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Background: Attention-deficit/hyperactivity disorder (ADHD) is a common

neurodevelopmental disorder with a complex etiology. The current diagnostic

process for ADHD is often time-intensive and subjective. Recent

advancements in machine learning offer new opportunities to improve ADHD

diagnosis using diverse data sources. This study explores the potential of

Fitbit-derived physical activity data to enhance ADHD diagnosis.

Method: We analyzed a sample of 450 participants from the Adolescent Brain

Cognitive Development (ABCD) study (data release 5.0). Correlation analyses

were conducted to examine associations between ADHD diagnosis and Fitbit-

derived measurements, including sedentary time, resting heart rate, and

energy expenditure. We then used multivariable logistic regression models to

evaluate the predictive power of these measurements for ADHD diagnosis.

Additionally, machine learning classifiers were trained to automatically classify

individuals into ADHD+ and ADHD− groups.

Results: Our correlation analyses revealed statistically significant associations

between ADHD diagnosis and Fitbit-derived physical activity data. The

multivariable logistic regression models identified specific Fitbit measurements

that significantly predicted ADHD diagnosis. Among the machine learning

classifiers, the Random Forest outperformed others with cross-validation

accuracy of 0.89, AUC of 0.95, precision of 0.88, recall of 0.90, F1-score of

0.89, and test accuracy of 0.88.

Conclusion: Fitbit-derived measurements show promise for predicting ADHD

diagnosis, with machine learning classifiers, particularly Random Forest,

demonstrating high predictive accuracy. These findings suggest that wearable

data may contribute to more objective and efficient methods for ADHD

identification, potentially enhancing clinical practices for diagnosis

and management.
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1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental

disorder in childhood and may persist into adulthood, affecting about 9.8% of U.S.

children (1) and 4.4% of adults (2). During childhood, it often presents with

inattention, hyperactivity, and impulsivity, such as difficulty focusing on tasks, excessive

TYPE Original Research
PUBLISHED 22 May 2025
DOI 10.3389/frcha.2025.1504323

Frontiers in Child and Adolescent Psychiatry 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/frcha.2025.1504323&domain=pdf&date_stamp=2020-03-12
mailto:mmrahman@childrensnational.org
https://doi.org/10.3389/frcha.2025.1504323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frcha.2025.1504323/full
https://www.frontiersin.org/articles/10.3389/frcha.2025.1504323/full
https://www.frontiersin.org/articles/10.3389/frcha.2025.1504323/full
https://www.frontiersin.org/articles/10.3389/frcha.2025.1504323/full
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://doi.org/10.3389/frcha.2025.1504323
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://www.frontiersin.org/


movement, and acting without consideration (3). These symptoms

often result in significant challenges, disrupting academic

performance (e.g., incomplete schoolwork), social interactions

(e.g., strained peer relationships), and behavioral regulation (e.g.,

difficulty following rules). As individuals transition into

adulthood, these symptoms shift, with hyperactivity often

lessening, while persistent inattention and impulsivity are

commonly paired with challenges like emotional dysregulation

and impaired executive functioning (4). ADHD often co-occurs

with anxiety (1, 5) and depression (6), highlighting its

complexity. Misdiagnosis can lead to substance abuse, lower

education attainment, and legal issues (7–9). However,

diagnosing ADHD is hindered by barriers like limited

understanding, time-consuming assessments, and subjectivity (10,

11). The co-occurrence of similar conditions adds to the

challenge (12). Machine learning approaches can leverage

valuable evidential information in automatic ADHD diagnosis.

Many studies have applied machine learning to predict ADHD,

using various data sources such as continuous performance test

(CPT) variables (13), pupillometric biomarkers and time series

(14), EEG measurements (15), brain signals (16), brain

connectome topological information (17), functional MRI (18),

symptom ratings and neuropsychological measures (19), 3D MR

images (20), and fMRI from ABCD study (21).

Research suggests a complex relationship between physical

activity, sedentary behavior, and ADHD. For instance, some

studies have reported increased physical activity levels in children

with ADHD (22), while others have linked higher resting heart

rate (RHR) and lower step counts to greater internalizing

symptoms (23). Additionally, associations between physical

activity and mental health symptoms (24, 25), as well as the

negative impact of sedentary behavior on mental health (26)

have been documented. Physical activity has also been associated

with improved executive function, a cognitive domain often

impaired in individuals with ADHD (27).

Evidence from self-reported data indicates a link between

ADHD symptoms and sedentary behavior (28). Interestingly,

sedentary activities like reading and studying have been found to

enhance executive function and academic skills, suggesting that

not all sedentary behaviors are detrimental (29). Heart rate

related studies have further demonstrated higher heart rates in

children with ADHD (30), with similar findings observed in

adults with ADHD, particularly those on stimulant

medication (31, 32).

In terms of energy expenditure, stimulant medications for

ADHD have been associated with reduced daily energy

expenditure in children (33). However, individuals with ADHD

tend to have higher resting energy expenditure (34). Particularly,

greater energy expenditure in late adolescence has been linked to

lower ADHD scores (35).

In most machine learning studies for ADHD diagnosis,

researchers primarily relied on either brain images or EHR

collected in lab or hospital settings. This approach, while

informative, poses several challenges, including high costs, time-

intensive, and ethical concerns regarding the potential inclusion

of sensitive personal information when training machine learning

models. Additionally, many investigations exploring the

relationship between various physical activities and ADHD faced

limitations stemming from small sample sizes, potentially

compromising the representativeness and generalizability of their

findings. Moreover, a substantial portion of these studies relied

on self-reported data, which introduced the risk of recall bias

and inaccuracies, potentially failing to capture the full spectrum

of sedentary time and energy expenditure, thereby impacting

result precision. Furthermore, the majority of the data were

collected from a single site, which could limit the broader

applicability of the analysis.

Nonetheless, the collection of physical activity summaries

could be significantly enhanced by leveraging smartphone

sensors and wearable devices such as Fitbit and smart watch.

Our study aimed to address these challenges by harnessing data

from the Adolescent Brain Cognitive Development (ABCD)

study, an extensive, long-term study encompassing 11,874

adolescents across 21 research sites in the United States. This

dataset includes comprehensive Fitbit measurements, providing

interesting daily and weekly physical activity summaries that

cloud offer invaluable insights into sedentary time, RHR, and

energy expenditure investigation for a significant number of

adolescents, both with and without ADHD. The primary goal of

our study was to investigate potential correlations between Fitbit

measurements, including sedentary time, RHR, and energy

expenditure, and ADHD diagnosis, as well as their predictive

capabilities in ADHD diagnosis through the development of

machine learning models.

Our primary contributions are as follows:

• Establishing associations between Fitbit measurements,

including sedentary time, RHR, and energy expenditure, and

ADHD diagnosis.

• Investigating the complex relationship between ADHD

diagnosis and various independent Fitbit measurements.

• Developing predictive models for ADHD in adolescents using

Fitbit measurements and conducting a comprehensive

comparative analysis across multiple machine

learning algorithms.

• Leveraging the extensive ABCD dataset to better understand

ADHD diagnosis by analyzing daily and weekly physical

activity summaries collected via wearable devices like Fitbit.

To the best of our knowledge, the integrated investigation of these

Fitbit measurements from ABCD study to predict ADHD diagnosis

represents a novel approach that has not been previously explored.

Additionally, our modeling incorporates demographic information

of adolescents, influenced by a study conducted by Nagata et al.

within the ABCD framework, which demonstrated associations

between sociodemographic variables and physical activities, such

as step counts using Fitbit (36). Figure 1 shows the overview of

our whole study.
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2 Materials and methods

2.1 Study participants

In this study, the data were obtained from the ABCD research

consortium. The ABCD study enrolled a total of 11,874 children,

aged between 9 and 10, from 21 different study sites across the

United States. For the purpose of our research, we used the

ABCD Parent Diagnostic Interview for DSM-5 Full (KSADS-5)

sub-study. In data release 5.0, the criteria for diagnosing ADHD

were modified to necessitate impairment in two domains, as

opposed to the earlier release that relied on impairment in only

one domain. This sub-study enabled us to specifically identify

subjects with ADHD positive (ADHD+) and ADHD negative

(ADHD−) for our research cohort.

2.1.1 ADHD+ group
Within the cohort of adolescents with ADHD, we included

individuals who had a diagnosed ADHD condition at the time or

who were in partial remission from ADHD. Additionally, we

excluded any individuals who were diagnosed with ADHD in the

past for a minimum of one school year but no longer exhibit

ADHD symptoms (i.e., subjects who were fully in remission

from ADHD). As detailed in the ABCD study’s data release 5.0,

the determination of an ADHD diagnosis was calculated by

evaluating impairment across at least two domains (e.g., the

ability to engage in goal-directed behavior and the capacity to

refrain from impulsive actions) (37). A total of 357 individuals

were identified as ADHD+ based on the inclusion and

exclusion criteria.

2.1.2 ADHD− group
For the selection of ADHD− participants, we included

adolescents who had never been diagnosed ADHD. Furthermore,

we ensured that this group did not include individuals who were

either partially or fully in remission from ADHD, nor those who

were diagnosed with ADHD during any school year throughout

their lifetime. However, we did not take into account the

presence of any other mental health conditions when defining

this ADHD− cohort. A total of 3311 unique individuals were

identified as ADHD− based on the inclusion and exclusion criteria.

2.2 Fitbit measures

The ABCD Youth Fitbit daily physical activity summaries

(n = 7,439) involved the assessment of daily physical activity and

sedentary behavior at the minute level, utilizing heart rate and

accelerometer data from Fitbit sensors worn by adolescents.

Additionally, the ABCD Youth Fitbit weekly physical activity

summaries (n = 7,076) captured weekly physical activity and

sedentary behavior, including only days with adequate wear time

for inclusion (>600 min of daytime wear) from the Fitbit sensors

worn by adolescents. These datasets encompassed minutes spent

in various activity intensities and recorded step counts,

categorized into weekdays, weekends, daytime, nighttime, and all

days of the week. Fitbit data was collected at baseline, the 2-year

follow-up, and the 4-year follow-up using the Fitbit Charge 2

model worn on the wrist with parental consent. The participants

wore Fitbit consistently for a period of over 21 days except

during bathing and any water activities. Our study integrated

FIGURE 1

Overview of the study design and methodology, including cohort identification, data integration, analysis procedures, and model selection. The figure

illustrates the key stages of the research: (1) identification of ADHD+ and ADHD− groups from the ABCD dataset based on diagnostic criteria and

inclusion/exclusion rules; (2) integration of Fitbit data for daily and weekly activity summaries; (3) statistical analysis to explore relationships

between ADHD status and Fitbit measurements; (4) predictive modeling using various machine learning algorithms to predict ADHD diagnosis.

Rahman 10.3389/frcha.2025.1504323

Frontiers in Child and Adolescent Psychiatry 03 frontiersin.org

https://doi.org/10.3389/frcha.2025.1504323
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://www.frontiersin.org/


Fitbit measurements across all three phases with minimal

participants overlap. Data from both activity summaries were

used in our Fitbit measurements of participant’s daily and weekly

physical activity summaries, providing essential measurements

relevant to our research goal. The specific measurements utilized

in our study are shown in Table 1, fall within three primary

categories: sedentary time, resting heart rate, and energy

expenditure. The measurement definitions were directly taken

from ABCD data.

“Sedentary time” encompasses extended periods of inactivity or

limited physical activity, signifying the duration spent in a seated,

reclined, or lying position with minimal bodily movement and low

energy expenditure. It commonly includes activities such as sitting

at a desk, watching television, or using a mobile phone, where

individuals engage in little to no physical effort. “Resting heart rate”

represents the number of heart beats per minute during periods of

rest. This measurement is typically taken while an individual is

awake, in a state of relaxation, and not involved in any physical

activity. Monitoring RHR serves as a useful tool for assessing

overall well-being and tracking changes in fitness over time.

“Energy expenditure,” expressed as METs/min (metabolic

equivalents per minute), is a metric used to gauge the rate of

energy consumption during various activities. An MET minute

represents the energy expended within a minute of activity while at

rest. To put it simply, 1 MET corresponds to the resting metabolic

rate of an average adult, estimated at around 3.5 milliliters per

kilogram per minute of oxygen consumption (ml/kg/min).

We conducted thorough data cleaning and preprocessing,

eliminating rows with entirely missing values. If a single cell value

was missing for a particular subject, we employed data imputation

by replacing the missing data with the mean value of that specific

subject’s variable. The detailed data processing steps are given in

the Supplementary Material: data processing and merging section.

2.3 Study data sample

The Fitbit data was integrated with the ADHD+ samples,

resulting in the identification of Fitbit data for specific

measurements/variables in 225 out of the 352 ADHD+ subjects.

Consequently, our final group of ADHD+ participants consisted

of 225 distinct subjects. Likewise, among the 3,311 ADHD−

subjects, 2,230 unique participants had corresponding Fitbit data,

forming our ADHD− sample of 2,230 distinct subjects.

Given that our ADHD+ subject count reached 225, an effort was

made to balance the participant list by selecting nearly equivalent

ADHD− subjects from a pool of 2,230 candidates. This selection

was performed through stratified sampling, considering factors like

gender, age, race, parent’s education, marital status, and income

level (Supplementary Table S1). This approach ensured a

harmonized distribution between ADHD+ and ADHD− samples.

Ultimately, our dataset comprises 450 distinct adolescents,

evenly split between ADHD+ and ADHD− subjects. The dataset

is organized in a long format, featuring repeated observations for

each subject over 21 days across different variables. It includes

10,045 Fitbit data records for 450 participants (ADHD+ and

ADHD−), with a few having data beyond 21 days. Details on

data merging, including explanations for retaining additional

days for some participants, are available in the Supplementary

Material: data processing and merging section. In the data release

5, a large difference between the fit_ss_fitbit_sedentarymin

measurement and other sedentary min variables may indicate

poor data capture at the minute level. However, it is important

to note that fit_ss_fitbit_sedentarymin reflects only daytime

activity, while other sedentary minute variables measure activity

over the entire day (24 h), night, or week. As a result, directly

calculating differences among these variables using the released

tabular data can be challenging. Therefore, to minimize the

impact of extreme values or outliers, we applied data

normalization techniques, scaling the variables to a consistent

range. This approach allowed mitigating the risk of potential

false positives.

2.4 Data analysis

In our study, statistical and predictive analyses were conducted.

The statistical analysis was primarily carried out using correlation

TABLE 1 Fitbit measurements used in the study to assess physical activity
in relation to ADHD diagnosis.

Measurement Category Description
(According to ABCD
data)

fit_ss_total_sedentary_min Sedentary time The total number of minutes of

sedentary (<1.5 METS) time

observed over a 24-h period,

from midnight (00:00) to 11:59

PM (23:59), including periods

of inactivity during sleep.

fit_ss_fitbit_sedentarymin The total number of minutes

spent in sedentary (<1.5

METS) time during the day.

fit_ss_dayt_sedentary_min

(non-sleep)

Number of minutes of

sedentary (<1.5 METS) time

observed during non-sleep

(night) valid minutes.

fit_ss_wk_avg_sedentary_min Weekly average minutes spent

in sedentary (<1.5 METS)

during day.

fit_ss_fitbit_rest_hr Resting heart

rate (RHR)

Weekly average resting heart

rate during day.

fit_ss_fitbit_restingheartrate Daily avg resting heart rate for

the day from daily level

summary.

fit_ss_wk_average_met_value Energy

expenditure

Weekly average METS/min

during day on included days.

fit_ss_dayt_ave_met_value Daily average METS/minute

during non-sleep (night) valid

minutes.

fit_ss_total_ave_met Average METS/minute of all

valid minutes from midnight

(00:00) to 11:59 PM (23:59)

regardless of sleep status.

The key variables from the Fitbit data include daily and weekly summaries of sedentary time,

resting heart rate, and energy expenditure. These measurements were categorized into three

main groups—sedentary time, resting heart rate, and energy expenditure—to examine their

association with ADHD status (ADHD+ vs. ADHD−).
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analysis. Additionally, confirmatory analysis, involving variable

selection for machine learning models, was performed using

multivariable logistic regression analysis. Subsequently, a

predictive analysis was conducted using machine learning

methods that included classification algorithms.

2.4.1 Statistical analysis
Initially, a Pearson correlation analysis was conducted to

examine the linear association between ADHD diagnosis (i.e.,

ADHD+ and ADHD− groups) and various Fitbit measurements.

These Fitbit measurements included participants’ various energy

expenditures, RHR, and sedentary time during different time

intervals (Table 1). This correlation analysis was performed

between-subjects comparisons, both with and without age,

gender, race, parent’s education, and income level as control.

A separate analysis using only age as a covariate was also

conducted to observe its effects. For the between-subjects model,

the independent variables included demographic characteristics

(e.g., age, gender, race, and parent’s education) as well as Fitbit

measurements. The dependent variable was the ADHD diagnosis.

Control variables were adjusted for in the analysis to account for

potential confounding effects.

Additionally, a repeated measures correlation analysis was

conducted to explore within-subjects associations. For the within-

subjects analysis, the independent variables remained the same

(demographic characteristics and Fitbit measurements). The

dependent variable was again the ADHD diagnosis. This model

accounted for repeated measures from the same individuals

across different time points, allowing for the assessment of

within-subject variability and more accurate estimation of the

relationships over time. To address potential false discoveries, a

p-value correction using Holm’s Sequential Bonferroni method

(38) was applied. Corrections were applied to both between- and

within-subjects analyses.

Subsequent to the initial correlation analysis, a multivariable

logistic regression analysis was conducted using the Maximum

Likelihood Estimation (MLE) method. This approach was chosen

due to our focus on predicting binary outcomes at the participant

level, where daily observations are considered independent. The

logistic regression model was trained on 80% of the whole dataset,

with the remaining 20% reserved for evaluating the machine

learning models. This analysis aimed to investigate the relationship

between ADHD diagnosis and independent Fitbit measurements.

However, in this analysis, the repeated measures were handled

through the inclusion of time (date) as covariate in modeling. The

results of this analysis informed the selection of variables for our

machine learning model, designed to predict binary ADHD

diagnosis outcomes. Additionally, we conducted mixed effects

modeling to assess subject-specific variability. The mixed-effects

model included time and various Fitbit measurements as

independent variables, with ADHD diagnosis as the dependent

variable, treated as a binary outcome. To account for individual

variability in the diagnosis across repeated measures, a random

intercept for participants (subject_id) was incorporated. The model

employed a generalized linear mixed-effects framework with a

binomial distribution and utilized the BOBYQA optimizer to

ensure robust estimation and convergence. Collinearity was

evaluated by calculating the Variance Inflation Factor (VIF) and

managed separately by scaling the variables and employing

Principal Component Analysis (PCA).

2.4.2 Predictive analysis and classification
A range of supervised machine learning algorithms was

implemented to predict ADHD diagnosis, with a focus on

distinguishing between ADHD+ and ADHD− subjects. These

algorithms included Decision Tree (DT), Random Forest (RF),

Naïve Bayes (NB), AdaBoost (Ada) classifier, Light Gradient

Boosting Machine (LGBM) classifier, Logistic Regression (LR)

classifier, Support Vector Machines (SVM) classifier with non-

linear kernels, and K Nearest Neighbors (KNN) classifier. To

optimize the classification models, a grid search with 10-fold

cross-validation was conducted on the 80% of the data, and a

multi-core implementation was utilized to fine-tune the

hyperparameters. Upon the identification of the best

hyperparameters, the models were trained using these settings.

To reduce the risk of overfitting in DT and RF, we applied

diverse strategies such as pruning, optimizing the number of

samples per leaf, and increasing the number of trees.

Our models were trained using Fitbit measurements that

demonstrated statistical significance according to our multivariable

logistic regression analysis, in addition to the demographic variables

such as participants’ age, gender, race, parent’s socioeconomic

status, and parent’s education. To prepare for training, essential

preprocessing steps were taken, encompassing the removal of

duplicates, conversion of categorical variables into numerical

representations, and data normalization. These steps were essential

to ensure compatibility with the classification algorithms.

The models were evaluated using a range of performance

metrics. In the training process for all models, 10-fold cross-

validation was applied on the 80% of the training data.

Furthermore, separate models were trained on 80% of the data,

and its performance was evaluated on the remaining unseen 20%

of the dataset. Accuracy, precision, recall, and F1-scores were

computed using both the 10-fold cross-validation and test data.

Additionally, learning curves and ROC curves, along with AUC

scores, were generated to assess the models’ ability to generalize.

Python 3.9 and R version 4.3.2 were utilized for all analyses.

Data processing was carried out with the Pandas and Numpy

libraries. Correlation analyses were performed using the

Statsmodels libraries. Multivariable logistic regression and mixed

effects regression analyses were conducted using lme4 and car

packages. The development of machine learning models was

done using the Scikit-Learn and LightGBM machine learning

libraries, with multi-core processing to optimize efficiency. Data

and results visualizations were created using the Matplotlib,

Seaborn and Pandas packages.

3 Results

The study had 450 participants whose demographic details are

presented in Table 2. Supplementary Table S3 provides
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demographic characteristics for the ADHD+ group, while

Supplementary Table S4 presents corresponding information for

the ADHD− (control) group.

Figure 2 shows measurements variability for weekly average

sedentary time, RHR and energy expenditure with ADHD

diagnosis. Based on the box plots and the presence of more data

points above the maximum line in ADHD+ for RHR, there was

indeed more variability in these Fitbit-derived measures among

individuals with ADHD+ compared to ADHD−. To further

investigate, we conducted descriptive statistics and the Fligner-

Killeen test to assess variability in sedentary time, RHR, and

energy expenditure between the ADHD+ and ADHD− groups.

The analysis revealed greater variability in RHR and sedentary

time within the ADHD+ group. Descriptive statistics showed that

the ADHD+ group had a higher mean RHR (74.02 bpm) than

the ADHD− group (72.01 bpm), with greater dispersion

(std = 11.99 vs. 10.52). Sedentary time also exhibited slightly

higher variability in the ADHD+ group (std = 117.93) compared

to the ADHD− group (std = 111.89). In contrast, energy

expenditure demonstrated minimal variability between the

groups. The Fligner-Killeen test confirmed these findings, with

significant differences in variance for RHR (Fligner

Statistic = 15.14, p = 0.0001) and sedentary time (Fligner

Statistic = 4.36, p = 0.037), indicating higher variability in the

ADHD+ group. No significant variance differences were found

for energy expenditure (Fligner Statistic = 0.07, p = 0.78). Detailed

test results were given in Supplementary Tables S7 and S9.

3.1 Association between diagnosis and
measurements

During the Pearson correlation analysis conducted between

ADHD diagnosis and Fitbit measurements without controls,

statistically significant findings were obtained for between-

participant analysis. However, the observed correlation

coefficients were relatively small in magnitude. Statistically

significant correlations were observed in most cases when

demographics were used as controls. Notably, within-participant

analyses demonstrated significance in specific scenarios shown in

Supplementary Table S2. Additionally, the results were also

significant when age was employed as the sole covariate

(Supplementary Table S2). Table 3 provides the correlation

analysis between ADHD diagnosis and Fitbit measurements. All

reported p-values are post-correction using Holm’s Sequential

Bonferroni method. Corrections were applied separately for

multiple tests within the groups of between-participants, within-

participants, and with-controls analyses.

3.1.1 Sedentary time in minutes
The examination of sedentary time concerning ADHD diagnosis

revealed interesting findings. Specifically, various aspects of

sedentary time, including nighttime non-sleep (r =−0.041), daily

total (r =−0.081), and weekly average (r =−0.038), demonstrated

negative correlations with ADHD diagnosis. These results suggest

that individuals with reduced overall sedentary time may exhibit a

higher likelihood of an ADHD+ diagnosis. In contrast, daytime

sedentary time exhibited a positive correlation (r = 0.070) with

ADHD diagnosis. Importantly, these correlations retained

significance even after controlling for demographics except for the

weekly average. However, when controlling for demographics, the

coefficient values exhibited a slight decrease, suggesting that the

control variables introduced a confounding influence on the

observed relationship.

3.1.2 Resting heart rate
The analysis of RHR in relation to ADHD diagnosis unveiled

noteworthy outcomes. Notably, RHR measurements, both overall

(r = 0.122) and during the day (r = 0.119), exhibited a substantial

positive correlation with ADHD diagnosis. This implies that

individuals with higher RHRs are more likely to receive an

TABLE 2 Demographic characteristics of study participants.

Description M SD
n = 450

Age

Overall 9.45 0.50

n %

Gender

Male 257 57.11

Female 191 42.44

Other 2 0.44

Race

White 368 81.77

African American 60 13.33

Chinese 3 0.66

American Indian 2 0.44

Asian Indian 1 0.22

Other 16 3.55

Ethnicity

Not Hispanic 368 81.77

Hispanic 73 16.22

Refused to answer 2 0.44

Don’t know 7 1.55

Parent’s Education

Bachelor’s degree 128 28.44

Master’s degree 119 26.44

Some college 70 15.55

Associate degree 57 12.66

High school 39 8.66

Professional degree 14 3.11

Doctoral degree 15 3.33

GED or equivalent Diploma 6 1.33

Refused to answer 2 0.44

Parent’s Income Level

$100,000 to $199,999 139 30.88

$50,000 to $99,999 121 26.88

$200,000 and greater 57 12.66

$25,000 to $49,999 54 12.00

Less than $25,000 44 9.77

Refuse to answer 20 4.44

Don’t know 15 3.33

M, mean; SD, standard deviation.

n is the number of participants.
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ADHD+ diagnosis. These correlations remained statistically

significant even after controlling for demographics. The results

were also significant in within-participants analyses (overall:

r = 0.032; during day: r = 0.03). These findings emphasize the

potential role of RHR as a significant marker associated with

ADHD diagnosis.

3.1.3 Energy expenditure
Higher energy expenditure while at rest, both for daily

(r = 0.041) and weekly average (r = 0.058), along with the overall

total energy expenditures (r = 0.056), displayed positive

correlations with ADHD diagnosis. These correlations indicate

that individuals with higher energy expenditures while at rest, are

more likely to receive an ADHD+ diagnosis. These correlations

were not statistically significant after controlling for

demographics. However, the fact that controlling for these

variables led to moderately lower coefficient values suggested that

they exerted a noticeable influence on the relationship between

ADHD diagnosis and energy expenditure.

3.2 Multivariable logistic regression
modeling

In the multivariable logistic regression analysis, the predictors

were Fitbit measurements and time (date) variable and the

binary outcomes were ADHD diagnosis. The model’s results

based on scaling the predictors are given in Table 4. We

observed that six out of nine coefficient estimates were

statistically significant, indicating the impact of these

independent variables on the ADHD diagnosis. Despite the

modest magnitudes of the coefficient values, our findings suggest

a meaningful association between most of the Fitbit

measurements and the ADHD diagnosis. The z-scores further

support that these associations are unlikely to be the result of

chance. We also conducted a multiple logistic regression model

analysis with PCA for the overlapping variables: Group 1,

consisting of fit_ss_fitbit_rest_hr, fit_ss_fitbit_restingheartrate,

fit_ss_dayt_ave_met_value, and fit_ss_total_ave_met, and Group

2, consisting of fit_ss_wk_avg_sedentary_min, fit_ss_total_

sedentary_min, fit_ss_fitbit_sedentarymin, and fit_ss_dayt_

sedentary_min. PCA revealed that two principal components

from Group 1 and one principal component from Group 2 were

statistically significant. However, in both cases, the effect sizes

were very small. The detailed results are shown in the

Supplementary Tables S5 and S7. Additionally, a mixed-effects

model was trained; however, no significant results were obtained

through mixed-effect regression analysis. The lack of significant

findings may be attributed to the high within-group variability

FIGURE 2

Variability in weekly Fitbit measurements between ADHD+ and ADHD− groups. Box plots showing weekly average sedentary time (in minutes), resting

heart rate (in beats per minute), and energy expenditure (in METS/min) for each group. The x-axis indicates the ADHD diagnosis groups (ADHD+ vs.

ADHD−) and the y-axis represents the measurement values. The blue box is ADHD+ group, and the orange box is ADHD− group.

TABLE 3 Correlation analysis between ADHD diagnosis and Fitbit
measurements.

Fitbit measurements Between participants

Without
controls

With
controls

fit_ss_dayt_sedentary_min (non-

sleep)

r: −0.041 r: −0.025

p < 0.0001 p = 0.013

fit_ss_fitbit_sedentarymin r: 0.070 r: 0.060

p < 0.0001 p < 0.0001

fit_ss_wk_avg_sedentary_min r: −0.038 r: −0.016

p < 0.0001 p = 0.119

fit_ss_total_sedentary_min r: −0.081 r: −0.058

p < 0.0001 p < 0.0001

fit_ss_fitbit_rest_hr r: 0.122 r: 0.161

p < 0.0001 p < 0.0001

fit_ss_fitbit_restingheartrate (day

only)

r: 0.119 r: 0.160

p < 0.0001 p < 0.0001

fit_ss_dayt_ave_met_value r: 0.041 r: 0.003

p < 0.0001 p = 0.769

fit_ss_wk_average_met_value r: 0.058 r: 0.004

p < 0.0001 p = 0.643

fit_ss_total_ave_met r: 0.056 r: 0.019

p < 0.0001 p = 0.063
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observed. The Fitbit-derived measures, including daily physical

activity, sedentary time, and heart rate, exhibit day-to-day

fluctuations within each participant. Furthermore, measurement

noise at the individual level may amplify this variability, posing a

challenge for the mixed-effects model in detecting significant

effects. The comprehensive results are provided in the

Supplementary Table S6.

3.2.1 Sedentary time in minutes
An increase in fit_ss_total_sedentary_min is associated with a

decrease in the log-odds of ADHD diagnosis by 0.13737 units

(z-score: −2.103, p = 0.0355). Conversely, an increase in

fit_ss_fitbit_sedentarymin corresponds to a rise in log-odds by

0.16524 units (z-score: 4.086, p < 0.0001). Additionally,

fit_ss_dayt_sedentary_min contributes to a log-odds increase of

0.09526 units, although this association is marginally significant

(z-score: 1.686, p = 0.0918). Furthermore, fit_ss_wk_avg_

sedentary_min does not show a significant association with

ADHD diagnosis (z-score: 1.220, p = 0.2226).

3.2.2 Resting heart rate
An increase in fit_ss_fitbit_rest_hr results in a rise of 0.31254

units in log-odds (z-score: 3.035, p = 0.0024). Conversely, an

increase in fit_ss_fitbit_restingheartrate does not show a significant

association with ADHD diagnosis (z-score: −0.549, p = 0.5827).

3.2.3 Energy expenditure
An increase in fit_ss_wk_average_met_value corresponds to a

log-odds rise of 0.14632 units (z-score: 3.779, p = 0.0002).

Similarly, an increase in fit_ss_dayt_ave_met_value is associated

with a log-odds rise of 0.23645 units (z-score: 2.776, p = 0.0055).

Conversely, each unit increase in fit_ss_total_ave_met results in a

decrease of 0.18362 units in log-odds (z-score: −2.230, p = 0.0258).

The variables which had statistically significant associations in

our multivariable logistic regression modeling between specific

Fitbit measurements and ADHD diagnosis, were selected for the

machine learning classification.

3.3 Classification and performance

Table 5 summarizes machine learning classifier performance in

predicting ADHD diagnosis using 10-fold CV with training data

and on test dataset respectively. RF outperformed other classifiers

with 89.24% CV accuracy, 87.85% test accuracy, highest precision,

recall, and F1-score, making it superior in ADHD diagnosis. In

contrast, KNN underperformed with 53.22% CV accuracy and

53.36% test accuracy, indicating difficulty in distinguishing ADHD

cases. Furthermore, strong AUC scores for RF ensemble methods

indicated robust pattern learning from Fitbit data for ADHD

prediction. Figure 3 illustrates classifiers’ AUC scores.

Figure 4 depicts learning curves, illustrating training and

validation performance across various classification algorithms using

10-fold cross-validation, with models trained on 80% of the dataset

split for training. AdaBoost, while stable, displayed limited

improvement, suggesting potential undergeneralization. In contrast,

DT exhibited high initial accuracy, showcasing strong generalization

and consistent improvement. KNN showed potential overfitting but

reasonable generalization. LGBM learning curve initially overfitted,

later generalized, stabilizing with balanced accuracy. LR

demonstrated limited generalization, with minor accuracy gains. NB

resembled LR in limited improvement. RF initially displayed

overfitting, with subsequent improvement in validation accuracy,

indicating a gradually improving generalization of the model over

time. SVM displayed a pattern similar to that of LR. DT and RF

are favored models for accurate ADHD prediction, while SVM may

require further refinement to enhance performance.

In Figure 5, ROC curves illustrate the classifiers’ discriminative

ability to distinguish ADHD+ and ADHD− cases. DT and LGBM

stabilized gradually, whereas RF showed a rapid ascent and

maintained high performance. In contrast, SVM, LR, and NB

perform slightly better than random guessing. Figure 6 indicates

that RF, DT, and LGBM are the most promising models,

showing stable performance with minimal variation across cross-

validation folds.

4 Discussion

The correlation analysis revealed statistically significant

relationships between ADHD diagnosis and various Fitbit

TABLE 4 Multivariable logistic regression model summary (with scaling).

Variable Coef Std err Z-Score P > |Z|
Intercept −0.05778 0.02028 −2.850 0.004376

Time −0.10591 0.02155 −4.914 8.94e-07

fit_ss_total_sedentary_min −0.13737 0.06533 −2.103 0.035482

fit_ss_fitbit_sedentarymin 0.16524 0.04044 4.086 4.39e-05

fit_ss_dayt_sedentary_min 0.09526 0.05650 1.686 0.091804

fit_ss_wk_avg_sedentary_min 0.04500 0.03690 1.220 0.222554

fit_ss_fitbit_rest_hr 0.31254 0.10298 3.035 0.002406

fit_ss_fitbit_restingheartrate −0.05659 0.10298 −0.549 0.582675

fit_ss_wk_average_met_value 0.14632 0.03873 3.779 0.000158

fit_ss_dayt_ave_met_value 0.23645 0.08517 2.776 0.005497

fit_ss_total_ave_met −0.18362 0.08236 −2.230 0.025778

Rahman 10.3389/frcha.2025.1504323

Frontiers in Child and Adolescent Psychiatry 08 frontiersin.org

https://doi.org/10.3389/frcha.2025.1504323
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://www.frontiersin.org/


measurements, although the effect sizes were generally small in

magnitude. These findings indicate that there is a statistical link

between physical activity measures and ADHD. Although the

observed effect sizes were small, they are clinically important when

considered in conjunction with multiple factors and other

diagnostic measures. Previous studies indicate that even modest

associations can substantially influence clinical practice and inform

the development of targeted interventions for ADHD management

(39, 40). To have a clear implication of these findings, a clinical

study of these associations should be explored. It is important to

consider that the presence of mixed results in within-participants

correlation analysis suggests variability in the relationships between

variables across participants, potentially indicating heterogeneity,

moderating factors, or complexities in the studied associations.

Regarding sedentary time, reduced overall sedentary time was

associated with a higher likelihood of ADHD diagnosis, while

increased daytime sedentary time showed a positive link to ADHD

diagnosis. These findings highlight the importance of considering

the timing of sedentary behavior when examining its relationship

with ADHD. Our findings regarding increased daytime sedentary

time align with previous research indicating a positive association

between ADHD and sedentary behaviors (41–43). In contrast, our

results for overall sedentary time differ from the earlier studies,

which may be attributed to differences in age groups and sample

sizes. However, it’s important to note that our study focused on the

duration of sedentary time rather than specific sedentary activities.

These disparities highlight the need for further investigation to gain

a more comprehensive understanding of this pattern.

TABLE 5 Classification performance of ADHD diagnosis models using Fitbit measurements.

Model Accuracy Precision Recall F1-score AUC

CV Test CV Test CV Test CV Test
Ada 0.6523 0.6570 0.6410 0.6477 0.6463 0.6431 0.6437 0.6454 0.71

DT 0.8846 0.8761 0.8949 0.8929 0.8639 0.8462 0.8792 0.8689 0.87

KNN 0.5322 0.5336 0.5187 0.5201 0.5148 0.5046 0.5167 0.5122 0.55

LGBM 0.7603 0.7407 0.7377 0.7187 0.7865 0.7651 0.7613 0.7412 0.84

LR 0.6138 0.6103 0.6088 0.6032 0.5738 0.5754 0.5908 0.5890 0.64

NB 0.6069 0.5893 0.5910 0.5737 0.6197 0.5990 0.6050 0.5861 0.63

RF 0.8924 0.8785 0.8813 0.8673 0.8996 0.8851 0.8904 0.8761 0.95

SVM 0.5445 0.5386 0.5727 0.5553 0.2461 0.2472 0.3443 0.3421 0.56

This table presents the performance metrics of various machine learning models for classifying ADHD diagnosis based on Fitbit measurements. The metrics include accuracy, precision, recall,

F1-score, and area under the curve (AUC) for both cross-validation (CV) and test set data.

FIGURE 3

Area under the curve (AUC) scores of machine learning classifiers for distinguishing ADHD+ and ADHD− groups. This bar chart displays the AUC

scores for various machine learning classifiers, highlighting their performance in distinguishing between ADHD+ and ADHD− groups. The x-axis

represents the classifiers, and the y-axis shows the corresponding AUC scores.
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FIGURE 4

Learning curves of different machine learning classifiers using 10-fold CV with training data: training and validation accuracy across varying sample

sizes. These graphs show the performance for various classifiers, with the x-axis representing the accuracy and the y-axis representing the training

set size. The blue line indicates the training accuracy, while the green line represents the validation accuracy, illustrating how the model

performance evolves with increasing sample sizes.
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FIGURE 5

ROC curves for different classifiers: true positive rate (TPR) vs. false positive rate (FPR). These graphs display the ROC curves for various classifiers,

where the x-axis represents the FPR, and the y-axis represents the TPR. The blue lines show corresponding AUC scores at different FPR and TPR

values. The dotted straight line represents the diagonal line connecting the lowest (0,0) and highest (1,1) FPR and TPR ratios, which serves as

a reference.
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Our results indicated that individuals with higher RHR are

more likely to have an ADHD. These results remained true even

after controlling for demographics, suggesting that RHR could

serve as a strong marker for ADHD diagnosis. Our findings are

consistent with several prior studies that have reported a positive

association between heart rate or RHR and ADHD in both

children and adults when compared to those without ADHD

(30–32). Further research is needed to explore the underlying

mechanisms of this relationship and its clinical implications.

Our analysis also revealed that individuals with higher energy

expenditures while at rest may have an elevated likelihood of

being diagnosed with ADHD. Importantly, these findings

remained significant after controlling for demographics, with

moderately lower coefficient values. Reduced coefficient values

indicated that demographics had an impact on the association

between ADHD and energy expenditure. These findings are

consistent with a prior study involving a different age group and

smaller sample sizes (34), which also reported a positive

association between energy expenditures and ADHD. However,

our results differ from another study (35), which found no

significant relationship between energy expenditure and ADHD.

This discrepancy may be attributed to several factors, including

differences in study design, such as variations in the age and

demographic characteristics of the samples, as well as variations in

the methodologies used to assess Fitbit-derived measurements.

These emphasize the necessity for further investigation to elucidate

this relationship across different age groups, race, gender, etc.

Additionally, the Fitbit measurements variability plots (Figure 2),

descriptive statistics and the Fligner-Killeen test (Supplementary

Tables S7 and S9) illustrated distinct patterns, particularly

characterized by increased variability in RHR and sedentary time

among individuals diagnosed with ADHD. This variability suggests

potential heterogeneity within the ADHD+ group, indicating that

ADHD may manifest differently in individuals in terms of their

physiological responses to daily activities.

This variability is particularly important, as it may reflect

factors (e.g., varying levels of physical activities). Additionally,

the presence of such variability could impact the results of the

study by introducing extra noise, which may hinder the ability to

identify consistent relationships between Fitbit-derived measures

and the ADHD diagnosis in a linear model.

The multivariable logistic regression analysis identified

statistically significant associations between few specific Fitbit

measurements, temporal factors, and binary ADHD diagnosis.

Despite modest coefficients, sedentary time, resting heart rate,

and energy expenditure emerged as influential factors. Notably,

sedentary time showed nuanced associations with ADHD

diagnosis. The temporal variable (time/date) played a significant

role. Principal component analysis highlighted the importance of

certain overlapping variables in predicting ADHD outcomes.

Although the mixed-effects model did not show significant

results (Supplementary Table S6), the findings emphasized the

potential utility of Fitbit measurements and temporal

considerations in understanding and predicting ADHD diagnoses.

FIGURE 6

10-fold cross-validation (CV) scores for different classifiers. This graph shows the accuracy scores of various machine learning classifiers during

10-fold CV for predicting ADHD+ and ADHD− groups. The x-axis represents the 10 folds of the cross-validation (from 1 to 10), while the y-axis

shows the accuracy achieved by each classifier across these folds. Different colors correspond to different classifiers, as indicated in the legend.

The plot highlights the performance stability and variability of each classifier across the folds.
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Among all the classifiers trained in our study, RF consistently

outperformed the other classifiers across accuracy, precision, recall,

F1-score, and AUC. These results underscore the robustness and

dependability of the RF model in accurately distinguishing

between the ADHD+ and ADHD− groups. Notably, our top-

performing classifier surpassed the performance of a previous

study that used a similar sample from the ABCD study,

integrating multiple measures of Resting-State Functional Magnetic

Resonance Imaging (rsfMRI) in adolescent brains, achieving an

accuracy of 0.6916 and an AUC of 0.7408 (21) based on multiple

kernel learning algorithms. Furthermore, our classifier

outperformed another study conducted on a separate sample of

240 children, which utilized the temporal variability of dynamic

functional connectivity from MRI brain images, achieving an

accuracy of 0.78 and an AUC score of 0.84 (44) based on

diagnostic model SVM. Both studies relied on expensive brain

imaging methods and lab setups. In another study, Slobodin et al.

achieved an accuracy of 0.87 using CPT data based on 458

children (13), employing RF and Neural Network models.

However, even their best classifier fell short of our top-performing

classifier in terms of accuracy, precision, and recall scores. Our

classifier also outperformed an SVM classifier trained by Das et al.

(14), which achieved an accuracy of 0.762 and an AUC score of

0.85 using pupillometric biomarkers and time series data.

In our analysis, KNN demonstrated the weakest performance.

This suggests that KNN may not have effectively generalized the

dataset, leading to difficulties in distinguishing between ADHD+

and ADHD− cases. We also observed high AUC scores for

LGBM, DT and RF ensemble methods, indicating their effective

learning of underlying data patterns. This highlights their

suitability for predicting ADHD based on participants’ daily and

weekly physical activity summaries collected through Fitbit.

Based on learning curve analysis, it could be inferred that DT and

RF models demonstrated strong generalization, while KNN and SVM

exhibited limitations in capturing complex data patterns. ROC curve

analysis further confirmed the discriminative power of these

classifiers, with DT, RF, and LGBM achieving high AUC scores,

indicating their proficiency in distinguishing between ADHD+ and

ADHD− cases. On the other hand, KNN had a lower AUC score,

suggesting its challenges in effectively classifying the two groups.

The superior performance of RF can be due to its ensemble

learning approach, which combines predictions from multiple

decision trees, enhancing its robustness to noise and outliers that

may be present in Fitbit data (45). Additionally, RF effectively

captures complex feature interactions within a low-dimensional

dataset without requiring extensive feature engineering, making it

particularly well-suited for our study (46).

In contrast, KNN is highly sensitive to the choice of distance

metrics (47), which can be problematic when dealing with

continuous and heterogeneous features, such as Fitbit

measurements and demographic variables. This sensitivity may

limit KNN’s effectiveness in accurately distinguishing between

classes in our study.

Similarly, the performance of SVM relies heavily on kernel

selection (48) and optimized hyperparameter tuning (49),

making it less adaptable to datasets with intricate, non-linear

relationships. Given the characteristics of Fitbit data, SVM may

struggle to establish meaningful decision boundaries without

extensive optimization.

Our future work will explore tailored preprocessing techniques

to improve the performance of KNN and SVM. For instance,

incorporating polynomial feature transformations or advanced

kernel functions, along with rigorous hyperparameter tuning, may

enhance SVM’s ability to model non-linear patterns. Likewise,

optimizing distance metrics and applying appropriate feature

scaling strategies could improve KNN’s classification accuracy.

Overall, our machine learning experiments highlight the

effectiveness of ensemble methods, particularly RF, in accurately

predicting ADHD diagnosis using participants physical activity

summaries collected through Fitbit. These findings provide

valuable insights into the choice of classifier for ADHD

classification using Fitbit measurements, such as sedentary time,

RHR and energy expenditure while in rest and suggest avenues

for further research and model refinement in this clinical context.

The findings suggest that there is a potentail benefits of

integrating Fitbit-based measures into the screening process for

ADHD. Implementing such screening tool offers a practical

solution to longstanding challenges in ADHD assessment,

including reducing wait times for screening and alleviating the

stigma that often prevents adults from seeking evaluation—an

issue compounded by the limited availability of screening

protocols for adults. Adopting wearable technologies such as

Fitbits and smartwatches as a non-invasive could provide a

continuous monitoring tool capable of delivering objective data

for both initial screening and ongoing observation.

However, the implementation of this technology in clinical

settings presents several challenges. Successful integration

requires comprehensive training for healthcare professionals to

ensure effective use, along with managing the financial costs

associated with device adoption. Moreover, maintaining

consistent and reliable data collection is essential to ensure the

accuracy and usefulness of the data. Patient engagement is also

crucial, as their willingness to adopt these devices and share the

data for clinical purposes may present a barrier.

Despite these challenges, advancements in technology offer

promising solutions to facilitate integration. Through methods

such as application programming interfaces (APIs) or direct data

uploads, wearable devices can be easlily incorporated into clinical

workflows, supporting both ADHD screening and continuous

patient monitoring. This capability positions Fitbit-based

measures as a valuable tool for enhancing ADHD care across

diverse patient populations.

5 Limitation and future work

This study is based on data obtained from the ABCD study,

which may not capture the entire spectrum of children and

adolescents across various age groups. Additionally, the ABCD

cohort is specific to certain demographic and geographic

characteristics, which could introduce biases that limit the

generalizability of the findings to more diverse populations. To
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address these limitations, future research could involve larger, more

diverse Fitbit measurements to assess the applicability of these

findings to broader populations. In this study, we focused on a

binary classification of ADHD diagnosis (e.g., ADHD+ and

ADHD−), without examining potential ADHD subtypes.

However, ADHD encompasses several subtypes, each with

distinct clinical characteristics. Future analyses will explore

subtype-specific differences, including inattentive, hyperactive-

impulsive, and combined presentations, to offer a more detailed

understanding of the disorder. The current analysis employs the

ABCD study’s ADHD diagnosis definition based on impairment

in two domains, deviating from DSM criteria. In future

investigations, we aim to broaden our scope by considering other

conditions alongside the ABCD ADHD diagnosis definition to

establish a DSM match. Additionally, our use of Fitbit measures

in this study was confined to pre-existing data available in the

ABCD dataset. Future research endeavors seek to expand our

exploration by incorporating raw Fitbit data, uncovering

additional variables related to ADHD treatment, sedentary time,

resting heart rate (RHR), and energy expenditures. Also, the

ABCD dataset uses different methodologies for measuring

sedentary time vs. sleep and nighttime. Specifically, sedentary

time is derived from a Fitbit-based daily summary using

metabolic equivalent (MET; <1.5 METs) thresholds, while sleep

and nighttime are defined via heart rate criteria. This discrepancy

may introduce confounding effects, as the potential influence of

sleep on sedentary behavior was not explicitly examined. Future

research will incorporate heart rate–based sleep measures to

better understand these interactions and refine sedentary time

estimations. Another limitation is the exclusion of stimulant use

as a pharmacological intervention, which will be incorporated in

future analyses to provide a more comprehensive understanding

of treatment impacts. Lastly, the dataset lacks detailed

information on ADHD treatments received by participants.

Future investigations will aim to bridge this gap and may

incorporate advanced methodologies, such as deep learning, to

deepen insights into ADHD characteristics and management.

6 Conclusion

This study illuminates the associations between Fitbit-derived

physical activity summaries and ADHD diagnosis (e.g., ADHD+ and

ADHD− groups) using the ABCD dataset. Our findings demonstrate

that wearable technology, showed by the performance of the Random

Forest classifier, holds promise in the realm of ADHD prediction and

diagnostic applications. Our results provide a foundation for further

exploration and the eventual integration of wearable data into the

clinical landscape, fostering a deeper understanding of ADHD and

advancing the accuracy of its identification.
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