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Unlocking the potential of
wearable technology:
Fitbit-derived measures for
predicting ADHD in adolescents
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Background: Attention-deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder with a complex etiology. The current diagnostic
process for ADHD is often time-intensive and subjective. Recent
advancements in machine learning offer new opportunities to improve ADHD
diagnosis using diverse data sources. This study explores the potential of
Fitbit-derived physical activity data to enhance ADHD diagnosis.

Method: We analyzed a sample of 450 participants from the Adolescent Brain
Cognitive Development (ABCD) study (data release 5.0). Correlation analyses
were conducted to examine associations between ADHD diagnosis and Fitbit-
derived measurements, including sedentary time, resting heart rate, and
energy expenditure. We then used multivariable logistic regression models to
evaluate the predictive power of these measurements for ADHD diagnosis.
Additionally, machine learning classifiers were trained to automatically classify
individuals into ADHD+ and ADHD- groups.

Results: Our correlation analyses revealed statistically significant associations
between ADHD diagnosis and Fitbit-derived physical activity data. The
multivariable logistic regression models identified specific Fitbit measurements
that significantly predicted ADHD diagnosis. Among the machine learning
classifiers, the Random Forest outperformed others with cross-validation
accuracy of 0.89, AUC of 0.95, precision of 0.88, recall of 0.90, Fl-score of
0.89, and test accuracy of 0.88.

Conclusion: Fitbit-derived measurements show promise for predicting ADHD
diagnosis, with machine learning classifiers, particularly Random Forest,
demonstrating high predictive accuracy. These findings suggest that wearable
data may contribute to more objective and efficient methods for ADHD
identification, potentially enhancing clinical practices for diagnosis
and management.

KEYWORDS

ADHD, fitbit-derived physical activity, wearable technology, adolescent mental health,
machine learning

1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder in childhood and may persist into adulthood, affecting about 9.8% of U.S.
children (1) and 4.4% of adults (2). During childhood, it often presents with
inattention, hyperactivity, and impulsivity, such as difficulty focusing on tasks, excessive
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movement, and acting without consideration (3). These symptoms

often result in significant challenges, disrupting academic
performance (e.g., incomplete schoolwork), social interactions
(e.g., strained peer relationships), and behavioral regulation (e.g.,
difficulty following

adulthood, these symptoms shift, with hyperactivity often

rules). As individuals transition into
lessening, while persistent inattention and impulsivity are
commonly paired with challenges like emotional dysregulation
and impaired executive functioning (4). ADHD often co-occurs
with anxiety (I,
complexity. Misdiagnosis can lead to substance abuse, lower
education attainment, and (7-9). However,
diagnosing ADHD is like limited
understanding, time-consuming assessments, and subjectivity (10,

5) and depression (6), highlighting its

legal issues
hindered by barriers

11). The co-occurrence of similar conditions adds to the
challenge (12). Machine learning approaches can leverage
valuable evidential information in automatic ADHD diagnosis.
Many studies have applied machine learning to predict ADHD,
using various data sources such as continuous performance test
(CPT) variables (13), pupillometric biomarkers and time series
(14), (15), (16),

connectome topological information (17), functional MRI (18),

EEG measurements brain signals brain
symptom ratings and neuropsychological measures (19), 3D MR
images (20), and fMRI from ABCD study (21).

Research suggests a complex relationship between physical
activity, sedentary behavior, and ADHD. For instance, some
studies have reported increased physical activity levels in children
with ADHD (22), while others have linked higher resting heart
rate (RHR) and lower step counts to greater internalizing
symptoms (23). Additionally, associations between physical
activity and mental health symptoms (24, 25), as well as the
negative impact of sedentary behavior on mental health (26)
have been documented. Physical activity has also been associated
with improved executive function, a cognitive domain often
impaired in individuals with ADHD (27).

Evidence from self-reported data indicates a link between
ADHD symptoms and sedentary behavior (28). Interestingly,
sedentary activities like reading and studying have been found to
enhance executive function and academic skills, suggesting that
not all sedentary behaviors are detrimental (29). Heart rate
related studies have further demonstrated higher heart rates in
children with ADHD (30), with similar findings observed in
adults with ADHD,

medication (31, 32).

particularly those on stimulant
In terms of energy expenditure, stimulant medications for
ADHD have been

expenditure in children (33). However, individuals with ADHD

associated with reduced daily energy
tend to have higher resting energy expenditure (34). Particularly,
greater energy expenditure in late adolescence has been linked to
lower ADHD scores (35).

In most machine learning studies for ADHD diagnosis,
researchers primarily relied on either brain images or EHR
collected in lab or hospital settings. This approach, while
informative, poses several challenges, including high costs, time-
intensive, and ethical concerns regarding the potential inclusion
of sensitive personal information when training machine learning
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models. Additionally,

relationship between various physical activities and ADHD faced

many investigations exploring the
limitations stemming from small sample sizes, potentially
compromising the representativeness and generalizability of their
findings. Moreover, a substantial portion of these studies relied
on self-reported data, which introduced the risk of recall bias
and inaccuracies, potentially failing to capture the full spectrum
of sedentary time and energy expenditure, thereby impacting
result precision. Furthermore, the majority of the data were
collected from a single site, which could limit the broader
applicability of the analysis.

Nonetheless, the collection of physical activity summaries
could be significantly enhanced by leveraging smartphone
sensors and wearable devices such as Fitbit and smart watch.
Our study aimed to address these challenges by harnessing data
from the Adolescent Brain Cognitive Development (ABCD)
study, an extensive, long-term study encompassing 11,874
adolescents across 21 research sites in the United States. This
dataset includes comprehensive Fitbit measurements, providing
interesting daily and weekly physical activity summaries that
cloud offer invaluable insights into sedentary time, RHR, and
energy expenditure investigation for a significant number of
adolescents, both with and without ADHD. The primary goal of
our study was to investigate potential correlations between Fitbit
measurements, including sedentary time, RHR, and energy
expenditure, and ADHD diagnosis, as well as their predictive
capabilities in ADHD diagnosis through the development of
machine learning models.

Our primary contributions are as follows:

o Establishing associations between Fitbit
including sedentary time, RHR, and energy expenditure, and
ADHD diagnosis.

« Investigating the

measurements,

complex relationship between ADHD
diagnosis and various independent Fitbit measurements.

o Developing predictive models for ADHD in adolescents using
Fitbit
comparative

measurements and conducting a comprehensive

analysis across multiple machine
learning algorithms.

o Leveraging the extensive ABCD dataset to better understand
ADHD diagnosis by analyzing daily and weekly physical

activity summaries collected via wearable devices like Fitbit.

To the best of our knowledge, the integrated investigation of these
Fitbit measurements from ABCD study to predict ADHD diagnosis
represents a novel approach that has not been previously explored.
Additionally, our modeling incorporates demographic information
of adolescents, influenced by a study conducted by Nagata et al.
within the ABCD framework, which demonstrated associations
between sociodemographic variables and physical activities, such
as step counts using Fitbit (36). Figure 1 shows the overview of
our whole study.
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FIGURE 1

Overview of the study design and methodology, including cohort identification, data integration, analysis procedures, and model selection. The figure
illustrates the key stages of the research: (1) identification of ADHD+ and ADHD— groups from the ABCD dataset based on diagnostic criteria and
inclusion/exclusion rules; (2) integration of Fitbit data for daily and weekly activity summaries; (3) statistical analysis to explore relationships
between ADHD status and Fitbit measurements; (4) predictive modeling using various machine learning algorithms to predict ADHD diagnosis.

2 Materials and methods
2.1 Study participants

In this study, the data were obtained from the ABCD research
consortium. The ABCD study enrolled a total of 11,874 children,
aged between 9 and 10, from 21 different study sites across the
United States. For the purpose of our research, we used the
ABCD Parent Diagnostic Interview for DSM-5 Full (KSADS-5)
sub-study. In data release 5.0, the criteria for diagnosing ADHD
were modified to necessitate impairment in two domains, as
opposed to the earlier release that relied on impairment in only
one domain. This sub-study enabled us to specifically identify
subjects with ADHD positive (ADHD+) and ADHD negative
(ADHD-) for our research cohort.

2.1.1 ADHD+ group

Within the cohort of adolescents with ADHD, we included
individuals who had a diagnosed ADHD condition at the time or
who were in partial remission from ADHD. Additionally, we
excluded any individuals who were diagnosed with ADHD in the
past for a minimum of one school year but no longer exhibit
ADHD symptoms (i.e., subjects who were fully in remission
from ADHD). As detailed in the ABCD study’s data release 5.0,
the determination of an ADHD diagnosis was calculated by
evaluating impairment across at least two domains (e.g., the
ability to engage in goal-directed behavior and the capacity to
refrain from impulsive actions) (37). A total of 357 individuals
identified as ADHD+ based on the
exclusion criteria.

were inclusion and
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2.1.2 ADHD- group

For the selection of ADHD- participants, we included
adolescents who had never been diagnosed ADHD. Furthermore,
we ensured that this group did not include individuals who were
either partially or fully in remission from ADHD, nor those who
were diagnosed with ADHD during any school year throughout
their lifetime. However, we did not take into account the
presence of any other mental health conditions when defining
this ADHD— cohort. A total of 3311 unique individuals were
identified as ADHD— based on the inclusion and exclusion criteria.

2.2 Fitbit measures

The ABCD Youth Fitbit daily physical activity summaries
(n=7,439) involved the assessment of daily physical activity and
sedentary behavior at the minute level, utilizing heart rate and
accelerometer data from Fitbit sensors worn by adolescents.
Additionally, the ABCD Youth Fitbit weekly physical activity
summaries (n=7,076) captured weekly physical activity and
sedentary behavior, including only days with adequate wear time
for inclusion (>600 min of daytime wear) from the Fitbit sensors
worn by adolescents. These datasets encompassed minutes spent
in various activity intensities and recorded step counts,
categorized into weekdays, weekends, daytime, nighttime, and all
days of the week. Fitbit data was collected at baseline, the 2-year
follow-up, and the 4-year follow-up using the Fitbit Charge 2
model worn on the wrist with parental consent. The participants
wore Fitbit consistently for a period of over 21 days except

during bathing and any water activities. Our study integrated
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Fitbit measurements across all three phases with minimal
participants overlap. Data from both activity summaries were
used in our Fitbit measurements of participant’s daily and weekly
physical activity summaries, providing essential measurements
relevant to our research goal. The specific measurements utilized
in our study are shown in Table 1, fall within three primary
categories:
expenditure. The measurement definitions were directly taken
from ABCD data.

“Sedentary time” encompasses extended periods of inactivity or

sedentary time, resting heart rate, and energy

limited physical activity, signifying the duration spent in a seated,
reclined, or lying position with minimal bodily movement and low
energy expenditure. It commonly includes activities such as sitting
at a desk, watching television, or using a mobile phone, where
individuals engage in little to no physical effort. “Resting heart rate”
represents the number of heart beats per minute during periods of
rest. This measurement is typically taken while an individual is
awake, in a state of relaxation, and not involved in any physical
activity. Monitoring RHR serves as a useful tool for assessing
overall well-being and tracking changes in fitness over time.
METs/min
equivalents per minute), is a metric used to gauge the rate of

“Energy  expenditure,” expressed as (metabolic

TABLE 1 Fitbit measurements used in the study to assess physical activity
in relation to ADHD diagnosis.

Measurement Category | Description
(According to ABCD
data)

The total number of minutes of
sedentary (<1.5 METS) time
observed over a 24-h period,
from midnight (00:00) to 11:59
PM (23:59), including periods

of inactivity during sleep.

fit_ss_total_sedentary_min Sedentary time

fit_ss_fitbit_sedentarymin The total number of minutes
spent in sedentary (<1.5
METS) time during the day.
Number of minutes of
sedentary (<1.5 METS) time

observed during non-sleep

fit_ss_dayt_sedentary_min
(non-sleep)

(night) valid minutes.
fit_ss_wk_avg_sedentary_min Weekly average minutes spent
in sedentary (<1.5 METS)
during day.
fit_ss_fitbit_rest_hr

Resting heart Weekly average resting heart

rate (RHR) rate during day.
fit_ss_fitbit_restingheartrate Daily avg resting heart rate for
the day from daily level
summary.
fit_ss_wk_average_met_value | Energy Weekly average METS/min
expenditure during day on included days.

fit_ss_dayt_ave_met_value Daily average METS/minute
during non-sleep (night) valid
minutes.

fit_ss_total_ave_met Average METS/minute of all
valid minutes from midnight
(00:00) to 11:59 PM (23:59)

regardless of sleep status.

The key variables from the Fitbit data include daily and weekly summaries of sedentary time,
resting heart rate, and energy expenditure. These measurements were categorized into three
main groups—sedentary time, resting heart rate, and energy expenditure—to examine their
association with ADHD status (ADHD+ vs. ADHD-).
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energy consumption during various activities. An MET minute
represents the energy expended within a minute of activity while at
rest. To put it simply, 1 MET corresponds to the resting metabolic
rate of an average adult, estimated at around 3.5 milliliters per
kilogram per minute of oxygen consumption (ml/kg/min).

We conducted thorough data cleaning and preprocessing,
eliminating rows with entirely missing values. If a single cell value
was missing for a particular subject, we employed data imputation
by replacing the missing data with the mean value of that specific
subject’s variable. The detailed data processing steps are given in

the Supplementary Material: data processing and merging section.

2.3 Study data sample

The Fitbit data was integrated with the ADHD+ samples,
resulting in the identification of Fitbit data for specific
measurements/variables in 225 out of the 352 ADHD+ subjects.
Consequently, our final group of ADHD+ participants consisted
of 225 distinct subjects. Likewise, among the 3,311 ADHD-—
subjects, 2,230 unique participants had corresponding Fitbit data,
forming our ADHD— sample of 2,230 distinct subjects.

Given that our ADHD+ subject count reached 225, an effort was
made to balance the participant list by selecting nearly equivalent
ADHD- subjects from a pool of 2,230 candidates. This selection
was performed through stratified sampling, considering factors like
gender, age, race, parent’s education, marital status, and income
level (Supplementary Table SI). This approach ensured a
harmonized distribution between ADHD+ and ADHD— samples.

Ultimately, our dataset comprises 450 distinct adolescents,
evenly split between ADHD+ and ADHD— subjects. The dataset
is organized in a long format, featuring repeated observations for
each subject over 21 days across different variables. It includes
10,045 Fitbit data records for 450 participants (ADHD+ and
ADHD-), with a few having data beyond 21 days. Details on
data merging, including explanations for retaining additional
days for some participants, are available in the Supplementary
Material: data processing and merging section. In the data release
5, a large difference between the fit ss_fitbit_sedentarymin
measurement and other sedentary min variables may indicate
poor data capture at the minute level. However, it is important
to note that fit_ss_fitbit sedentarymin reflects only daytime
activity, while other sedentary minute variables measure activity
over the entire day (24 h), night, or week. As a result, directly
calculating differences among these variables using the released
tabular data can be challenging. Therefore, to minimize the
impact of extreme values or outliers, we applied data
normalization techniques, scaling the variables to a consistent
range. This approach allowed mitigating the risk of potential
false positives.

2.4 Data analysis

In our study, statistical and predictive analyses were conducted.
The statistical analysis was primarily carried out using correlation
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analysis. Additionally, confirmatory analysis, involving variable
selection for machine learning models, was performed using
multivariable logistic regression analysis. Subsequently, a
predictive analysis was conducted using machine learning

methods that included classification algorithms.

2.4.1 Statistical analysis

Initially, a Pearson correlation analysis was conducted to
examine the linear association between ADHD diagnosis (i.e.,
ADHD+ and ADHD— groups) and various Fitbit measurements.
These Fitbit measurements included participants’ various energy
expenditures, RHR, and sedentary time during different time
intervals (Table 1). This correlation analysis was performed
between-subjects comparisons, both with and without age,
gender, race, parent’s education, and income level as control.
A separate analysis using only age as a covariate was also
conducted to observe its effects. For the between-subjects model,
the independent variables included demographic characteristics
(e.g., age, gender, race, and parent’s education) as well as Fitbit
measurements. The dependent variable was the ADHD diagnosis.
Control variables were adjusted for in the analysis to account for
potential confounding effects.

Additionally, a repeated measures correlation analysis was
conducted to explore within-subjects associations. For the within-
subjects analysis, the independent variables remained the same
(demographic characteristics and Fitbit measurements). The
dependent variable was again the ADHD diagnosis. This model
accounted for repeated measures from the same individuals
across different time points, allowing for the assessment of
within-subject variability and more accurate estimation of the
relationships over time. To address potential false discoveries, a
p-value correction using Holm’s Sequential Bonferroni method
(38) was applied. Corrections were applied to both between- and
within-subjects analyses.

Subsequent to the initial correlation analysis, a multivariable
logistic regression analysis was conducted using the Maximum
Likelihood Estimation (MLE) method. This approach was chosen
due to our focus on predicting binary outcomes at the participant
level, where daily observations are considered independent. The
logistic regression model was trained on 80% of the whole dataset,
with the remaining 20% reserved for evaluating the machine
learning models. This analysis aimed to investigate the relationship
between ADHD diagnosis and independent Fitbit measurements.
However, in this analysis, the repeated measures were handled
through the inclusion of time (date) as covariate in modeling. The
results of this analysis informed the selection of variables for our
machine learning model, designed to predict binary ADHD
diagnosis outcomes. Additionally, we conducted mixed effects
modeling to assess subject-specific variability. The mixed-effects
model included time and various Fitbit measurements as
independent variables, with ADHD diagnosis as the dependent
variable, treated as a binary outcome. To account for individual
variability in the diagnosis across repeated measures, a random
intercept for participants (subject_id) was incorporated. The model
employed a generalized linear mixed-effects framework with a
binomial distribution and utilized the BOBYQA optimizer to
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ensure robust estimation and convergence. Collinearity was
evaluated by calculating the Variance Inflation Factor (VIF) and
managed separately by scaling the variables and employing
Principal Component Analysis (PCA).

2.4.2 Predictive analysis and classification

A range of supervised machine learning algorithms was
implemented to predict ADHD diagnosis, with a focus on
distinguishing between ADHD+ and ADHD- subjects. These
algorithms included Decision Tree (DT), Random Forest (RF),
Naive Bayes (NB), AdaBoost (Ada) classifier, Light Gradient
Boosting Machine (LGBM) classifier, Logistic Regression (LR)
classifier, Support Vector Machines (SVM) classifier with non-
linear kernels, and K Nearest Neighbors (KNN) classifier. To
optimize the classification models, a grid search with 10-fold
cross-validation was conducted on the 80% of the data, and a
multi-core implementation was utilized to fine-tune the
Upon the of the best

hyperparameters, the models were trained using these settings.

hyperparameters. identification
To reduce the risk of overfitting in DT and RF, we applied
diverse strategies such as pruning, optimizing the number of
samples per leaf, and increasing the number of trees.

Our models were trained using Fitbit measurements that
demonstrated statistical significance according to our multivariable
logistic regression analysis, in addition to the demographic variables
such as participants’ age, gender, race, parent’s socioeconomic
status, and parent’s education. To prepare for training, essential
preprocessing steps were taken, encompassing the removal of
duplicates, conversion of categorical variables into numerical
representations, and data normalization. These steps were essential
to ensure compatibility with the classification algorithms.

The models were evaluated using a range of performance
metrics. In the training process for all models, 10-fold cross-
validation was applied on the 80% of the training data.
Furthermore, separate models were trained on 80% of the data,
and its performance was evaluated on the remaining unseen 20%
of the dataset. Accuracy, precision, recall, and Fl-scores were
computed using both the 10-fold cross-validation and test data.
Additionally, learning curves and ROC curves, along with AUC
scores, were generated to assess the models’ ability to generalize.

Python 3.9 and R version 4.3.2 were utilized for all analyses.
Data processing was carried out with the Pandas and Numpy
libraries. Correlation analyses were performed using the
Statsmodels libraries. Multivariable logistic regression and mixed
effects regression analyses were conducted using Ime4 and car
packages. The development of machine learning models was
done using the Scikit-Learn and LightGBM machine learning
libraries, with multi-core processing to optimize efficiency. Data
and results visualizations were created using the Matplotlib,
Seaborn and Pandas packages.

3 Results

The study had 450 participants whose demographic details are

presented in Table 2. Supplementary Table S3 provides
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demographic characteristics for the ADHD+ group, while
Supplementary Table S4 presents corresponding information for
the ADHD— (control) group.

Figure 2 shows measurements variability for weekly average
sedentary time, RHR and energy expenditure with ADHD
diagnosis. Based on the box plots and the presence of more data
points above the maximum line in ADHD+ for RHR, there was
indeed more variability in these Fitbit-derived measures among
individuals with ADHD+ compared to ADHD-—. To further
investigate, we conducted descriptive statistics and the Fligner-
Killeen test to assess variability in sedentary time, RHR, and
energy expenditure between the ADHD+ and ADHD— groups.
The analysis revealed greater variability in RHR and sedentary
time within the ADHD+ group. Descriptive statistics showed that
the ADHD+ group had a higher mean RHR (74.02 bpm) than

TABLE 2 Demographic characteristics of study participants.

Descriptin M50

n =450
Age
Overall 9.45 0.50
n %
Gender
Male 257 57.11
Female 191 42.44
Other 2 0.44
Race
White 368 81.77
African American 60 13.33
Chinese 3 0.66
American Indian 2 0.44
Asian Indian 1 0.22
Other 16 3.55
Ethnicity
Not Hispanic 368 81.77
Hispanic 73 16.22
Refused to answer 2 0.44
Don’t know 7 1.55
Parent’s Education
Bachelor’s degree 128 28.44
Master’s degree 119 26.44
Some college 70 15.55
Associate degree 57 12.66
High school 39 8.66
Professional degree 14 3.11
Doctoral degree 15 3.33
GED or equivalent Diploma 6 1.33
Refused to answer 2 0.44
Parent’s Income Level
$100,000 to $199,999 139 30.88
$50,000 to $99,999 121 26.88
$200,000 and greater 57 12.66
$25,000 to $49,999 54 12.00
Less than $25,000 44 9.77
Refuse to answer 20 4.44
Don’t know 15 3.33

M, mean; SD, standard deviation.
n is the number of participants.
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the ADHD- group (72.01 bpm), with greater dispersion
(std=11.99 vs. 10.52). Sedentary time also exhibited slightly
higher variability in the ADHD+ group (std=117.93) compared
to the ADHD- group (std=111.89).
expenditure demonstrated minimal variability between the

In contrast, energy
groups. The Fligner-Killeen test confirmed these findings, with
significant ~ differences in  variance for RHR
Statistic=15.14, p=0.0001) and sedentary time (Fligner
Statistic = 4.36, p=0.037), indicating higher variability in the
ADHD+ group. No significant variance differences were found

(Fligner

for energy expenditure (Fligner Statistic = 0.07, p = 0.78). Detailed
test results were given in Supplementary Tables S7 and S9.

3.1 Association between diagnosis and
measurements

During the Pearson correlation analysis conducted between
ADHD diagnosis and Fitbit measurements without controls,
statistically significant findings were obtained for between-
participant  analysis. However, the observed correlation
coefficients were relatively small in magnitude. Statistically
significant correlations were observed in most cases when
demographics were used as controls. Notably, within-participant
analyses demonstrated significance in specific scenarios shown in
Supplementary Table S2. Additionally, the results were also
significant when age was employed as the sole covariate

-

(Supplementary Table S2). Table 3 provides the correlation
analysis between ADHD diagnosis and Fitbit measurements. All
reported p-values are post-correction using Holm’s Sequential
Bonferroni method. Corrections were applied separately for
multiple tests within the groups of between-participants, within-

participants, and with-controls analyses.

3.1.1 Sedentary time in minutes

The examination of sedentary time concerning ADHD diagnosis
revealed interesting findings. Specifically, various aspects of
sedentary time, including nighttime non-sleep (r=—0.041), daily
total (r=—0.081), and weekly average (r=—0.038), demonstrated
negative correlations with ADHD diagnosis. These results suggest
that individuals with reduced overall sedentary time may exhibit a
higher likelihood of an ADHD+ diagnosis. In contrast, daytime
sedentary time exhibited a positive correlation (r=0.070) with
ADHD diagnosis.
significance even after controlling for demographics except for the

Importantly, these correlations retained
weekly average. However, when controlling for demographics, the
coefficient values exhibited a slight decrease, suggesting that the
control variables introduced a confounding influence on the

observed relationship.

3.1.2 Resting heart rate

The analysis of RHR in relation to ADHD diagnosis unveiled
noteworthy outcomes. Notably, RHR measurements, both overall
(r=0.122) and during the day (r=0.119), exhibited a substantial
positive correlation with ADHD diagnosis. This implies that
individuals with higher RHRs are more likely to receive an
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FIGURE 2
Variability in weekly Fitbit measurements between ADHD+ and ADHD— groups. Box plots showing weekly average sedentary time (in minutes), resting
heart rate (in beats per minute), and energy expenditure (in METS/min) for each group. The x-axis indicates the ADHD diagnosis groups (ADHD+ vs.
ADHD-) and the y-axis represents the measurement values. The blue box is ADHD+ group, and the orange box is ADHD— group.

TABLE 3 Correlation analysis between ADHD diagnosis and Fitbit
measurements.

Fitbit measurements

Between participants

Without With
controls controls
fit_ss_dayt_sedentary_min (non- r: —0.041 r: —0.025
sleep) p<0.0001 p=0013
fit_ss_fitbit_sedentarymin r: 0.070 r: 0.060
p<0.0001 p<0.0001
fit_ss_wk_avg_sedentary_min r —0.038 r: —0.016
p<0.0001 p=0.119
fit_ss_total_sedentary_min r: —0.081 r: —0.058
P <0.0001 p<0.0001
fit_ss_fitbit_rest_hr r: 0.122 r: 0.161
p<0.0001 p<0.0001
fit_ss_fitbit_restingheartrate (day r: 0.119 r: 0.160
only) p <0.0001 p<0.0001
fit_ss_dayt_ave_met_value r: 0.041 r: 0.003
P <0.0001 p=0769
fit_ss_wk_average_met_value r: 0.058 r: 0.004
p<0.0001 p=0.643
fit_ss_total_ave_met r: 0.056 r: 0.019
P <0.0001 p=0.063

ADHD+ diagnosis. These correlations remained statistically
significant even after controlling for demographics. The results
were also significant in within-participants analyses (overall:
r=0.032; during day: r=0.03). These findings emphasize the
potential role of RHR as a significant marker associated with
ADHD diagnosis.

3.1.3 Energy expenditure

Higher energy expenditure while at rest, both for daily
(r=0.041) and weekly average (r=0.058), along with the overall
total energy (r=0.056), displayed positive
correlations with ADHD diagnosis. These correlations indicate

expenditures

that individuals with higher energy expenditures while at rest, are
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more likely to receive an ADHD+ diagnosis. These correlations

were not statistically significant after controlling for
demographics. However, the fact that controlling for these
variables led to moderately lower coefficient values suggested that
they exerted a noticeable influence on the relationship between

ADHD diagnosis and energy expenditure.

3.2 Multivariable logistic regression
modeling

In the multivariable logistic regression analysis, the predictors
were Fitbit measurements and time (date) variable and the
binary outcomes were ADHD diagnosis. The model’s results
based on scaling the predictors are given in Table 4. We
observed that
statistically

six out of nine coefficient estimates were
these
independent variables on the ADHD diagnosis. Despite the

significant, indicating the impact of
modest magnitudes of the coefficient values, our findings suggest
Fitbit
measurements and the ADHD diagnosis. The z-scores further

a meaningful association between most of the
support that these associations are unlikely to be the result of
chance. We also conducted a multiple logistic regression model
analysis with PCA for the overlapping variables: Group 1,
consisting of fit_ss_fitbit_rest_hr, fit_ss_fitbit_restingheartrate,
fit_ss_dayt_ave_met_value, and fit_ss_total_ave_met, and Group
2, consisting of fit_ss_wk_avg sedentary_min, fit_ss_total_
and fit_ss_dayt_
sedentary_min. PCA revealed that two principal components

sedentary_min, fit_ss_fitbit_sedentarymin,
from Group 1 and one principal component from Group 2 were
statistically significant. However, in both cases, the effect sizes
were very small. The detailed results are shown in the
Supplementary Tables S5 and S7. Additionally, a mixed-effects
model was trained; however, no significant results were obtained
through mixed-effect regression analysis. The lack of significant
findings may be attributed to the high within-group variability
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TABLE 4 Multivariable logistic regression model summary (with scaling).

10.3389/frcha.2025.1504323

Varisble ____________Coet ______Swer __ Zscore _____P>[Z

Intercept —0.05778
Time —0.10591
fit_ss_total_sedentary_min —0.13737
fit_ss_fitbit_sedentarymin 0.16524
fit_ss_dayt_sedentary_min 0.09526
fit_ss_wk_avg_sedentary_min 0.04500
fit_ss_fitbit_rest_hr 0.31254
fit_ss_fitbit_restingheartrate —0.05659
fit_ss_wk_average_met_value 0.14632
fit_ss_dayt_ave_met_value 0.23645
fit_ss_total_ave_met —0.18362

observed. The Fitbit-derived measures, including daily physical
activity, sedentary time, and heart rate, exhibit day-to-day
fluctuations within each participant. Furthermore, measurement
noise at the individual level may amplify this variability, posing a
challenge for the mixed-effects model in detecting significant
The the
Supplementary Table S6.

effects. comprehensive results are provided in

3.2.1 Sedentary time in minutes
An increase in fit_ss_total_sedentary_min is associated with a
decrease in the log-odds of ADHD diagnosis by 0.13737 units

(z-score: —2.103, p=0.0355). Conversely, an increase in
fit_ss_fitbit_sedentarymin corresponds to a rise in log-odds by
0.16524  units (z-score: 4.086, p<0.0001). Additionally,

fit_ss_dayt_sedentary_min contributes to a log-odds increase of
0.09526 units, although this association is marginally significant
1.686, p=0.0918). fit_ss_wk_avg_
sedentary_min does not show a significant association with
ADHD diagnosis (z-score: 1.220, p = 0.2226).

(z-score: Furthermore,

3.2.2 Resting heart rate

An increase in fit_ss_fitbit_rest_hr results in a rise of 0.31254
units in log-odds (z-score: 3.035, p=0.0024). Conversely, an
increase in fit_ss_fitbit_restingheartrate does not show a significant
association with ADHD diagnosis (z-score: —0.549, p = 0.5827).

3.2.3 Energy expenditure

An increase in fit_ss_wk_average_met_value corresponds to a
log-odds rise of 0.14632 units (z-score: 3.779, p=0.0002).
Similarly, an increase in fit_ss_dayt_ave_met_value is associated
with a log-odds rise of 0.23645 units (z-score: 2.776, p = 0.0055).
Conversely, each unit increase in fit_ss_total_ave_met results in a
decrease of 0.18362 units in log-odds (z-score: —2.230, p = 0.0258).

The variables which had statistically significant associations in
our multivariable logistic regression modeling between specific
Fitbit measurements and ADHD diagnosis, were selected for the
machine learning classification.
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0.02028 —2.850 0.004376
0.02155 —4.914 8.94e-07
0.06533 —2.103 0.035482
0.04044 4.086 4.39-05
0.05650 1.686 0.091804
0.03690 1.220 0.222554
0.10298 3.035 0.002406
0.10298 —0.549 0.582675
0.03873 3.779 0.000158
0.08517 2.776 0.005497
0.08236 —2.230 0.025778

3.3 Classification and performance

Table 5 summarizes machine learning classifier performance in
predicting ADHD diagnosis using 10-fold CV with training data
and on test dataset respectively. RF outperformed other classifiers
with 89.24% CV accuracy, 87.85% test accuracy, highest precision,
recall, and Fl-score, making it superior in ADHD diagnosis. In
contrast, KNN underperformed with 53.22% CV accuracy and
53.36% test accuracy, indicating difficulty in distinguishing ADHD
cases. Furthermore, strong AUC scores for RF ensemble methods
indicated robust pattern learning from Fitbit data for ADHD
prediction. Figure 3 illustrates classifiers’ AUC scores.

Figure 4 depicts learning curves, illustrating training and
validation performance across various classification algorithms using
10-fold cross-validation, with models trained on 80% of the dataset
split for training. AdaBoost, while stable, displayed limited
improvement, suggesting potential undergeneralization. In contrast,
DT exhibited high initial accuracy, showcasing strong generalization
and consistent improvement. KNN showed potential overfitting but
reasonable generalization. LGBM learning curve initially overfitted,
stabilizing with  balanced
demonstrated limited generalization, with minor accuracy gains. NB

later  generalized, accuracy. LR
resembled LR in limited improvement. RF initially displayed
overfitting, with subsequent improvement in validation accuracy,
indicating a gradually improving generalization of the model over
time. SVM displayed a pattern similar to that of LR. DT and RF
are favored models for accurate ADHD prediction, while SVM may
require further refinement to enhance performance.

In Figure 5, ROC curves illustrate the classifiers’ discriminative
ability to distinguish ADHD+ and ADHD— cases. DT and LGBM
stabilized gradually, whereas RF showed a rapid ascent and
maintained high performance. In contrast, SVM, LR, and NB
perform slightly better than random guessing. Figure 6 indicates
that RF, DT, and LGBM are the most promising models,
showing stable performance with minimal variation across cross-
validation folds.

4 Discussion

The correlation analysis revealed statistically significant
relationships between ADHD diagnosis and various Fitbit
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TABLE 5 Classification performance of ADHD diagnosis models using Fitbit measurements.

Accuracy Precision Recall Fl-score
(&%) Test CVv Test CcVv CcVv Test
Ada 0.6523 0.6570 0.6410 0.6477 0.6463 0.6431 0.6437 0.6454 0.71
DT 0.8846 0.8761 0.8949 0.8929 0.8639 0.8462 0.8792 0.8689 0.87
KNN 0.5322 0.5336 0.5187 0.5201 0.5148 0.5046 0.5167 0.5122 0.55
LGBM 0.7603 0.7407 0.7377 0.7187 0.7865 0.7651 0.7613 0.7412 0.84
LR 0.6138 0.6103 0.6088 0.6032 0.5738 0.5754 0.5908 0.5890 0.64
NB 0.6069 0.5893 0.5910 0.5737 0.6197 0.5990 0.6050 0.5861 0.63
RE 0.8924 0.8785 0.8813 0.8673 0.8996 0.8851 0.8904 0.8761 0.95
SVM 0.5445 0.5386 0.5727 0.5553 0.2461 0.2472 0.3443 0.3421 0.56

This table presents the performance metrics of various machine learning models for classifying ADHD diagnosis based on Fitbit measurements. The metrics include accuracy, precision, recall,

Fl1-score, and area under the curve (AUC) for both cross-validation (CV) and test set data.

1.0

AUC Score

LGBM

FIGURE 3

Classifiers

Area under the curve (AUC) scores of machine learning classifiers for distinguishing ADHD+ and ADHD—- groups. This bar chart displays the AUC
scores for various machine learning classifiers, highlighting their performance in distinguishing between ADHD+ and ADHD—- groups. The x-axis
represents the classifiers, and the y-axis shows the corresponding AUC scores.

LR

measurements, although the effect sizes were generally small in
magnitude. These findings indicate that there is a statistical link
between physical activity measures and ADHD. Although the
observed effect sizes were small, they are clinically important when
considered in conjunction with multiple factors and other
diagnostic measures. Previous studies indicate that even modest
associations can substantially influence clinical practice and inform
the development of targeted interventions for ADHD management
(39, 40). To have a clear implication of these findings, a clinical
study of these associations should be explored. It is important to
consider that the presence of mixed results in within-participants
correlation analysis suggests variability in the relationships between
variables across participants, potentially indicating heterogeneity,
moderating factors, or complexities in the studied associations.
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Regarding sedentary time, reduced overall sedentary time was
associated with a higher likelihood of ADHD diagnosis, while
increased daytime sedentary time showed a positive link to ADHD
diagnosis. These findings highlight the importance of considering
the timing of sedentary behavior when examining its relationship
with ADHD. Our findings regarding increased daytime sedentary
time align with previous research indicating a positive association
between ADHD and sedentary behaviors (41-43). In contrast, our
results for overall sedentary time differ from the earlier studies,
which may be attributed to differences in age groups and sample
sizes. However, it’s important to note that our study focused on the
duration of sedentary time rather than specific sedentary activities.
These disparities highlight the need for further investigation to gain
a more comprehensive understanding of this pattern.

frontiersin.org


https://doi.org/10.3389/frcha.2025.1504323
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://www.frontiersin.org/

Rahman 10.3389/frcha.2025.1504323
AdaBoost Learning Curve i Decision Tree Learning Curve
— Training Accuracy — Training Accuracy
—— Validation Accuracy —— Validation Accuracy
0775
090
0750
085
0725
080
E 0700
¥ §or
0675
070
0650
065
0625
0.600 060
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Training Set Size Training Set Size
KNN Learning Curve LGBMClassifier Learning Curve
090 - — Training Accuracy
070 —— Validation Accuracy
o0ss
065
080
3 060 3
*ors
055
070
—— Training Accuracy
050 1 — validation Accuracy 0.65
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Training Set Size Training Set Size
Logistic Regression Learning Curve Naive Bayes Learning Curve
— Training Accuracy 063 — Training Accuracy
—— validation Accuracy — Validation Accuracy
062
062
061
§ g 061
¥ €
060
060
059
059
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Training Set Size Training Set Size
Random Forest Learning Curve SVC Learning Curve
— Training Accuracy — Training Accuracy
0.95 1 — validation Accuracy — Validation Accuracy
056
0.90
085 055
fom ]
g § 054
075
053
070
065 0s2
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
FIGURE 4

Learning curves of different machine learning classifiers using 10-fold CV with training data: training and validation accuracy across varying sample
sizes. These graphs show the performance for various classifiers, with the x-axis representing the accuracy and the y-axis representing the training
set size. The blue line indicates the training accuracy, while the green line represents the validation accuracy, illustrating how the model
performance evolves with increasing sample sizes.
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FIGURE 5

ROC curves for different classifiers: true positive rate (TPR) vs. false positive rate (FPR). These graphs display the ROC curves for various classifiers,
where the x-axis represents the FPR, and the y-axis represents the TPR. The blue lines show corresponding AUC scores at different FPR and TPR
values. The dotted straight line represents the diagonal line connecting the lowest (0,0) and highest (1,1) FPR and TPR ratios, which serves as
a reference.
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FIGURE 6

10-fold cross-validation (CV) scores for different classifiers. This graph shows the accuracy scores of various machine learning classifiers during
10-fold CV for predicting ADHD+ and ADHD— groups. The x-axis represents the 10 folds of the cross-validation (from 1 to 10), while the y-axis
shows the accuracy achieved by each classifier across these folds. Different colors correspond to different classifiers, as indicated in the legend.
The plot highlights the performance stability and variability of each classifier across the folds

Our results indicated that individuals with higher RHR are
more likely to have an ADHD. These results remained true even
after controlling for demographics, suggesting that RHR could
serve as a strong marker for ADHD diagnosis. Our findings are
consistent with several prior studies that have reported a positive
association between heart rate or RHR and ADHD in both
children and adults when compared to those without ADHD
(30-32). Further research is needed to explore the underlying
mechanisms of this relationship and its clinical implications.

Our analysis also revealed that individuals with higher energy
expenditures while at rest may have an elevated likelihood of
being diagnosed with ADHD. these
remained significant after controlling for demographics, with

Importantly, findings
moderately lower coefficient values. Reduced coefficient values
indicated that demographics had an impact on the association
between ADHD and energy expenditure. These findings are
consistent with a prior study involving a different age group and
smaller sample sizes (34), which also reported a positive
association between energy expenditures and ADHD. However,
our results differ from another study (35), which found no
significant relationship between energy expenditure and ADHD.
This discrepancy may be attributed to several factors, including
differences in study design, such as variations in the age and
demographic characteristics of the samples, as well as variations in
the methodologies used to assess Fitbit-derived measurements.
These emphasize the necessity for further investigation to elucidate
this relationship across different age groups, race, gender, etc.

Frontiers in Child and Adolescent Psychiatry

12

Additionally, the Fitbit measurements variability plots (Figure 2),
descriptive statistics and the Fligner-Killeen test (Supplementary
Tables S7
characterized by increased variability in RHR and sedentary time

and S9) illustrated distinct patterns, particularly
among individuals diagnosed with ADHD. This variability suggests
potential heterogeneity within the ADHD+ group, indicating that
ADHD may manifest differently in individuals in terms of their
physiological responses to daily activities.

This variability is particularly important, as it may reflect
factors (e.g., varying levels of physical activities). Additionally,
the presence of such variability could impact the results of the
study by introducing extra noise, which may hinder the ability to
identify consistent relationships between Fitbit-derived measures
and the ADHD diagnosis in a linear model.

The multivariable logistic regression analysis identified
statistically significant associations between few specific Fitbit
measurements, temporal factors, and binary ADHD diagnosis.
Despite modest coefficients, sedentary time, resting heart rate,
and energy expenditure emerged as influential factors. Notably,
sedentary time showed nuanced associations with ADHD
diagnosis. The temporal variable (time/date) played a significant
role. Principal component analysis highlighted the importance of
certain overlapping variables in predicting ADHD outcomes.
Although the mixed-effects model did not show significant
results (Supplementary Table S6), the findings emphasized the
of  Fitbit
considerations in understanding and predicting ADHD diagnoses.

potential  utility measurements and temporal
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Among all the classifiers trained in our study, RF consistently
outperformed the other classifiers across accuracy, precision, recall,
Fl-score, and AUC. These results underscore the robustness and
dependability of the RF model in accurately distinguishing
between the ADHD+ and ADHD- groups. Notably, our top-
performing classifier surpassed the performance of a previous
study that used a similar sample from the ABCD study,
integrating multiple measures of Resting-State Functional Magnetic
Resonance Imaging (rsfMRI) in adolescent brains, achieving an
accuracy of 0.6916 and an AUC of 0.7408 (21) based on multiple
kernel learning  algorithms.  Furthermore, our classifier
outperformed another study conducted on a separate sample of
240 children, which utilized the temporal variability of dynamic
functional connectivity from MRI brain images, achieving an
accuracy of 0.78 and an AUC score of 0.84 (44) based on
diagnostic model SVM. Both studies relied on expensive brain
imaging methods and lab setups. In another study, Slobodin et al.
achieved an accuracy of 0.87 using CPT data based on 458
children (13), employing RF and Neural Network models.
However, even their best classifier fell short of our top-performing
classifier in terms of accuracy, precision, and recall scores. Our
classifier also outperformed an SVM classifier trained by Das et al.
(14), which achieved an accuracy of 0.762 and an AUC score of
0.85 using pupillometric biomarkers and time series data.

In our analysis, KNN demonstrated the weakest performance.
This suggests that KNN may not have effectively generalized the
dataset, leading to difficulties in distinguishing between ADHD+
and ADHD— cases. We also observed high AUC scores for
LGBM, DT and RF ensemble methods, indicating their effective
learning of underlying data patterns. This highlights their
suitability for predicting ADHD based on participants’ daily and
weekly physical activity summaries collected through Fitbit.

Based on learning curve analysis, it could be inferred that DT and
RF models demonstrated strong generalization, while KNN and SVM
exhibited limitations in capturing complex data patterns. ROC curve
analysis further confirmed the discriminative power of these
classifiers, with DT, RF, and LGBM achieving high AUC scores,
indicating their proficiency in distinguishing between ADHD+ and
ADHD- cases. On the other hand, KNN had a lower AUC score,
suggesting its challenges in effectively classifying the two groups.

The superior performance of RF can be due to its ensemble
learning approach, which combines predictions from multiple
decision trees, enhancing its robustness to noise and outliers that
may be present in Fitbit data (45). Additionally, RF effectively
captures complex feature interactions within a low-dimensional
dataset without requiring extensive feature engineering, making it
particularly well-suited for our study (46).

In contrast, KNN is highly sensitive to the choice of distance
metrics (47), which can be problematic when dealing with
Fitbit
measurements and demographic variables. This sensitivity may

continuous and heterogeneous features, such as
limit KNN’s effectiveness in accurately distinguishing between
classes in our study.

Similarly, the performance of SVM relies heavily on kernel
selection (48) and optimized hyperparameter tuning (49),

making it less adaptable to datasets with intricate, non-linear
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relationships. Given the characteristics of Fitbit data, SVM may
struggle to establish meaningful decision boundaries without
extensive optimization.

Our future work will explore tailored preprocessing techniques
to improve the performance of KNN and SVM. For instance,
incorporating polynomial feature transformations or advanced
kernel functions, along with rigorous hyperparameter tuning, may
enhance SVM’s ability to model non-linear patterns. Likewise,
optimizing distance metrics and applying appropriate feature
scaling strategies could improve KNN’s classification accuracy.

Overall, our machine learning experiments highlight the
effectiveness of ensemble methods, particularly RF, in accurately
predicting ADHD diagnosis using participants physical activity
summaries collected through Fitbit. These findings provide
valuable insights into the choice of classifier for ADHD
classification using Fitbit measurements, such as sedentary time,
RHR and energy expenditure while in rest and suggest avenues
for further research and model refinement in this clinical context.

The findings suggest that there is a potentail benefits of
integrating Fitbit-based measures into the screening process for
ADHD. Implementing such screening tool offers a practical
solution to longstanding challenges in ADHD assessment,
including reducing wait times for screening and alleviating the
stigma that often prevents adults from seeking evaluation—an
issue compounded by the limited availability of screening
protocols for adults. Adopting wearable technologies such as
Fitbits and smartwatches as a non-invasive could provide a
continuous monitoring tool capable of delivering objective data
for both initial screening and ongoing observation.

However, the implementation of this technology in clinical
settings presents several challenges. Successful integration
requires comprehensive training for healthcare professionals to
ensure effective use, along with managing the financial costs
associated with device adoption. Moreover, maintaining
consistent and reliable data collection is essential to ensure the
accuracy and usefulness of the data. Patient engagement is also
crucial, as their willingness to adopt these devices and share the
data for clinical purposes may present a barrier.

Despite these challenges, advancements in technology offer
promising solutions to facilitate integration. Through methods
such as application programming interfaces (APIs) or direct data
uploads, wearable devices can be easlily incorporated into clinical
workflows, supporting both ADHD screening and continuous
patient capability positions  Fitbit-based

measures as a valuable tool for enhancing ADHD care across

monitoring. This

diverse patient populations.

5 Limitation and future work

This study is based on data obtained from the ABCD study,
which may not capture the entire spectrum of children and
adolescents across various age groups. Additionally, the ABCD
cohort is specific to certain demographic and geographic
which could

generalizability of the findings to more diverse populations. To

characteristics, introduce biases that limit the
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address these limitations, future research could involve larger, more
diverse Fitbit measurements to assess the applicability of these
findings to broader populations. In this study, we focused on a
binary classification of ADHD diagnosis (e.g, ADHD+ and
ADHD-), ADHD
However, ADHD encompasses several subtypes, each with

without examining potential subtypes.
distinct clinical characteristics. Future analyses will explore
subtype-specific differences, including inattentive, hyperactive-
impulsive, and combined presentations, to offer a more detailed
understanding of the disorder. The current analysis employs the
ABCD study’s ADHD diagnosis definition based on impairment
in two domains, deviating from DSM criteria. In future
investigations, we aim to broaden our scope by considering other
conditions alongside the ABCD ADHD diagnosis definition to
establish a DSM match. Additionally, our use of Fitbit measures
in this study was confined to pre-existing data available in the
ABCD dataset. Future research endeavors seek to expand our
exploration by incorporating raw Fitbit data,
additional variables related to ADHD treatment, sedentary time,

uncovering

resting heart rate (RHR), and energy expenditures. Also, the
ABCD dataset uses different methodologies for measuring
sedentary time vs. sleep and nighttime. Specifically, sedentary
time is derived from a Fitbit-based daily summary using
metabolic equivalent (MET; <1.5 METs) thresholds, while sleep
and nighttime are defined via heart rate criteria. This discrepancy
may introduce confounding effects, as the potential influence of
sleep on sedentary behavior was not explicitly examined. Future
research will incorporate heart rate-based sleep measures to
better understand these interactions and refine sedentary time
estimations. Another limitation is the exclusion of stimulant use
as a pharmacological intervention, which will be incorporated in
future analyses to provide a more comprehensive understanding
Lastly, the dataset detailed
information on ADHD treatments received by participants.

of treatment impacts. lacks
Future investigations will aim to bridge this gap and may
incorporate advanced methodologies, such as deep learning, to

deepen insights into ADHD characteristics and management.

6 Conclusion

This study illuminates the associations between Fitbit-derived
physical activity summaries and ADHD diagnosis (e.g., ADHD+ and
ADHD- groups) using the ABCD dataset. Our findings demonstrate
that wearable technology, showed by the performance of the Random
Forest classifier, holds promise in the realm of ADHD prediction and
diagnostic applications. Our results provide a foundation for further
exploration and the eventual integration of wearable data into the
clinical landscape, fostering a deeper understanding of ADHD and
advancing the accuracy of its identification.
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