

OPEN ACCESS

EDITED AND REVIEWED BY Hani Nasser Abdelhamid, Assiut University, Egypt

*CORRESPONDENCE
Ali Taheri,

☑ ali.taheri@tnstate.edu

RECEIVED 24 September 2025 ACCEPTED 02 October 2025 PUBLISHED 16 October 2025

CITATION

Shivashakarappa K, Marriboina S, Yadegari Z, Reddy Paduri V, Sachan R, Dumenyo K and Taheri A (2025) Correction: DNA delivery into plant tissues using carbon dots made from citric acid and β -alanine.

Front. Chem. 13:1712485. doi: 10.3389/fchem.2025.1712485

COPYRIGHT

© 2025 Shivashakarappa, Marriboina, Yadegari, Reddy Paduri, Sachan, Dumenyo and Taheri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Correction: DNA delivery into plant tissues using carbon dots made from citric acid and β -alanine

Kuber Shivashakarappa¹, Sureshbabu Marriboina¹, Zeinab Yadegari², Vikas Reddy Paduri³, Ritesh Sachan³, Korsi Dumenyo¹ and Ali Taheri¹*

¹Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States, ²Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States, ³School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States

KEYWORDS

DNA delivery, nanoparticle, carbon dots, gene expression, plant transformation

A Correction on

DNA delivery into plant tissues using carbon dots made from citric acid and β -alanine

by Shivashakarappa K, Marriboina S, Yadegari Z, Paduri VR, Sachan R, Dumenyo K and Taheri A (2025). Front. Chem. 13: 1542504. doi: 10.3389/fchem.2025.1542504

The citation for **Figure 8I** was erroneously written as **Figure 9I**. A correction has been made to the section **Results and discussion**, paragraph 8:

"In this next investigation, we aimed to demonstrate the delivery of DNA into protoplast and chloroplasts, subsequent transient expression of reporter genes using manufactured CDs as carriers for plasmid DNA. We obtained soybean mesophyll protoplasts from 21 day-old soybean plants through an enzymatic digestion technique. The CDs were mixed with plasmid DNA containing the GFP reporter gene and incubated at 37 °C for 30 min to facilitate binding. Subsequently, the protoplasts were cultured with the CDs-plasmid DNA complex for 24 h in a dark environment at room temperature. Confocal microscopy analysis following the incubation period showed that the CDs-plasmid DNA conjugate had penetrated the protoplasts and chloroplast membranes, localizing within the chloroplasts (Figure 8G). This was confirmed by monitoring the autofluorescence of chlorophyll and the combined image of GFP expression and chlorophyll autofluorescence, which exhibited the complete co-localization of GFP and the chloroplasts (Figure 8H). Absence of transient expression of GFP fusion proteins was noticed in the isolated soybean protoplasts and chloroplasts following incubation with the solution containing plasmid DNA alone (Figure 8F). The expression of the reporter gene was quantified by measuring mean fluorescence intensity following plasmid delivery with CDs as a carrier and without a carrier. In protoplasts, the mean fluorescence intensity of GFP was 83.9 ± 5.03 , whereas no GFP expression was detected in the control condition where no carrier was used (Figure 8I). Therefore, our CDs-mediated

Shivashakarappa et al. 10.3389/fchem.2025.1712485

functional DNA delivery system allows for the quick and passive diffusion of plasmid DNA into protoplasts, resulting in efficient transgenic expression without any noticeable negative impact on protoplast viability. This study demonstrates the potential of CDs as effective carriers for functional DNA delivery into chloroplasts."

The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.