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The growing global demand for clean and sustainable energy has intensified the
development of novel technologies capable of harnessing naturally available
resources. Among these, blue energy, referring to the power generated from the
mixing of waters with different salinities, has emerged as a promising yet
underutilized source. This perspective presents a comprehensive synthesis of
recent advances in electrochemical harvesting systems, with a particular focus on
Mixing Entropy Batteries (MEBs) as efficient, membrane-free devices for salinity
gradient energy recovery. Unlike conventional approaches such as Reverse
Electrodialysis (RED) and Pressure Retarded Osmosis (PRO), which depend
heavily on ion-exchange membranes and complex infrastructure, MEBs offer
simplified and scalable architecture suitable for harsh environments and industrial
effluents. The use of LiCl-based electrolytes enables significant blue energy
recovery, achieving energy densities of 38.2 mJ/cm2 and power densities of
13.8 μW/cm2, with excellent cycling stability. This system leverages the high
solubility of LiCl (832 g/L) to create steep salinity gradients, utilizing LiFePO4/
FePO4 as the cathode and Ag/AgCl as the anode, with no observable
performance degradation over 100 cycles. This work analyzes alternative
electrode materials, including Prussian Blue analogues (copper
hexacyanoferrate CuHCF), MnO2, BiOCl, and polypyrrole, and explores their
integration with unconventional water sources such as industrial brines,
hypersaline reject streams, and treated wastewater, particularly within the
resource-constrained context of the Atacama Desert. This manuscript
consolidates experimental data, device designs, and comparative performance
metrics, providing a critical framework for advancing blue energy technologies. It
also underscores their potential role in circular economy models and off-grid
renewable energy systems solutions.
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1 Introduction

Chile, particularly its northern macrozone, offers a highly
favorable scenario for the deployment of salinity gradient energy
technologies, due to its unique geographic, industrial, and
hydrological characteristics. The Atacama Desert is the site of
significant brine extraction activities, which generate large
volumes of concentrated liquid waste, particularly rich in lithium.
By combining these residual brines with other water sources, such as
seawater, desalination plant wastewater, or municipal wastewater, it
is possible to obtain media with salinity gradients suitable for energy
recovery applications (Cabello, 2021; Fitzsimons and Warren, 2024;
He et al., 2024; Kidder et al., 2020; Lagos et al., 2024; Marinova et al.,
2025). These contrasting water streams establish naturally available,
high-enthalpy salinity gradients that are ideal for electrochemical
energy harvesting, particularly via Mixing Entropy Battery (MEB)
technology. Compared to other technologies such as (i)
electrodialysis (RED) (Ahualli et al., 2014; Brogioli, 2009; Jia
et al., 2013; Jia et al., 2013; Kim et al., 2016a; Kim et al., 2016b;
La Mantia et al., 2011; Lee et al., 2017; Logan and Elimelech, 2012;
Logan and Elimelech, 2012; Marino et al., 2014; Md Hasan et al.,
2017), (ii) Pressure Retarded Osmosis (PRO) (Ahualli et al., 2014;
Bag, 2017; Haj Mohammad Hosein Tehrani et al., 2015; Jia et al.,
2014a; Ye et al., 2014), (iii) semipermeable membranes (Brogioli,
2009; Brogioli et al., 2012; La Mantia et al., 2011), (iv) selective ion
membranes (Bag, 2017; Brogioli, 2009; La Mantia et al., 2011) and
(v) concentration cells (Bag, 2017; Brogioli, 2009; Jia et al., 2013; La
Mantia et al., 2011), MEBs offer a simpler system capable of
operating efficiently in high-saline environments. The exponential
increase in global energy demand, along with the detrimental
environmental impact caused by fossil fuel consumption, has
necessitated the exploration of sustainable alternatives derived
from abundant natural resources. This change has redirected
attention away from petroleum-based fuels toward cleaner and
renewable energy sources. Among the most successful
alternatives to date are solar, wind and geothermal energy
(Chang et al., 2023; Gómez et al., 2025; Osorio-Aravena et al.,
2021; Osorio-Aravena et al., 2025; Oyarzún-Aravena et al., 2025;
Véliz et al., 2025). However, the vast expanse of the ocean
remains an underexploited and inexhaustible reservoir of
renewable energy, which is a relevant opportunity for Chile,
given its extensive Pacific coastline that spans the entire
length of the country. Marine energy sources, including waves,
tides, ocean currents, offshore winds, thermal gradients, and
salinity concentration differences, have emerged promising
avenues for sustainable energy generation (Marino et al.,
2015). In particular, the chemical energy released during the
natural mixing of freshwater and seawater at estuarine interfaces,
commonly referred as blue energy or salinity gradient energy (Lee
et al., 2017; Marino et al., 2014), presents a unique opportunity
for electricity generation. This entropic energy release, which
occurs when river water meets seawater flow, is estimated to yield
up to 2.2 kJ of free energy per liter of freshwater (Brogioli, 2009;
Brogioli et al., 2012; Kim et al., 2016a; Kim et al., 2016b; La
Mantia et al., 2011; Marino et al., 2015; Md Hasan et al., 2017;
Morais et al., 2016). Despite the potential application of MEBs,
the use of the hypersaline electrolytes from Atacama Desert and
their associated corrosion challenges remain poorly studied.

In 1954, Pattle was the first to propose the generation of
renewable energy through the mixing using of freshwater with
water of higher ionic concentration, introducing it as an
alternative to generate clean energy (Pattle, 1954; Fernández
et al., 2015). Later, in 1976, Bert H. Clampitt et al. proposed an
electrochemical cell that could recover energy using the concept of
mixing waters of different concentrations, as river water and
seawater (Clampitt and Kiviat, et al., 1976). In 2009, Brogioli
(2009) explained a new and interesting technique of obtaining
blue energy under the electrochemistry concept called CAPMIX
(Brogioli et al., 2012; Fernández et al., 2015; Gomes et al., 2015; Haj
MohammadHosein Tehrani et al., 2015; Iglesias et al., 2014; Jia et al.,
2013; Jia et al., 2014a; Lee et al., 2017; Marino et al., 2014; Marino
et al., 2016; Ye et al., 2014), based on the storage of Na+ and Cl− ion
inside activated carbon electrodes (Brogioli, 2009; Brogioli et al.,
2012; Fernández et al., 2015; Iglesias et al., 2014; Jia et al., 2014a;
Lima et al., 2017; Marino et al., 2015; Marino et al., 2016). This
technology has technical disadvantages due to problems to
sensitivity to impurities such as dissolved oxygen during the
mixing solutions (La Mantia et al., 2011; Salerno et al., 2013).
These impurities generate uncontrolled discharges (Brogioli,
2009; La Mantia et al., 2011; Marino et al., 2016) which makes
entropic energy production inefficient. In 2011, Fabio La Mantia
et al. (La Mantia et al., 2011) proposed a revolutionary system,
obtaining called Mixing Entropy Battery (MEB). This technology
generated expectations and advanced the technology by working
similarly to Brogioli device, utilizing the mixture of two solutions
with varying salinity concentrations. The MEB functions as a
reversible electrochemical system, causing electroactive ions in
the solution with high ionic strength to be stored pseudo-
capacitively into the crystalline structure of the cathode and
anode materials, respectively (Ali et al., 2025; Du et al., 2025; Li
et al., 2025a; Li et al., 2025b; Wang et al., 2025b). The CAPMIX and
MEB signify significant strides in energy storage technology. This
manuscript compiles relevant information on various electroactive
materials that employ the technology and concept of
electrochemical ion pumping method for blue energy recovery,
with a particular focus on their potential application in the
Atacama Desert, Chile.

2 Opportunity of Chile for blue
energy recovery

La Mantia reported a significant advancement in blue energy
using LiCl as the electrolyte, which is an approach particularly
relevant to lithium-rich brines from the Atacama Desert. The
alternative electrochemical system operates based on the
reversible reaction FePO4 + Ag+ + LiCl # LiFePO4 + AgCl. In
this configuration, the LiFePO4/FePO4 was employed as cathodic
electrode (facilitating lithium-ion intercalation), while the Ag/AgCl
was employed as anodic electrode (enabling chloride ion capture).
Lithium chloride (LiCl), which is highly soluble in water (832 g/L),
enables the generation of steep salinity gradients favorable for
efficient energy extraction. To simulate freshwater and seawater
conditions, LiCl concentrations of 0.03 and 1.5 M were employed,
respectively. The system achieved an energy density of 38.2 mJ/cm2

and a power density of 13.8 μW/cm2, slightly surpassing the
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performance of the NaCl/Na2Mn5O10 system. Furthermore, it
demonstrated excellent cycling stability over 100 cycles, with no
observable decline in energy output. The cell voltage remained stable
throughout operation, attributed to the two-phase nature of the
LiFePO4/FePO4 electrode pair (La Mantia et al., 2011). Northern
Chile offers a unique combination of environmental and industrial
conditions that position it as a prime candidate for the deployment
of salinity gradient energy recovery technologies using the saline
waters present in the Atacama Desert. The region is characterized by
substantial volumes of high-salinity effluents generated by industrial
activities, such as lithium brine obtained via evaporation of naturally
well-brine (Foo and Lienhard, 2025; Gutiérrez and Ruiz-León, 2024;
He et al., 2024; Marinova et al., 2025). These concentrated streams
abruptly contrast sharply with low-salinity sources such as
municipal wastewater (Furness et al., 2024; Phuc-Hanh Tran
et al., 2024; Sampedro et al., 2024; Soo et al., 2024; Zhan et al.,
2025), creating favorable salinity gradients that are ideal for blue
energy recovery through electrochemical technologies. A promising
opportunity lies along the coastal interface of the Atacama Desert,
where treated effluents from desalination plants or municipal
wastewater facilities (de Lima et al., 2025; Giacalone et al., 2024)
can be mixed with hypersaline residual brines from industries as
SQM, Albemarle, or future operations by Codelco, forming a
gradient with entropic potential exceeding that of natural
seawater/river water systems (Cabello, 2021; Lagos et al., 2024;
Marinova et al., 2025). From a technological perspective, Chile’s
lithium-rich brines are compatible with Li-selective cathodes such as
LiFePO4, enabling dual functionalities: (i) energy extraction, and (ii)
lithium pre-concentration and recovery (Liu et al., 2025; Lv et al.,
2025; Ou et al., 2024; Zhang et al., 2024; Zhang et al., 2025).
Similarly, CuHCF materials could be synthetized using low-cost,
locally available precursors derived from salts such as NaNO3,
KNO3, NaCl, KCl, CuSO4, among other located in the Atacama
Desert from Lithium and fertilizer industries. Furthermore, the
Atacama Desert’s exceptionally high solar irradiance (exceeding
3,000 kWh/m2 year) (Bayo-Besteiro et al., 2023; Luccini et al.,
2016; Marzo et al., 2018; Soler et al., 2025) enables the
integration of solar thermal systems for water recovery via solar
distillation, solar concentration or photovoltaic-powered brine
reuse, creating a hybrid solar-blue energy loop with net-
zero emissions.

3 Materials for blue energy recovery

Research into blue energy has traditionally focused on the
mixing of seawater and freshwater. However, alternative sources,
such as highland brines, municipal wastewater, or reject saline
solutions from reverse osmosis plants, are gaining high interest
as viable salinity gradient media. The use of commercial cathode
materials commonly employed in lithium-ion batteries allows for
the reversible intercalation of Na+ or Li+ ions, enabling Faradaic
reactions driven by salinity gradients (Altiok et al., 2023; Gaber et al.,
2025; Galleguillos et al., 2020; Galleguillos-Madrid et al., 2024; Liu
et al., 2022; Mojid et al., 2024; Salazar-Avalos et al., 2023; Suu
et al., 2025).

Despite their high energy efficiency, the use of silver (Ag) as an
anode is limited due to its high cost and strong thermodynamic

susceptibility to form AgCl layers in chloride-containing media
(Chauhan et al., 2025; De Silva et al., 2011; Vvedenskii et al.,
2007), as well as its tendency to form complexes with ions such
as NH4

+ and CO3
2- (Cho et al., 2022; Jin et al., 2003; Pargar et al.,

2018; Popović et al., 2023). In a simulated NaCl gradient (0.6 vs.
0.024MNaCl), energy recovery values of up to 29 mJ/cm2 have been
reported with 75% efficiency, while under a LiCl gradient (1.5 vs.
0.03 M LiCl), recoveries of 38.2 mJ/cm2 have been achieved over
100 cycles (La Mantia et al., 2011). Jia et al. (2015) presented a
system using CuHCF as the anode and Ag as the cathode,
demonstrating reversible Na+ intercalation/deintercalation within
the CuHCF crystal structure. Kasiri et al. (2019) proposed the use of
CuZnHCF mixture as a cathode material in aqueous zinc-ion
batteries, achieving capacity retention of 85.54% at 1C after
1,000 cycles. Similarly, Haj Mohammad Hosein Tehrani et al.
(2015) utilized CoHCF as the cathode, observing two redox
peaks associated with the Fe2+/Fe3+ coupled and Na+ ion
transport, and achieving an energy recovery of up to 24,000 μW/
g. In a related study, Lu et al. (2016) evaluated the use of CoHCF as a
cathode in sodium-based energy conversion systems, showing
excellent capacitance and high specific energy of 54.4 Wh/kg.
Kim et al., (2016a) proposed the use of NH4HCO3 as a low-
temperature dissociable salt, allowing the operation of hybrid
electrochemical cells that integrate thermal distillation. In this
configuration, MnO2 showed stability in the presence of NH4

+,
while PbO and PbO2 were evaluated as anodic electrode in CO3

2-

containing electrolytes, however, the formation of PbCO3 on PbO
surfaces limits efficiency during the operation. The Hybrid CapMix
concept, introduced by Lee et al. (2017), combines a Faradaic
cathode (sodium manganese oxide, NMO) with an activated
carbon as anode, and an anion exchange membrane, achieving a
power density of 97 mW/m2. Likewise, Kim et al. (2016b)
demonstrated the viability of using non-selective membranes as
low-cost alternatives to ion-exchange membranes, producing stable
power outputs of 411 mW/m2 over 20 cycles. Ye et al. (2019)
proposed a MEB using Prussian Blue (PB) and Polypyrrole
(PPy), both low-cost materials. The device exhibited nearly 100%
Coulombic efficiency and stable operation over 50 cycles,
demonstrating the feasibility of energy-free operation. Tan and
Zhu (2020) introduced BiOCl as a cost-effective alternative to
Ag, achieving power densities up to 87 mW/m2 with the aid of
polyelectrolyte coatings. The system exhibited good stability in
hypersaline waters (300 g/L NaCl), offering results comparable to
or exceeding those of AgCl-based systems. Nevertheless, the use of
Ag remains problematic due to partial dissolution in real-world
environments, with detected concentrations exceeding EPA limits
after several cycles (Ye et al., 2014). Therefore, the development of
sustainable materials such as PPy or BiOCl, are essential for the
scalable deploying of this technology.

4 Discussion and outlooks

Currently, several techniques are available to recover chemical
energy from the salinity gradient between two solutions, including
reverse electrodialysis (RED) (Ahualli et al., 2014; Brogioli, 2009;
Jia et al., 2013; Kim et al., 2016a; Kim et al., 2016b; La Mantia et al.,
2011; Lee et al., 2017; Logan and Elimelech, 2012; Marino et al.,
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2014; Md Hasan et al., 2017), Pressure Retarded Osmosis (PRO)
(Ahualli et al., 2014; Bag, 2017; Haj Mohammad Hosein Tehrani
et al., 2015; Jia et al., 2014b; Ye et al., 2014), semipermeable
membranes (Brogioli, 2009; Brogioli et al., 2012; La Mantia
et al., 2011), selective ion membranes (Bag, 2017; Brogioli,
2009; La Mantia et al., 2011), and concentration cells (Bag,
2017; Brogioli, 2009; Jia et al., 2013; La Mantia et al., 2011). All
these technologies have undergone significant technological
advancements in recent years. RED systems, which operate
using ion-exchange membranes, typically achieve power
densities in the range of 1–2 W/m2 and perform more
efficiently under low salinity gradients. This technology can be
integrated to other processes, such as reverse osmosis; however, the
cost associated with building, operation and membrane
replacement can be limitations to widespread adoption. In
contrast, PRO is better suited for high salinity gradients but
requires high-pressure-resistant membranes and complex
infrastructure. This technology commonly achieves power
densities around of 5–7 W/m2 using seawater/wastewater, and
27 W/m2 using 1 M NaCl with distilled water (Wan and Chung,
2015). Mixing Entropy Batteries (MEBs), however, operate
without membranes or rely on simple separators, enabling
energy recovery from highly concentrated brines while
significantly reducing system complexity. Although current
MEBs yield lower power densities (typically between 10 and
100 mW/m2), they offer substantial advantages and versatility
in terms of electrode material, modular design, and
compatibility with industrial effluents, features particularly
beneficial in resource-limited or remote regions such as the
Atacama Desert. Furthermore, both RED and PRO are heavily
reliant on membranes, for which sustainable recycling or circular
economy strategies are not yet widely implemented. In contrast,
MEBs adopt a membrane-free concept that facilitates direct
electrochemical energy recovery during the mixing of waters
with differing salinity.

The strategic convergence of industrial activity, geographical
conditions, and saline water resource dynamics in Chile,
especially in the Atacama Desert, creates a favorable
environment for the development of salinity gradient energy
recovery technologies. Brine mining operations not only
generate massive quantities of high-salinity effluents, especially
lithium-rich brines, but are also complemented by the availability
of desalinated seawater and municipal wastewater to meet
operational demands in regions of high solar irradiance (Ali
Chang et al., 2024; de Lima et al., 2025). These diverse water
sources naturally create sharp ionic gradients, which can be
connected for blue energy generation using electrochemical
technologies such as Mixing Entropy Batteries (MEBs) or
hybrid CapMix systems (Cheng et al., 2025; El Moutchou
et al., 2024). Chile presents a scenario of high-enthalpy salinity
gradients. Industrial brines in northern Chile often exceed
200–300 g/L NaCl (Bonelli and Pavez, 2025; He et al., 2024).
Additionally, Chile’s mining sector directly contributes the
advancement of blue energy systems. For example, lithium-rich
brines match well with Li-selective cathodes like LiFePO4 or
NiHCF (Goel et al., 2025; Wei et al., 2025; Xu et al., 2023),
enabling simultaneous energy harvesting and lithium pre-
concentration. Similarly, materials such as CuHCF and PPy,

which are promising candidates for cathode and anode
materials, could be synthesized from local resources such as
NaNO3 or KNO3 from SQM’s operations. This presents a
novel opportunity to deploy emerging technologies that can
contribute power generation in hard-to-reach regions such as
the Chilean Altiplano. From a technological perspective, a wide
range of materials have been evaluated for their suitability in
electrochemical systems exploiting salinity gradients. Cathodes,
such as NMO and lithium-iron phosphate (LFP), enable Faradaic
ion intercalation reactions with Na+ and Li+, respectively, offering
high specific capacities and stability. However, the widespread use
of silver (Ag) as an anode raises sustainability concerns due to its
cost and solubility issues in high-chloride environments, resulting
in the formation of AgCl or complex ions that impair system
efficiency (Man et al., 2025; Suu et al., 2025; Yim et al., 2025).

The experimental performance of MEBs has been validated
through various configurations reported in the literature, as
summarized in Table 1. These systems demonstrate successful
operation under laboratory conditions simulating real-world
salinity gradients. For example, the Na2Mn5O10–Ag and
LiFePO4–Ag configurations (La Mantia et al., 2011) achieved
energy recovery values of 10.5 and 13.8 μW/cm2, respectively,
under synthetic gradients (0.6 vs. 0.024–0.03 M NaCl or LiCl)
with stable cycling over 100 cycles. Other systems, such as
Na4Mn9O18–Ag (Jia et al., 2014a; Jia et al., 2014b) and
CoHCF–Ag (Kiviat, 1976) have reported power densities of up to
0.65 kW/m3 and 24 mW/g1, respectively, confirming their
electrochemical reversibility and robustness. Additionally, Faradaic
systems based on CuHCF or BiOCl (Logan and Elimelech, 2012; Ye
et al., 2019) have demonstrated acceptable energy recovery ranging
from 10 to 411 mW/m2, even in configurations with minimal
electrode areas or simplified geometries. Collectively, these
findings provide a solid experimental foundation for the viability
of MEBs and support the conceptual projections outlined in this
work. While laboratory results are promising, long-term stability of
electrode materials under real brine conditions remains a key
challenge for scale-up. Several anodes reported in the literature,
such as silver (Ag), are prone to degradation due to chloride-
induced reaction (AgCl layer formation), particularly in high-
chloride industrial brines. This issue is evident in multiple studies
(Fernández et al., 2015; La Mantia et al., 2011; Ye et al., 2014), where
Ag is used despite its known environmental risks and tendency to
dissolution under prolonged cycling. Alternative anodes such as
BiOCl and PPy have emerged as promising substitutes due to
their chemical stability and lower environmental impact (Marino
et al., 2016; Ye et al., 2019). On the cathodic side, materials like
LiFePO4, Na2Mn5O10, and CuHCF have demonstrated high
reversibility; however, their performance can be influenced by pH,
ionic composition, and the presence of complexing agents such as
NH4

+ or CO3
2-. Additionally, the pond of standardized water pre-

treatment protocols introduces uncertainty in systems that rely on
municipal wastewater or desalination brines. Membrane-based
systems such as hybrid CapMix, PRO or RED are further limited
by membrane fouling and degradation under hypersaline and
organic-rich conditions issues that remain unresolved in the
absence of recycling strategies or circular economy models.

MEBs offer a membrane-free or minimal-membrane alternative,
thereby reducing maintenance burdens and reducing the need for
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TABLE 1 Characteristics of the mixing entropic batteries–design and operations conditions described in the literature.

Ref Cathodic
material

Anodic
material

Electrode
area (cm2)

Thickness
electrode

(mm)

MEB
volume
(cm3)

Electrode
spacing
(mm)

Potential
range (V)

Current
range
(mA/
cm2)

High
concentration
solution (M)

Low
concentration
solution (M)

Cycles
No

Recovery
potential

(V)

Efficiency
(%)

Recovered
energy
W/m2

La Mantia et al.
(2011)

Na2Mn5O10 Ag 2 — 0.35 10 — ± 0.25 0.6 0.024 100 0.135 75 0.105

La Mantia et al.
(2011)

LiFePO4 Ag 2 — 0.35 10 — — 1.5 0.030 100 — — 0.138

Md Hasan et al.
(2017)

Na2Mn5O10 Ag 2 — 0.30 1 0–0.65 ± 0.50 0.6 — — — — —

Ye et al. (2014) Zn Ag 1 0.1 — 0.6 0.8–1 ± 0.50 4.5% 0.68 — 0.160 80 1.6

Marino et al. (2016) NiHCF Ppy/Ag 1 — — — 0–0.8 ± 0.01 3 0.020 100 — — —

Salerno et al. (2013) Na2Mn5O10 AC 3.01 0.3 0.06 0.2 0–0.6 ± 0.5 0.6 0.01 3 0.150 — 0.097

Trocoli et al. (2016) MnO2 Pb 7 0.2 14.1 — 0.1–0.8 ± 0.03 1 0.020 — 0.100 — 0.0063

Logan and Elimelech
(2012)

Ag CuHCF 5 — — 3 0.2–1.2 ± 0.50 0.6 0.024 25 0.102 69 17.95

Jia et al. (2014a) Na4Mn9O18 Ag 9 1.7 1.5 1.7 — ± 0.25 0.6 0.032 12 — 68 650

Fernández et al.

(2015)

Na2Mn5O10 Ag 1 0.05 — 0.6 — — 0.5 0.020 — — — 0.015

Kiviat (1976) CoHCF Ag 1.3 — — 1 0–1.1 ± 0.01 0.6 0.024 30 0.153 65 —

Pasta et al. (2012) CuHCF CuHCF 3 0.12 1.2 0.4 — ± 0.5 0.513 0.017 20 0.172 — 0.411

Ye et al. (2019) FeHCF PPy — — — — 0–0.3 — 0.6 0.024 50 0.3 — —

Tan and Zhu (2020) CuHCF BiOCl — — — — 0.5 0.2 5.14 0.017 — — — 0.010

Smolinska-Kempisty
et al. (2020)

C C 0.2 0.2 — — 0.2 1,380 1.71 0.069 10 — 86.3 0.017

Nasir et al. (2020) C C 9 4.5 — 1 0.6 — 0.5 0.001 1 0.6 — —

Li et al. (2023) MoS2 C 1 — — — 0.4 5 0.086 — 100 — 82.2 0.00612

[a] NaCl concentrated solution resistance: 5 Ω, resistance of NaCl diluted solution: 75 Ω [b] LiCl concentrated solution resistance: 5.4 Ω, resistance of the diluted LiCl solution: 10.6 Ω, [c] Load capacity of Na2Mn5Or10 is 35 mAh/g, [d] NaCl concentrated solution

resistivity: 0.1Ωm, NaCl diluted solution resistivity: 1.3Ωm and a solution feed flow of 5 mL/s, [e] NaCl concentrated solution resistance: 3Ω, resistance of NaCl diluted solution: 17Ω and load capacity for Na2Mn5O10 material of 35 mAh/g, [f] 0.5 mL/s, [g] The energy

obtained is based to each kJ/mol of Na+ electro inserted into each charge and discharge cycle, [h] TheMEB prototype used considers a cation exchange membrane, [i] Resistance of NaCl concentrated solution: 0.3Ω, resistance of NaCl diluted solution: 5.6Ω, membrane

resistance: 1.0 Ω, solution feed flow: 7.5 mL/min, [j] Activated carbon (AC), anionic exchange membrane with an area of 3.01 cm2, solution feed flow: 20 mL/min.
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intensive chemical conditioning. However, ensuring stable
performance in real effluents streams will require the
development of tailored pre-treatment strategies, such as
particulate filtration, anti-scalants, or ultraviolet (UV)
disinfection, depending on the specific characteristics of the water
source. Consequently, further pilot-scale studies are essential to
evaluate fouling resistance, redox stability, and long-term
durability of MEB electrodes operating in complex saline matrices.

Research has shown that Ag concentrations in treated water
can exceed regulatory limits, such as those set by the US EPA,
after multiple-discharge cycles (Cervantes-Avilés et al., 2019;
Shafer et al., 1998; Wimmer et al., 2019). As a sustainable
alternative, BiOCl has demonstrated energy densities
comparable to Ag-based systems, reaching up to 87 mW/m2

when enhanced with polyelectrolyte coatings (Dhanasekaran
et al., 2025; Reale et al., 2021; Zhou et al., 2022). Similarly,
PPy as a conducting polymer, exhibits robust performance,
broad potential windows, and low energy input requirements,
making it well-suited for the selective capture of anions such as
Cl−. Transition metal oxides like MnO2 also show high redox
stability, particularly in systems utilizing ammonium bicarbonate
(NH4HCO3) as a regenerative salt for thermal-electrochemical
hybrid configurations (Chen et al., 2025; Jabarullakhan and
Kandasamy, 2025; Meng et al., 2020; Wang et al., 2025a).
Moreover, research on hybrid CapMix systems has
demonstrated promising performance under real-world
conditions. These devices, that combine capacitive and
Faradaic charge storage strategies, have achieved energy
recoveries values approaching 100 mW/m2 under moderate
salinity gradients. Notably, Lee et al. (2017) reported a hybrid
device based on NMO and activated carbon that exemplifies this
synergistic behavior. Additionally, the use of non-selective
membranes in place of costly ion-exchange membranes, as
demonstrated by Kim et al. (2016a) and Kim et al. (2016b),
provides a practical path for large-scale implementation.

Importantly, Chile’s exceptionally high solar irradiance,
surpassing 3,000 kWh/m2·year in regions like the Atacama Desert
(Luccini et al., 2016; Marzo et al., 2018; Naranjo et al., 2025;
Rodríguez-Córdova et al., 2025), offers a strategic advantage for
the integration of solar-driven or hybrid energy systems. Looking
forward, the implementation of blue energy in Chile can help
address several national priorities: (i) diversifying the energy
matrix, (ii) valorizing industrial waste streams, and (iii)
decarbonizing energy-intensive sectors. By leveraging its lithium
and copper resources not only for global battery markets but also for
electrochemical blue energy systems, Chile has the potential to
pioneer integrated circular economy models that promote clean
energy innovation. However, the long-term performance and
fouling resistance of electrode materials under real industrial
brine conditions must be rigorously evaluated (Arif et al., 2017;
Liu et al., 2014; Yangyang Wang, 2022; Yue et al., 2025). Issues such
as membrane degradation, ionic selectivity, and cycling efficiency
under complex effluent compositions also remain unresolved and
demand further study. Furthermore, techno-economic analyses that
incorporate site-specific variables, including local flow rates of
waters, salinity profiles, and capital and operational expenditures,
are essentials to determinate the scalability and investment
feasibility of proposed systems.

The exploration of blue energy as a viable alternative to
conventional renewables marks a pivotal step toward the
global pursuit of sustainable and resilient energy systems.
Among the most promising approaches, electrochemical
methods for harvesting entropic energy at the interface of
fluids with differing salinities, whether natural or
anthropogenic origin, have demonstrated robustness and
adaptability. In this context, Chile is uniquely positioned to
pioneer the industrial-scale implementation and development
of blue energy systems. Its northern macrozone, with high
lithium and copper resources, abundant access to high-salinity
industrial brines, and desalinated or treated water, offers an
exceptional salinity gradient that can exceed even that found
at natural seawater-river water interfaces. These conditions not
only enable efficient blue energy generation with high efficiency
but also create opportunities to value critical mineral residues
and close the loop on water-energy nexus challenges. On the
other hand, the use and deployment of low-cost and sustainable
electrodes such as BiOCl, MnO2, CuHCF, or Polypyrrole (PPy),
alongside innovative configurations that integrate Faradaic and
capacitive charge storage, has enabled stable and scalable energy
recovery across a broad range of saline mixtures. Importantly,
many of these materials are increasingly compatible with local
Chilean resources, particularly lithium-rich brines, offering new
avenues for national innovation and industrial cooperation.
Moreover, coupling blue energy technologies with Chile’s
exceptional solar potential opens the door to hybrid systems
in which solar heat is used for distillation or concentration of
saline solutions, enhancing system autonomy and net energy
yield with zero emissions. Ultimately, blue energy stands as a
promising technology for diversifying renewable energy sources.
Its capacity to extract chemical energy from water salinity
gradients, even under extreme salinity conditions, provides a
solid scientific and technological foundation for large-scale
deployment. Moving forward, coordinated efforts between
academia, industry, and government will be essential to
transition from laboratory-scale demonstrations to
commercially viable, field-ready solutions. Such collaborations
will ensure that blue energy not only contributes to mitigating
climate change but also fosters innovation, water circularity, and
sustainable development of clean energy.

The implementation of blue energy in Chile holds
transformative impact across industrial, economic, social, and
environmental dimensions. At the industrial scale, this
technology represents a critical step toward the
decarbonization of key processes, enabling a more diversified
and resilient energy matrix while significantly reducing
dependence on fossil fuels. These advances will enhance
national energy security and contribute to a substantial
reduction in our carbon footprint. For small and medium-
sized enterprises (SME), the development of blue energy opens
new market opportunities in the design, manufacture,
installation, and maintenance of MEB systems. These
ecosystems will foster the growth of specialized technical
skills, facilitate knowledge transfer, and generate a wide range
of skilled employment opportunities, simulation local economies
and promoting technological sovereignty. Socially, blue energy
offers a unique opportunity to improve the lives of remote
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communities in regions such as the Atacama Desert, where access
to reliable electricity remains a challenge. By utilizing locally
available water resources, blue energy systems can support
models of regional energy autonomy, enhancing living
conditions, and advance sustainable rural development.
Strategically, this initiative positions Chile as a frontrunner in
global energy innovation. In doing so, Chile reinforces its
leadership in the global energy transition, advancing both
environmental and economic competitiveness.
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