.2 Cell viability assay
MSTO-211H and MET-5A cells were plated into Corning® 96-

well plates and incubated for 12 h. The medium was refreshed, and
cells were treated with Mn-PDA NPs at concentrations of 1, 10, 50,
100, 200, and 400 μg/mL for 24 h. For photothermal experiments,
cells were incubated with saline, DOPA NPs, or Mn-PDA NPs for
4 h, then exposed to an 808 nm laser (1W/cm2) for 5 min. Following
irradiation, the cells were maintained in culture for another 4 h.
After treatment, the medium was removed, and each well was
replaced with 100 μL of fresh culture medium containing 10 μL
of CCK-8 solution. Following incubation for 1 h and gently shaking
for 5 min, the optical density (OD) at 450 nm was determined via a
microplate reader. The cell survival rate was assessed based on
Equation 1.

Cell survival rate � ODsample − ODblank

ODcontrol − ODblank
× 100% (1)

TABLE 1 MRI scan parameters.

Images T1WI T2WI MAGiC

pulse sequence FSE SE MAGiC

TE (ms) 15 100 15/106

TR (ms) 500 2000 5,000

FOV(mm2) 50 × 50 50 × 50 80 × 80

Matrix 256 × 256 256 × 256 256 × 256

Spacing (mm) 0 0 0

ST (mm) 1.5 1.5 2

Voxel 0.2 0.3 0.5

Bandwidth (kHz) 32 25 20.8

Note: T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; TE, echo time; TR, time of repetition; FOV, field of view; Spacing, Interslice Spacing; ST, slice thickness.
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2.6.3 Calcein-AM/PI-based cell viability assay
MSTO-211H cells were incubated with saline, DOPA NPs, or

Mn-PDA NPs for 4 h, while the laser irradiation group was exposed
to laser light for 5 min (1W/cm2) and subsequently incubated for an
additional hour. Following PBS washes, cells were stained following
the Calcein-AM/PI double staining kit instructions and incubated at
37 °C for an additional 30 min. Subsequent fluorescence imaging at
488 nm and 543 nm was performed with an inverted fluorescence
microscope.

2.7 In vivo animal experiments

2.7.1 Modeling MPM Xenografts in nude mice
Female BALB/c nude mice, aged 4–6 weeks (certificate no.:

SCXK (Dian) K2020-004; Kunming Medical University Animal
Experiment Center) were utilized in this study. Animal care and
experimental procedures complied with the ethical standards
sanctioned by the Kunming Medical University Animal Ethics
and Welfare Committee (Approval Number: kmmu20241769).
For tumor cell implantation, 1.0 × 106 MSTO-211H cells
suspended in 50 μL PBS were mixed with an equal volume
(50 μL) of Matrigel. This cell-Matrigel mixture (100 μL) was then
injected subcutaneously into the right axilla of each mice. Tumor
progression was monitored via measurements of body weight and
tumor volume every 2 days. Treatment administration and MRI
acquisition were initiated once the tumor volume tumor
reaches 150 mm3.

2.7.2 In vivo MRI evaluation
To evaluate contrast enhancement within the tumor region,

MRI was performed. The mice were administered an IV dose of
150 μL Mn-PDA NPs solution (10 mg/kg) and were scanned
afterward using a 3.0 T MRI system (GE Medical Systems) with a
50 mm mouse coil (Shanghai Chenguang Medical Technologies,
China) at 0, 4, 8, 12, and 24 h post-injection. T1-weighted (T1WI)
and T2-weighted (T2WI) images were obtained to assess tumor
location, shape, and dimensions. The MAGiC sequence was
utilized for the quantitative evaluation of T1 and
T2 relaxation parameters. Define the region of interest (ROI)
in the tumor center and adjacent areas, avoiding necrotic regions,
with two attending physicians independently analyzing the
images three times. Increase rate of T1 value (ΔT1) was
calculated as follows: ΔT1 = [T1 value (unenhanced) -
T1 value (enhanced)]/T1 value (unenhanced) × 100%. 8 h
post-administration of saline (control) and Mn-PDA NPs, the
mice were euthanized, and major organs (heart, liver, spleen,
lung, kidney, and tumor) were assessed using ICP-AES to
evaluate manganese ion distribution.

2.7.3 In vivo treatment evaluation
Thirty-six tumor-bearing mice were randomly divided into four

experimental groups, designated as follows: 1) saline control
(Saline), 2) saline with laser irradiation (Saline + L), (3) DOPA
NPs with laser irradiation (DOPA NPs + L), and (4) Mn-PDA NPs
with laser irradiation (Mn-PDA NPs + L). After intravenous
administration of the drug (150 μL, 10 mg/kg), mice in the laser
irradiation group received laser irradiation (1 W/cm2) at the tumor

site for 5 min, 8 h post-injection. Tumor temperature was monitored
in real-time using a thermal imager. This treatment protocol was
administered every 2 days over a 14-day period. Body weight and
tumor volume were monitored at 48-h intervals, with tumor volume
calculated using the formula: volume = (1/2) × a2 × b (where a
corresponds to the tumor’s width and b reflects its length). At the 24-
day mark, MRI scans were performed on mice from the respective
treatment groups, scanning parameters consistent with those
detailed in Section 2.7.2 (In vivo MRI evaluation). Additionally,
tumor tissues were stained with H&E and Ki-67 to assess treatment
efficacy, whereas major organs were stained with H&E to
evaluate biosafety.

2.8 Statistical analysis

Statistical analyses were conducted using Origin software
(version 2021) and GraphPad Prism (version 10.1.1).
Independent two-tailed t-tests were used to analyze the
differences between two groups, while one-way analysis of
variance (ANOVA) was employed to evaluate the differences
among multiple groups. Data were collected in triplicate and
presented as mean ± standard deviation (mean ± SD).
Differences were established as statistically significant at the
following thresholds of significance: p < 0.05 (p), p < 0.01 (pp),
p < 0.001 (ppp), and p < 0.0001 (pppp).

3 Results and discussion

3.1 Preparation and characterization of the
nanotherapeutic probe

Mn-PDA NPs were synthesized based on previously reported
methods (Zhang et al., 2023), and the average diameter and zeta
potential values of the NPs were obtained by the Dynamic Light
Scattering (DLS). As shown in Figure 1A, TEM demonstrates that
Mn2+ ions initially chelate with PDA to form particulate complexes,
exhibiting a uniform size distribution centered at ~2 nm.
Subsequently, under alkaline conditions, these complexes
undergo spontaneous oxidative polymerization to form
homogeneous nanospheres with an average diameter of 210.3 ±
18.4 nm (PDI = 0.18; Figures 1B,C). The zeta potential of DOPA
was −33.9 ± 1.1 mV. After chelating manganese ions, the zeta
potential of Mn-PDA NPs increased to −18.7 ± 1.2 mV
(Figure 1D),We speculate in a DOPA-rich system, carboxyl
groups dominate the surface charge. Despite Mn 2+ coordination
and protonated amines, the high density of -COO- ensures an
overall negative potential. The FT-IR spectra (Figure 1E) provide
critical evidence for Mn2+ chelation: (i) Broadening and reduction in
intensity of the N-H (~3,350 cm−1) and C=C peaks (blue-shifted to
1,630 cm−1); (ii) Disappearance of SO4

2− signatures (1,110 cm−1); (iii)
Emergence of new Mn-O bonds (560 cm−1), confirming successful
coordination between Mn2+ and catechol groups. Constituent
elements of Mn-PDA NPs was examined by XPS revealed peaks
at 285, 400, 531, and 637 eV, corresponding to C1s, N1s, O1s, and
Mn2p3s, respectively (Figure 1F). As shown in Supplementary
Figure S1C,D, the EPR spectrum of Mn-PDA NPs exhibits a
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characteristic six-line hyperfine splitting pattern (centered at g =
2.0090), indicative of isolated Mn2+ (3d5, S = 5/2) in a high-
symmetry ligand field. In contrast, the EPR spectrum of
crystalline MnSO4·H2O (Supplementary Figure S1A,B) displays
only broad peaks due to pronounced ZFS anisotropy induced by
low-symmetry distortion, which obscures the hyperfine splitting.
Furthermore, the molar concentration of Mn(II) in Mn PDA NPs
was determined via ICP-AES as 5.8%, confirming the successful
preparation of Mn-PDANPs.As shown in Supplementary Figure S2,
manganese ion (Mn2+) release was minimal in the
pH 7.4 environment, remaining below approximately 0.5 μg/mL.
In contrast, under conditions of pH 6.0 and 10 mM GSH, the Mn2+

release increased significantly by 6 h and stabilized at levels between
2 and 4 μg/mL, even after 72 h, the cumulative release accounted for
only about 5% of the total potential. The results demonstrated that
the release of Mn2+ from Mn-PDA NPs was minimal under the
tested conditions, indicating the excellent stability of the
nanoparticles in vitro.

PDA can chelate various metal ions, such as Mn2+ and Fe3+, and
absorb and convert near-infrared (NIR) light into heat energy.
Previous studies have demonstrated that Mn2+ coordination in
PDA significantly enhances photothermal conversion efficiency
(η > 45%), enabling effective tumor ablation at reduced laser
doses (Wu et al., 2021). As shown in Figure 1G, a series of
concentrations of the nanoparticles in an aqueous solution were
irradiated with an 808 nm laser (1 W/cm2, 5 min), with ultrapure
water used as a control. Minimal temperature change was observed
in water under laser irradiation. In contrast, the temperature change
in Mn-PDA NPs aqueous solutions occurred in a concentration-
dependent manner, with the maximum temperature reaching
48.5 °C (8.0 °C higher than that in DOPA NPs at 100 μg/mL).
Furthermore, as the Mn-PDA NPs concentration increased, the
temperature rose gradually (Figure 1H).

3.2 In vitro MR imaging and cell cytotoxicity

Manganese-based nanoparticles, leveraging their inherent
paramagnetism, have emerged as promising T1-MRI contrast
agents, offering an alternative to Gd-DTPA. Recent studies
highlight the synergistic effects between Mn2+ and the PDA
matrix in enhancing proton spin relaxation (Ma et al., 2024). To
evaluate Mn-PDA NPs for MRI-guided PTT in tumor theranostics,
their MR performance was assessed using a 3.0 T MR scanner. As
shown in Figure 2A, Mn-PDA NPs exhibited a concentration-
dependent brightening effect on T1-MR images and a darker
effect on T2-MR images. T1map revealed a longitudinal
relaxation rate (r1) of 9.05 mM−1s−1 (Figure 2B), nearly double
that of Gd-DTPA (r1 = 3.5–5.6 mM−1s−1 at 3.0 T) (Wahsner et al.,
2019), and a transverse relaxation rate (r2) of 94.62 mM−1s−1

(Figure 2C), slightly lower than SPIO NPs (r2 = 118.2 mM−1s−1)
(Choi et al., 2012), yet still meeting clinical standards.

Biocompatibility is crucial in therapeutic applications, so the
cytotoxicity of Mn-PDA NPs was evaluated in 2 cell lines (MeT-5A
and MSTO-211H) using the CCK-8 assay. Even at a concentration
as high as 400 μg/mL, the viability of both cell lines exceeded 80.0%,
demonstrating favorable biocompatibility (Figure 2E). Furthermore,
the in vitro therapeutic effects of DOPA NPs and Mn-PDA NPs
were evaluated by labeling MSTO-211H cells with Calcein-AM/PI
and CCK-8 assay. In Figure 2D, the majority of MSTO-211H cells
exhibited high viability in the absence of NIR irradiation, as
indicated by intense green fluorescence. However, under 808-nm
NIR irradiation (1 W/cm2, 5 min), MSTO-211H cells treated with
Mn-PDA NPs showed significant damage, with cell viability
dropping to 19.7% ± 1.1% (from 95.5% ± 2.4% in non-irradiated
controls) and amarked increase in red fluorescence. In contrast, cells
treated with DOPA NPs exhibited only minimal signs of apoptosis,
with viability moderately reduced to 52.5% ± 1.2% (from 97.2% ±

FIGURE 1
Characterization of Mn-PDA NPs. (A) TEM image of Mn-PDA chelating complex. Scale bar: 50 nm. (B) TEM image of Mn-PDA nanospheres. Scale
bar: 200 nm. (C) Hydrodynamic size distribution of Mn-PDA NPs. (D) Zeta potential of Mn-PDA NPs. (E) FT-IR spectra of MnSO4·H2O (blue), dopamine
(red), and Mn-PDA NPs (green). (F) X-ray photoelectron spectroscopy (XPS) of Mn-PDA NPs. (G) Infrared thermal images of water (H2O), DOPA NPs, and
Mn-PDA NPs under 808 nm laser irradiation (1 W/cm2). (H) Temperature curves of Mn-PDA NPs at varying concentrations (808 nm irradiation,
1 W/cm2).
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3.7% of controls) (Figure 2F).In conclusion,the Mn-PDA-mediated
phototherapy could result in significant combined antitumor
efficacy of Mn-PDA NPs against MPM.

3.3 In vivo MR imaging

Given the advantageous characteristics of Mn-PDA NPs, we
conducting in vivo MRI studies in MPM tumor-bearing BALB/c
nude mice. Following intravenous injection, 3.0 T MRI scans
revealed time-dependent signal changes at the tumor site over
24 h. T2-weighted signal slightly decreased, while T1-weighted
signal progressively intensified, peaking at 8 h post-injection

(Figure 3A). The corresponding longitudinal relaxation time (T1)
decreased significantly from 1,293 ± 62.6 ms (pre-injection) to 737 ±
82.6 ms at 8 h post-injection. This peak enhancement, likely
influenced by Mn-PDA NP biodegradation, represented a
42.9% ± 4.1% reduction in T1, corresponding to an increase in
T1 -weighted signal intensity. Although the signal intensity declined
thereafter, the T 1 value remained elevated at 24 h (1,058 ± 59.6 ms),
which was 18.2% ± 1.3% lower than the pre-injection T1 values. This
confirmed efficient tumor accumulation and sustainedMRI contrast
enhancement by the Mn-PDA NPs (Figure 3B).

The Mn2+ concentration in the tumor was quantified by ICP-
AES analysis at 8 h post-injection. The control group administered
with saline had a concentration of 0.31 ± 0.03 mg/kg, whereas the

FIGURE 2
MR images and Cellular cytotoxicity of the nanoparticles. (A) T1WI, T2WI, T1map and T2map MRI images of Mn-PDA NPs with different
concentrations at 3T field strength. (B) Corresponding Longitudinal relaxation rates (r1, s

−1mM−1) and (C) transverse relaxation rates (r2, s
−1mM−1) of Mn-

PDA NPs. (D) Live/dead fluorescence staining (Calcein-AM/PI) of MSTO-211H cells post-treatments (Scale bar: 200 μm). (E) Viability of MeT-5A and
MSTO-211H cells after 4 h incubation with Mn-PDA NPs. (F) Viability of MSTO-211H cells treated with DOPA, Mn-PDA NPs (±808 nm laser
irradiation, 1 W/cm2, n = 3).
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Mn-PDA NPs group showed a significantly higher level of 1.12 ±
0.07 mg/kg (Figure 3C). Mn-PDA NPs are shown to be an effective
and reliable tumor MR imaging agent with enhanced imaging
capabilities. Compared to the control group, Mn2+ accumulation
was observed in other organs, including the heart (1.07 ±
0.09 mg/kg), liver (1.27 ± 0.11 mg/kg), spleen (0.64 ±
0.05 mg/kg), lung (1.08 ± 0.1 mg/kg), and kidney (0.59 ±
0.03 mg/kg). This distribution is consistent with the expected
biological pattern for non-targeted nanoparticles eliminated via
phagocytosis.

3.4 In vivo antitumor efficacy

The in vivo anti-tumor efficacy of Mn PDA NPs combined with
PTT in theMSTO-211Hmice modelwas evaluated. According to the
MR imaging results, laser irradiation was performed 8 h after tail

vein injection. As shown in Figure 4C, after 5 min of 808 nm laser
exposure, the saline group showed only a slightly temperature
increase (26.4 °C–32.4 °C; ΔT ≈6.0 °C), the DOPA NPs group
reached 42.5 °C which potentially insufficient for complete
ablation due to tumor cell thermotolerance mediated by heat
shock proteins (Hsps), while the Mn-PDA NPs group
experienced a significant rise and rapidly reached 48.9 °C (ΔT
≈22.4 °C), confirming potent photothermal conversion and self-
targeting capability. In addition, MR imaging provided critical
information for treatment optimization by identifying tumor
location, nanoparticle distribution, and monitoring peritumoral
reactions such as exudation and edema (Jiang et al., 2022). As
shown in Figures 4A–C, the MnPDA NPs + L group demonstrated
the best therapeutic effect. Specifically, Figure 4B revealed significant
tumor growth inhibition, with tumors appearing almost completely
resolved while preserving the surrounding normal tissues. However,
MRI images (Figure 4A) still revealed trace amounts of residual

FIGURE 3
In vivo imaging effect of the nanoprobes in mice. (A) In vivo T1WI,T2WI and T1map MRI images of MSTO-211H tumor-bearing mice receiving an
intravenous tail injection of Mn-PDA NPs. (B) ΔT1 of tumor from mice at different times post-injection of Mn-PDA NPs. (C) Mean manganese
concentrations in major organs and tumors of tumor-bearing mice via ICP-AES at 8 h post-injection of Mn-PDA NPs and saline (control).
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FIGURE 4
In vivo Therapeutic efficacy and biocompatibility of Mn-PDA NPs. The representative axial MR images of mice from different groups, white dashed
box indicate tumor regions (A). Representative photographs (B) and in vivo infrared thermographs (C) ofmice post-injection of Saline, DOPANPs andMn-
PDA NPs under 808 nm laser irradiation (1W/cm2, 5 min). (D) H&E staining and KI-67 IHC of tumor images after treatment (Scale bar: 50 μm. n = 5). (E)
Tumor volumes of mice for different treatments. (F) Bodyweight changes of mice after various treatments (n = 5,*P < 0.05, **P < 0.01, ***P < 0.001).
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tumor tissue within the deep subcutaneous layers and the chest wall
musculature. This finding underscores the distinct advantage of
magnetic resonance imaging in detecting and monitoring residual
disease to accurately assess the effectiveness of tumor treatment.
Histological analysis (H&E and Ki-67 staining) of excised tumors
further confirmed the therapeutic effects. Tumor cells in the saline
and saline + L groups maintained close packing and normal
morphology, whereas clear apoptotic features, including pyknotic
nuclei and tissue vacuolation, were observed in both the DOPA NPs
+ L and Mn-PDA NPs + L groups. Moreover, Ki-67 staining
corroborated these findings, showing markedly reduced
expression levels and proliferation in Mn-PDA NPs + L groups
compared to controls (Figure 4D).

Therapeutic efficacy ofMn-PDANPs was evaluated in theMPM
tumor model. Mice treated with Mn-PDA NPs + L, DOPA NPs + L,
or saline (controls)+ L showed contrasting outcomes: treatment
groups exhibited steady weight gain alongside tumor regression,

whereas controls experienced weight loss concomitant with
uncontrolled tumor growth. Critically, Mn-PDA NPs + L
demonstrated the most potent tumor inhibition, recapitulating
in vitro findings and confirming superior efficacy of
photothermal therapy (Figures 4E,F).

Given the therapeutic efficacy of Mn-PDA NPs + L, its potential
organ toxicity was assessed. H&E staining of major organs (heart,
liver, spleen, lung, kidney) revealed no pathological abnormalities in
any group (Figure 5A). As shown in Figure 5B, the hematological
indices, including liver-associated enzymes (AST, ALT), renal
function indicators (CRE, BUN), and cardiac biomarkers (CK-MB,
LDH), all stayed within normal reference ranges across all
experimental groups, suggesting minimal toxicity effects in the
tumor-bearing mice. Collectively, Mn-PDA NPs demonstrated
good biocompatibility and potent tumor suppression. However,
their clinical translation is delayed due to potential toxicity risks,
especially the accumulation of free Mn2+ in dopaminergic neurons,

FIGURE 5
Biosafety of Major Organs after Mn-PDANPs Treatment. (A)H&E staining ofmajor organs (heart, liver, spleen, lung, kidney) after treatment (scale bar:
50 μm, n = 5). (B) Blood biochemical parameters analysis of major organs (heart, liver, spleen, lung, kidney) after treatment (n = 5, *P < 0.05, **P < 0.01,
***P < 0.001).
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whichmay lead to neurotoxicity. Although some clinical trials (Zhang
et al., 2023) and approved agents, like Mn-DPDP (Hamm, et al.,
1992), suggest short-term safety ofmanganese-based nanocomposites,
there is a lack of long-term toxicological data and animal models that
closely mimic humans. Further research is needed to confirm their
safety and effectiveness for clinical use.

4 Conclusion

Our study developed a biomimetic nanoplatformMn-PDANPs,
with significant T1 MRI characteristics (r1 = 9.05 mM−1s−1) and a
mean diameter of approximately 200 nm, designed for MRI-guided
photothermal therapy of biphasic MPM. The T1 MRI signal of Mn
PDA NPs reached its peak 8 h after intravenous administration,
enabling precise prediction of nanoparticle accumulation in biphasic
MPM tumors. When exposed to 808 nm laser irradiation, the
nanoplatform generated mild photothermal effects, successfully
suppressing tumor growth in biphasic MPM models without
inducing significant systemic toxicity. These findings underscore
the potential of an integrated diagnostic and therapeutic nanosystem
for treating biphasic MPM. However, this study has certain
limitations, and future research should focus on optimizing
nanoparticle delivery efficiency and monitoring their metabolism
and degradation in complex in vivo environments to further
enhance therapeutic efficacy and safety.
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