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Herein, a fluorescent probe, DSNBD-GSH, was developed from
dichlorosalicylaldehyde to monitor glutathione (GSH) in a cellular pulmonary
ventilation model. Both the normoxia and hypoxia conditions were evaluated.
DSNBD-GSH responded to GSH in a dosage-dependent manner with a
fluorescence signal at 478 nm under the excitation of 365 nm. The solution
tests indicated that DSNBD-GSH had relatively high sensitivity for GSH, and the
photophysical properties were stable in various conditions. Other advantages
included rapid response, high selectivity, and low cytotoxicity. Most significantly,
monitoring the GSH level in both hypoxia and recovery status allows for
visualization of ventilation-related redox changes. This work highlights a
referenceable case for improving the pulmonary ventilation approach during
the perioperative period.
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1 Introduction

In modern clinical trials, the perioperative period has been a research hotspot for
guaranteeing the health of the patients, while the corresponding anesthesia processes
require advanced knowledge of the pulmonary ventilation conditions (Mo et al., 2024; Xu
et al., 2024). The pulmonary ventilation regulation is tightly associated with risks such as
ischemia-reperfusion injury, oxidative stress, and inflammatory response (Buonanno et al.,
2023; Gao et al., 2024; Liu et al., 2022). In chronic obstructive pulmonary disease (COPD)
cases, typically, the tidal volume range and positive end expiratory pressure should be
ensured in a suitable range (Abualhamael et al., 2024). Commonly, the rational use of
anesthetics (such as propofol, sevoflurane, and dexmedetomidine) has been introduced for
better regulation of the pulmonary ventilation conditions (Bai et al., 2022; Kawakami et al.,
2024; Wang et al., 2024). Accordingly, a lack of enough indicators for precise regulation has
become a main limiting factor in the medicinal processes. At present, the main indicators
remain physical, including resting ventilation volume, alveolar ventilation volume,
maximum ventilation volume, and time lung capacity (Lorenzo-Capella et al., 2025;
Miura et al., 2020; Ovenholm et al., 2024). However, physical indicators cannot fulfill
the requirements of mechanism investigations and in-situ monitoring procedures.
Therefore, studying the molecular indicators is an essential task before revealing further
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interaction networks and developing potential therapeutic
approaches (Lee et al., 2020; Zheng et al., 2021).

Distinguished from the hepatic and nephric cases, the
pulmonary ventilation models ask for consideration of the
oxygen supply variation (Marquis et al., 2021; Wohlrab et al.,
2021). In particular, both the normoxia and hypoxia micro-
environments should be checked when seeking the possible
indicators (Chao et al., 2021). The directly identified molecular
indicators involved carbon dioxide (CO2) and peroxynitrite
(ONOO−), which were associated with the reactive oxygen
species (ROS) and reactive nitrogen species (RNS) (Barrett et al.,
2022; Martinez-Caro et al., 2015). Moreover, tracking the
metabolism of lipids and proteins has brought the analysis to the
enzyme-related indicators such as carboxylesterase (CE) and
cysteine (Cys) (Erdil et al., 2016; Wu et al., 2024). Typically, the
nodes in multiple pathways exhibit more information to reveal the
interaction mechanisms. Glutathione (GSH), as a key representative,
covers the regulation of both the amino acid conversion and sulfur
metabolism (Ferreira et al., 2023; Gopika et al., 2024). In
combination with other indicators such as C-reactive protein and
IL-10, GSH may contribute to describing the pathological status in
the pulmonary ventilation processes. One specific sample was the
cooperation with the iron ion pool in ferroptosis. The key nodes,
including GSH, might reveal the facts in the complex
interaction network.

For monitoring GSH, the present methods mainly involve
colorimetry (Chen et al., 2025), high-performance liquid
chromatography (Kubat et al., 2024), and capillary
electrophoresis (Ivanov et al., 2022). Since the pulmonary
ventilation processes require in-situ potential and good
biocompatibility, the above methods cannot fulfill the specific
scenario. Recent investigations into the fluorescent probes have
met the requirements, which have also facilitated real-case
monitoring of GSH (Li et al., 2023; Liu et al., 2025; Long M.
et al., 2025; Long Z. Z. et al., 2025; Lu et al., 2025; Wang et al.,
2025; Xie et al., 2025; Yan et al., 2025; Zhang et al., 2023). On the
basis of the reaction mechanisms, including nucleophilic
substitution, Michael addition, and cyclization-departure, the
developed probes have realized the selective recognition of GSH
from other biological thiols such as Cys and homocysteine (Hcy). In
particular, 7-nitrobenzofurazan (NBD) has been regarded as a
recognition group with a high success rate (Slowinski et al.,
2022). Both the fluorophores and recognition groups affect the
photophysical properties of the probes. Thus, to monitor GSH in

cellular pulmonary ventilation, novel fluorescent probes with
corresponding methodologies are still attractive for the
investigators in chemical biology.

Herein, a dichlorosalicylaldehyde-derived fluorescent probe for
monitoring glutathione in the cellular pulmonary ventilation model
was prepared and tested (Figure 1). The fluorophore was derived
from the original dichlorosalicylaldehyde subunit with the hydroxyl
as the electron-donating site and chlorine substitutes as the
conformation regulator. The selection of the
dichlorosalicylaldehyde source was based on introducing the
steric hindrance and reducing the local electron density, which
were beneficial for improving the selectivity and photophysical
properties. The nitrogen-containing aromatic rings were
introduced to form the electron-withdrawing subunit. The
structural features of the fluorophore indicated the basic
mechanism of the fluorescence generation as excited-state
intramolecular proton transfer (ESIPT) according to some
previous reports (Padalkar and Seki, 2016; Sedgwick et al., 2018;
Zhou and Han, 2018). By anchoring the NBD recognition group, the
probe DSNBD-GSH was acquired. The experiments on the
photophysical properties were carried out according to
convention; both the normoxia and hypoxia conditions were
considered. The cellular pulmonary ventilation model was
constructed, and the imaging performance of the probe was
thereby studied. DSNBD-GSH was expected to serve the imaging
scenario in living pulmonary cells.

2 Experimental

2.1 Materials and methods

The chemicals and agents were purchased from Energy
Chemical Co. Ltd. (Shanghai, China). The cell lines were
acquired from American Type Culture Collection (ATCC) and
stored in Zhejiang University School of Medicine. The nuclear
magnetic resonance (NMR) spectra were recorded on a DRX-600
spectrometer (Bruker, Karlsruhe, Germany). The high-resolution
mass spectra (HRMS) were recorded on a 6475 triple quadrupole
lipid chromatography-mass spectrometry workstation (Agilent,
Santa Clara, United States). The UV-vis measurement was
performed on a UV2450 spectrometer (Shimazu, Kyoto, Japan).
The fluorescence measurement was conducted on an F-7000
fluorescence spectrophotometer (Hitachi, Tokyo, Japan). The

FIGURE 1
The illustration of the probe DSNBD-GSH for monitoring GSH in the cellular pulmonary ventilation model.
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intracellular imaging was carried out with an FV-1000 confocal laser
scanning biological microscope (Olympus, Tokyo, Japan).

The stock solution of the probe DSNBD-GSH was set at 1.0 mM
in dimethyl sulfoxide (DMSO), and the other concentrations were
acquired by dilution with phosphate buffer saline (PBS) and pure
water. The solution pulmonary ventilation model was constructed by
bubbling in 90 mL CO2 with rapid shaking for 2 s as described in the
previous literature (Zhu et al., 2024). The resulting model was close to
the 45 mmHg PaCO2 hypercapnia condition with a common alveolar
ventilation (VA) as 5 L/min. The main conditions included
photomultiplier voltage 600 V, excitation and emission slit widths
5 nm * 5 nm, pH 7.4, 37 °C, and 20min incubation under an excitation
of 365 nm. The cellular pulmonary ventilationmodel was constructed
by setting the culture environment of the atmosphere proportion to
mimic the hypoxia and hypoxia recovery groups. The signals in the
green channel of 450–600 nm were collected.

2.2 Fluorescence quantum yields
determination

The fluorescence quantum yields (FQYs) determination relied
on conversion with the rhodamine B ethanol solution (0.69 under
the excitation of 365 nm) following a typical reference method.
Accordingly, the FQY value of the DSNBD-GSH probe was 0.11,
while that of the detecting product DSNBD-FL was 0.69.

2.3 Limit of detection determination

The limit of detection (LOD) determination relied on the
formula LOD = 3.29σ/k, where 3.29 was the International Union
of Pure and Applied Chemistry (IUPAC) set coefficient; σ was the
background standard deviation from 25 independent
measurements; and k was the slope value of the linear
correlation. Accordingly, σ = 0.2962, k = 1.244, and LOD = 0.78 µM.

2.4 Cell culturing and intracellular imaging

Human non-small cell lung cancer cells (A549 cell line) and
normal lung bronchial epithelial cells (BEAS-2B cell line) were

selected and cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. The condition was set to the following: 5% CO2-
containing atmosphere, 37 °C, and 24 h. The thiazole blue (MTT)
assay was conducted to check the cytotoxicity by recording the
optical density values at 570 nm.

Then, A549 cells were selected for intracellular imaging. They
were divided into five groups based on distinct culturing and
incubation conditions. The normoxia atmosphere (20% O2 and
5% CO2) was used for the initial three groups, while the hypoxia
condition (5% O2, 50% CO2, and N2 supplied) was used for the last
two groups. The first group was incubated with PBS for 30 min and
DSNBD-GSH (10 μM) for 30 min and imaged. The second group
was incubated with N-Ethylmaleimide (NEM, a sulfite scavenger,
1 mM) for 30 min, to eliminate the biological thiols, and DSNBD-
GSH (10 μM) for 30min and imaged. The third group was incubated
with N-Ethylmaleimide (NEM, a sulfite scavenger, 1 mM) for
30 min, then N-acetyl-L-cysteine (NAC, 1 mM) for 30 min to
supply the endogenous generation of GSH, and DSNBD-GSH
(10 μM) for 30 min and imaged. The fourth group, pre-cultured
in hypoxia, was incubated with PBS for 30 min and DSNBD-GSH
(10 μM) for 30 min and imaged. The fifth group, pre-cultured in
hypoxia, was incubated with 30% H2O2 in the last 1 h to mimic a
quick hypoxia recovery, then incubated with PBS for 30 min and
DSNBD-GSH (10 μM) for 30 min and imaged. The quick hypoxia
recovery was controllable on living cells with the limited oxidative
stress (Mailloux, 2015; Yang et al., 2024). Thus, the normoxia,
hypoxia, and hypoxia recovery status were all covered.

2.5 Chemical synthesis

The general synthetic route of the probe DSNBD-GSH is shown
in Figure 2. The initial reaction was the formation of the
fluorophore. The raw material 3,5-dichlorosalicylaldehyde (0.29 g,
1.5 mmol) was dissolved in 15mL acetic acid in a round bottom flask
of 50 mL. Then, phenyl(pyridin-2-yl)methanone (0.27 g, 1.5 mmol)
and ammonium acetate (0.15 g, 2 mmol) were added. The mixture
was stirred in reflux continuously for 4 h. The completion of the
reaction was confirmed by the thin-layer chromatography (TLC).
Then, the pH was adjusted to neutral conditions, and the precipitate
was purified through column chromatography with the eluent of

FIGURE 2
The general synthetic route of the probe DSNBD-GSH from dichlorosalicylaldehyde.
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petroleum ether and ethyl acetate (4:1). The yellow solid obtained
was the fluorophore DSNBD-FL at a yield of 53.8%. The following
was calculated for [C19H13Cl2N2O]

+: 355.0405, found: 355.0400: 1H
NMR (600 MHz, CDCl3) δ 13.14 (s, 1H), 8.46 (d, J = 7.3 Hz, 1H),
7.93 (d, J = 9.2 Hz, 1H), 7.85 (d, J = 7.4 Hz, 2H), 7.66 (d, J = 2.2 Hz,
1H), 7.48 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 2.2 Hz, 1H), 7.36 (t, J =
7.4 Hz, 1H), 6.96 (dd, J = 9.1, 6.4 Hz, 1H), 6.83 (t, J = 6.8 Hz, 1H). 13C
NMR (150 MHz, CDCl3) δ 151.45, 133.60, 132.93, 130.19, 129.56,
128.94, 127.52, 127.51, 126.76, 123.70, 123.57, 122.40, 122.04,
121.23, 119.71, 115.82, 115.25. HRMS (ESI-Q-TOF m/z).

Subsequently, DSNBD-FL (1 mmol) was dissolved in
5 mL N,N-dimethylformamide (DMF) in a round-bottom flask of
20 mL under nitrogen protection. Then 7-nitrobenzofurazan (0.20 g,
1 mmol) and potassium carbonate (0.14 g, 1 mmol) were added. The
mixture was stirred continuously at room temperature for 2 h. The
completion of the reaction was confirmed by the TLC. Themixture was
filtered and washed with cold methanol. The residue was freeze-dried.
The obtained dark yellow solid was the probeDSNBD-GSH at a yield of
61.2%. The following was calculated for [C25H14Cl2N5O4]

+: 518.0422,
found: 518.0397: 1HNMR (600MHz, CDCl3) δ 8.21 (d, J = 8.3 Hz, 1H),
7.95 (d, J = 7.2 Hz, 1H), 7.80 (d, J = 2.5 Hz, 1H), 7.68-7.66 (m, 2H), 7.51
(d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21-7.19 (m, 1H), 6.82 (dd,
J = 8.1, 6.5 Hz, 1H), 6.75 (t, J = 7.7 Hz, 1H), 6.41 (d, J = 8.2 Hz, 1H). 13C
NMR (150 MHz, CDCl3) δ 150.90, 145.38, 144.18, 143.93, 133.97,
132.92, 132.01, 131.57, 131.32, 130.03, 129.17, 128.98, 128.03, 127.68,
126.68, 122.27, 121.74, 119.03, 115.25, 108.80. HRMS (ESI-Q-
TOF m/z).

3 Results and discussion

3.1 Synthesis of the probe DSNBD-GSH

As shown in Figure 2, the probe DSNBD-GSH was synthesized
in two main steps. Initially, the conjugated structure of the raw
material dichlorosalicylaldehyde was enlarged with the formation of
nitrogen-containing aromatic rings to form the fluorophore
DSNBD-Fl. Subsequently, the NBD recognition group was added
onto the hydroxyl site of the fluorophore to generate the probe
DSNBD-GSH. All the synthesized compounds were checked with
the NMR and HRMS data (Supplementary Figures S1–S6).

3.2 In solution tests on photophysical
properties

Herein, as mentioned in the experimental section, the solution
pulmonary ventilation model was constructed by bubbling in CO2,

and the result was a mimicked hypercapnia-like status with
corresponding calculation parameters. Both the normoxia and
hypoxia conditions were considered during the preliminary tests
on the absorption and fluorescence variation. In normoxia, the UV-
vis spectra of the probe DSNBD-GSH (10 μM) exhibited two peaks
at 300 nm and 360 nm, while the incubation with GSH (1 mM)
caused the decrease of the peak at 360 nm (Supplementary Figure
S7A). In hypoxia, the absorption variation was almost the same.
When the excitation wavelength was set as 365 nm, in normoxia, no
obvious fluorescence peak was observed in the spectrum of the probe

DSNBD-GSH (10 μM), while the incubation with GSH (1 mM) led
to the appearance of a notable fluorescence peak at 478 nm
(Supplementary Figure S7B). In hypoxia, the fluorescence
variation was also similar to that in normoxia. Since the solution
pulmonary ventilation model did not seriously affect the tests on the
photophysical properties, the following experiments used the
normoxia condition for conciseness. The FQY value of the probe
DSNBD-GSH was 0.11, while that of the detecting product DSNBD-
FL was 0.69. The above results suggested that DSNBD-GSH was
available for serving a monitoring system with the turning-on
fluorescence response.

By convention, the standard curve was constructed to describe
the correlation between the fluorescence intensity of the solution
containing DSNBD-GSH (10 μM) at 478 nm and the concentration
of GSH (0–2000 μM). Along with an increase in the GSH
concentration, the fluorescence intensity enhanced to reach a
plateau when the GSH concentration was 1 mM (Figures 3a,b).
In the range of 0–800 μM, there was a linear correlation with the
Pearson’s coefficient of 0.9997 (Figure 3b Insert). The LOD value
was calculated as 0.78 µM, which suggested a relatively high
sensitivity. Moreover, the monitoring system also required the
stability of the reporting signals in various testing conditions.
The pH, response time, and incubation temperature were all
commonly concerned parameters. For the pH condition, the
probe DSNBD-GSH remained almost non-fluorescent in the
range of 3.0–12.0, while a certain intensity was steadily
observed after the response towards GSH in the range of
5.0–11.0 (Figure 3c). The reporting signal intensity was tightly
associated with the pH condition, which was consistent with the
ESIPT mechanism. When the pH condition was not ideal, the
fluorescence intensity of the detecting product decreased
accordingly. For the response time, the reaction between
DSNBD-GSH and GSH was absolutely completed within
15 min (Figure 3d). It was a relatively rapid response among
the reports for monitoring GSH. For the incubation temperature,
the probe DSNBD-GSH remained almost non-fluorescent in the
range of 25 °C–45 °C, while a certain intensity was steadily observed
after the response towards GSH in the range of 35 °C–45 °C
(Supplementary Figure S8). In consideration of all the testing
conditions, the solution containing DSNBD-GSH suggested the
stable monitoring of GSH, which covered the requirements for the
pulmonary ventilation-related conditions.

3.3 Selectivity of the probe DSNBD-GSH

The surroundings of the GSH detection require high selectivity,
thus the tests on this point should be unfolded for the prepared
probe DSNBD-GSH. The concentration of DSNBD-GSH was set as
10 µM, and the concentrations of the analytes were all set as 1 mM.
Regarding GSH as the research object, the most significant
competitors included other biological thiols as well as sulfur-
containing ions. After the comparison with the species, including
Cys, Hcy, GSSG, H2S, HSO3

−, SO3
2-, S2O3

2-, S2O4
2-, S2O5

2-, SO4
2-,

and SCN−, it was found that only GSH led to the remarkable
fluorescence response at 478 nm (Figure 4a). In particular, the
probe DSNBD-GSH might directly distinguish GSH from Cys
and Hcy, which was essential in the probes for sulfur
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metabolism. Other competitors were tested in sequence. The species
cover amino acids (Ala, Arg, Asp, Asn, Gln, Glu, Gly, His, Ile, Leu,
Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val) in Figure 4b, anions (Br−,
Cl−, ClO−, CO3

2-, F−, HCO3
−, HPO4

2-, H2PO4
−, I−, NO2

−, NO3
−) in

Figure 4c, and cations (Al3+, Ca2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, K+, Li+,
Mg2+, Mn2+, Na+, Ni2+, Pb2+, Ti4+, Zn2+) in Figure 4d. No obvious
fluorescence response was observed throughout the tests of the
above-mentioned competitors. Basically, the selectivity towards
GSH relied on the differences in affinity, while the fluorescence
generation of ESIPT further enlarged the differences in fluorescence
intensity. Therefore, establishing the monitoring system with
DSNBD-GSH ensured high selectivity towards GSH.

3.4 Imaging GSH in living pulmonary cells

Before the intracellular imaging procedure, the cytotoxicity of
the probe DSNBD-GSH on living pulmonary cells (A549 and BEAS-
2B cell lines) was investigated with the MTT assay. Along with the
increase of the probe concentration to reach 50 μM, the cell viability

of both cell lines remained over 90% (Supplementary Figures
S9A,B). The low cytotoxicity was suitable for imaging in living
pulmonary cells.

Afterwards, the A549 cells were divided into five groups for
the confocal imaging procedure. The first group was cultured in
normoxia before being incubated with PBS and the probe
DSNBD-GSH in sequence to serve as the control group
(Figures 5a–c). The fluorescence signal with a certain intensity
in the green channel was consistent with the existing GSH level
in living pulmonary cells. The second group was also cultured in
normoxia, and NEM was used to clean up the biological thiols;
thus, the following incubation with the probe resulted in the
disappearance of the fluorescence signal (Figures 5d–f). The
third group was based on the second one. After the
elimination by NEM, the subsequent incubation of NAC
supplied the endogenous generation of GSH (Figures 5g–i).
The living pulmonary cells degraded the acetyl and used Cys
to synthesize GSH, which was visualized by the generation of a
notable fluorescence signal in the green channel. The fourth
group was cultured in hypoxia, incubated with PBS and the probe

FIGURE 3
(a) The fluorescence spectra of DSNBD-GSH (10 μM) with various concentrations of GSH (0–2000 μM). (b) The correlation between the
fluorescence intensity at 478 nm and the concentration of GSH (0–2000 μM); Insert: The linear correlation (0–800 μM). (c) The fluorescence intensity
variation of DSNBD-GSH (10 μM) with GSH (1 mM) in various pH conditions (3.0–12.0). (d) The fluorescence intensity variation of DSNBD-GSH (10 μM)
with GSH (1 mM) in various incubation times (0–60 min). General testing conditions: 600 V, 5 nm * 5 nm, excitation wavelength 365 nm, pH 7.4,
20 min, and 37 °C.
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DSNBD-GSH in sequence before being imaged (Figures 5j–l).
Compared with the control status, the hypoxia condition led to a
decrease in the fluorescence signal, which reflected the decreased
GSH level as a potential biomarker for the unideal pulmonary
ventilation. The fifth group was cultured in hypoxia with a quick
recovery by incubating with 30% H2O2 in the last 1 h before
further incubation with PBS and the probe (Figures 5m–o). The
intensity of the fluorescence signal in the green channel
recovered to be close to the control status. Accordingly, the
hypoxia recovery with rational pulmonary ventilation might also
be visualized by monitoring the GSH level. Therefore, the probe
DSNBD-GSH might contribute to monitoring GSH in the
cellular pulmonary ventilation model and inspire further
optimized approaches.

4 Conclusion

In summary, to monitor GSH in the cellular pulmonary
ventilation model, a fluorescent probe, DSNBD-GSH, was

developed from the dichlorosalicylaldehyde raw material by
introducing the nitrogen-containing aromatic rings and
anchoring the NBD recognition group. Both the normoxia and
hypoxia conditions were evaluated. In a solution containing
DSNBD-GSH, the mimicked pulmonary ventilation did not
obviously affect the absorption and fluorescence variation
during the response towards GSH. When the excitation was
set as 365 nm, the incubation with GSH caused the
appearance of the fluorescence signal at 478 nm. The FQY
value of the probe DSNBD-GSH was 0.11, while that of the
detecting product DSNBD-FL was 0.69. The standard curve
was constructed such that when the GSH concentration
increased, the fluorescence intensity of DSNBD-GSH at
478 nm enhanced accordingly. There was a linear correlation
when the GSH concentration was in the range of 0–800 μM, and
the corresponding LOD value was 0.78 µM, which inferred a
relatively high sensitivity. DSNBD-GSH suggested stable
photophysical properties in various testing conditions of
pH 5.0–11.0, 35 °C–45 °C. The reaction between DSNBD-GSH
and GSH was absolutely completed within 15 min, which was a

FIGURE 4
The fluorescence intensity variation of DSNBD-GSH (10 μM) at 478 nm after the incubation with various analytes: (a) biological thiols and sulfur-
containing ions; (b) amino acids; (c) anions; and (d) cations. General testing conditions: 600 V, 5 nm * 5 nm, excitationwavelength 365 nm, pH 7.4, 20min,
and 37 °C.
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relatively rapid response. Furthermore, DSNBD-GSH ensured
the high selectivity towards GSH and low cytotoxicity upon living
pulmonary cells. Finally, DSNBD-GSH was available for
monitoring the GSH level in the cellular pulmonary
ventilation model. The hypoxia and recovery status inferred
the efficacy of pulmonary ventilation, which was basically
visualized by DSNBD-GSH. The introduction of the ESIPT
mechanism with the substitutes on the backbone inspired
further possibilities to regulate the capabilities of both the
selectivity and signal production. More optimized fluorescent
probes might improve the rationality of perioperative period
strategies.
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FIGURE 5
The confocal imaging of living A549 cells in various culturing and incubating conditions before being imaged: (a–c) cultured in 20% O2, 5% CO2,
incubated with PBS for 30 min, DSNBD-GSH (10 μM) for 30 min; (d–f) cultured in 20% O2, 5% CO2, incubated with NEM (1 mM) for 30 min, DSNBD-GSH
(10 μM) for 30min; (g–i) cultured in 20%O2, 5%CO2, incubatedwith NEM (1mM) for 30min, NAC (1mM) for 30min, DSNBD-GSH (10 μM) for 30min; (j–l)
cultured in 5% O2, 50% CO2, N2 supplied, incubated with PBS for 30 min, DSNBD-GSH (10 μM) for 30 min; (m–o) cultured in 5% O2, 50% CO2, N2

supplied, incubatedwith 30%H2O2 in the last 1 h of culturing, PBS for 30min, DSNBD-GSH (10 μM) for 30min. TheDifferential InterferenceContrast (DIC)
channel showed the bright field. General testing conditions: excitation wavelength 365 nm, pH 7.4, 37 °C, green channel of 450–600 nm, and scale
bar 100 µm.
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