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Seasonal-to-interannual variations of rainfall over southern Africa, key to predicting

extreme climatic events, are predictable over certain regions and during specific periods

of the year. This predictability had been established by testing seasonal forecasts from

models of varying complexity against official station rainfall records typically managed

by weather services, as well as against gridded data sets compiled through a range of

efforts. Members of the general public, including farmers, additionally have extended

records of rainfall data, often as daily values spanning several decades, which are

recorded and updated regularly at their farms and properties. In this paper, we show

how seasonal forecast modelers may use site recorded farm rainfall records for the

development of skillful forecast systems specific to the farm. Although the uptake of

seasonal forecasts in areas with modest predictability such as southern Africa may

be challenging, we will show that there is potential for financial gain and improved

disaster risk farm management by co-developing with farmers forecast systems based

on a combination of state-of-the-art climate models and farm rainfall data. This study

investigates the predictability of seasonal rainfall extremes at five commercial farms in

southern Africa, four of which are in the austral summer rainfall areas, while one is

located in the winter rainfall area of the southwestern Cape. We furthermore calculate a

measure of cumulative profits at each farm, assuming a “fair odds” return on investments

made according to forecast probabilities. The farmers are presented with hindcasts

(re-forecasts) at their farms, and potential financial implications if the hindcasts were used

in decision-making. They subsequently described how they would use forecasts for their

farm, based on their own data.

Keywords: Southern Africa, seasonal climate forecasts, co-production, profits, farm management

INTRODUCTION

Seasonal forecast model development has a long history in South Africa (Landman, 2014). During
this time, the seasonal forecast community in South Africa has developed complex climate models
for operational seasonal forecasting (Beraki et al., 2014). The coupling of atmospheric climate
models to models for the ocean, the land surface and sea ice, has led to improved seasonal
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forecasts, also for South Africa (Landman et al., 2012).
Notwithstanding the proven accuracies of seasonal climate
forecast models, statistical correction methods are recommended
even for today’s coupled climate model forecasts (Barnston
and Tippett, 2017). Such statistical correction has had a long
track record in terms of testing predictability over southern
African countries including South Africa and Namibia (e.g.,
Bartman et al., 2003; Landman and Goddard, 2005), where local
climatic mechanisms effecting seasonal-to-interannual variations
over these countries have been studied comprehensively (e.g.,
Tadross et al., 2005; Hansingo and Reason, 2009; Reason and
Smart, 2015). Statistical correction still forms part of the seasonal
forecast systems developed at certain institutions for operational
forecasting in South Africa, including the South AfricanWeather
Service and the University of Pretoria (UP). In addition to
statistical corrections of global models forecast output, hindcasts
(or re-forecasts) over multiple decades have also been used in the
development of application models for agriculture in southern
Africa (Malherbe et al., 2014), hydrology (Muchuru et al., 2016)
and health (Landman et al., 2020), among others. In this study,
we seek to use rainfall data provided by farmers to create and
test seasonal forecast models specific to their farms, and to
learn from them how such forecasts, including those relevant
to climatic extremes, might impact on their farming decisions.
Such a process of co-learning between forecast modelers and
forecast users may help improve on seasonal forecasts tailored
for commercial farmmanagement, and, thus, potentially improve
forecast uptake—a challenging aspect in southern Africa, where
seasonal forecasting skill ranks modestly with other regions
globally (Landman et al., 2019).

Farmers were invited to engage with the seasonal forecast
bulletins of UP, during forecast presentations at farmers
meetings, and during radio interviews, to make their rainfall
records available for this kind of forecast system development
and testing. There has, thus far, been a positive response, with
more than 20 farmers providing their data, including dry-land
end-of-season yield data at a small number of farms. In this paper,
we have selected a small number of farmers who also indicated
that they would be willing to respond to questions regarding
use of forecasts in their farming decision-making. In addition to
their willingness to participate, a further factor was that seasonal
rainfall at the farm had, to some extent, to be predictable. Such
use of citizen observations has already been proven useful in
operational weather prediction (Nipen et al., 2020).

DATA AND METHODOLOGY

Data
Global climate model prediction output, in particular 3-month
total rainfall fields, of the North American Multi-Model
Ensemble (NMME; Kirtman et al., 2014) experiment are used
as predictors for the forecast models developed for each farm.
Here we use only the hindcasts from the GFDL-CM2p5-FLOR-
B01 (referred to here as “GFDL”) since this model has been
shown to outperform other NMMEmodels over southern Africa
(Landman et al., 2019). This model data set is available from
March 1980 to present, for 12 ensemble members and for 11

lead-time months. We only use hindcasts made at a 1-month
lead-time. Further, only restricted areas of the GFDL output are
used and include 35◦-15◦ South, 15◦-35◦ East (for the three South
African farms in the summer rainfall region); 40◦-15◦ South,
0◦-50◦ East (for the Namibia farm), and 45◦-20◦ South, 0◦-40◦

East (for the farm in the winter rainfall region).
The rainfall data included in the study was made available

from five farmers—respectively located in the southwestern Cape
(winter rainfall), three farmers in the central and northwestern
interiors of South Africa (mid-summer rainfall), and northern
Namibia (late summer rainfall). Although the rainfall records of
the farms do not all start on the same year, they are all up to
date for the rainfall totals recorded up to the end of the 2019/20
summer rainfall season.

Hindcast Method
The GFDL rainfall fields as specified over the domains above
are considered for the development of statistically-based rainfall
models for each farm. These rainfall models are produced by
statistically downscaling the climate model’s seasonal rainfall
fields to concurrent seasonal rainfall totals at the farms.
The canonical correlation analysis option of the Climate
Predictability Tool (CPT; Mason and Tippett, 2016) is used in
the development of the statistical models. Only 1-month lead-
times are considered, and so typical configurations of the rainfall
models is designed as follows: Predicting JFM rainfall totals, the
GFDL was initialized in December for a JFM rainfall hindcast set
downscaled to JFM rainfall totals at the farm.

The hindcast skill levels of the five rainfall models are tested
using a cross-validation setup, with a 5-year-out window. It
is important to note that the farms’ rainfall data were first
transformed into an approximate normal distribution before
downscaling. The hindcast and observed data at each farm are
subsequently normalized in order to produce rainfall indices
as opposed to rainfall totals. Figures 1–5 show the respective
hindcasts vs. observed time series for each farm. We only show
Pearson correlation values between cross-validated hindcasts and
observed time series on these figures in order to represent the
deterministic skill levels of the rainfall models. Each statistical
rainfall model is then used to retro-actively produce forecast for
the most recent years of the available farm data, ranging from
9 to 20 years. The retro-active forecast process is able to create
probabilistic rainfall forecasts (Landman et al., 2012) for each
farm for three categories with thresholds defined by respectively
the 25th (low rainfall indices) and 75th (high rainfall indices)
percentile values of the climatological record. These thresholds
define extremely above- and extremely below-normal rainfall
categories, in terms of extreme events.

The potential economic value of the five retro-active rainfall
forecasts are subsequently assessed (Hagedorn and Smith, 2009).
For this purpose, we make use of the cumulative profit (CP)
values generated by the CPT software (see Mason (2018) for
a comprehensive explanation on the calculation of the CP
values). Because farming, naturally, has cost implications, it may,
potentially, be of value to a farmer to consider the potential
economic value of seasonal rainfall forecasts made for the farm.
Cumulative profit values evaluate probabilistic forecasts (for
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FIGURE 1 | Cross-validated hindcasts (red) vs. observations (black) for the

Dec-Jan-Feb rainfall season of the farm located in the central interior of South

Africa. The two horizontal lines respectively represent the 25th percentile value

(purple) and the 75th percentile value (orange) of the climatological record. The

Pearson correlation value between hindcast and observed is significant at the

98.6% level of confidence.

FIGURE 2 | As for Figure 1, but for the Nov-Dec-Jan rainfall of the first farm

located in the northwestern interior of South Africa. The correlation value’s level

of confidence is at the 99.8% level.

FIGURE 3 | As for Figure 1, but for the Nov-Dec-Jan rainfall of the second

farm located in the northwestern interior of South Africa. The correlation

value’s level of confidence is at the 99.7% level.

example, 60% chance of above-, 30% of near- and 10% chance
of below-normal rainfall) by means of quantifying the skill of
the forecast based on its effective return. Here, we calculate the
cumulative profit values over a number of probabilistic forecasts
based on an arbitrary ZAR100 investment in the first year. The
return on investment is calculated based on “fair odds” and
assuming that the ZAR100 is spread across the forecast categories
in proportion to the forecast probabilities. Thismeans that for the
observed category (above, below or normal), the farmer realizes
effectively triple the investment in that category each year. The
results shown on the cumulative profit figures (Figures 6–10)
can be interpreted as follows: for example, the cumulative profit
value of, say, 10 found for a specific year later on means that the

FIGURE 4 | As for Figure 1, but for the Jan-Feb-Mar rainfall of the farm

located in the northern interior of Namibia. The correlation value’s level of

confidence is at the 99.99% level.

FIGURE 5 | As for Figure 1, but for Jun-Jul-Aug rainfall at the farm located in

the southwestern Cape of South Africa. The correlation value’s level of

confidence is at the 99.4% level.

initial investment of ZAR100 in the first year would be worth
ZAR(100× 10=) ZAR 1,000 in that specific year. One would (in
this case study) subsequently invest, theoretically, all ZAR1000
based on the next year’s forecast, and so forth. Skilful forecasts are
associated with an increase in profits, while poorer performing
forecasts are associated with a decrease in profits. This high
skill—high profits relationship was clearly demonstrated in a
study on the seasonal rainfall and inflows predictability for the
Lake Kariba catchment which is located over central southern
Africa (Muchuru et al., 2014, 2016).

Questions to Farmers
Formulating precise questions without a proper understanding
of the farms (and how they are managed) is, it should be noted,
not the objective of this study. In fact, we have set out here to
show that in using rainfall data provided by the farmer, skillful
forecast models, albeit only at a 1-month lead-time (although
we argue that this may still have utility), can be developed for
the farm. We propose further that this development may be able
to inspire and support interest by the farmer to engage in a
co-learning process with climate modelers, in order to eventually
improve forecast development, usability, uptake and constructive
use. To this end, the following questions, along with the specific
farm’s hindcasts (Figures 1–5) and cumulative profits graphs
(Figures 6–10), were given to the farmer:

1. What decision might you make based on the forecasts
presented to you?
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FIGURE 6 | Cumulative profits graph based on 9-years of probabilistic

Dec-Jan-Feb rainfall forecasts for the farm located in the central interior of

South Africa, to communicate the monetary value of probabilistic forecasts.

The higher the amount of capital placed on a forecast that is correct, the

higher the profit or return will be.

FIGURE 7 | As for Figure 6, but for Nov-Dec-Jan rainfall forecasts for the first

farm located in the northwestern interior of South Africa.

2. Do the forecasts and what turned out to be the case have to be
close together for a farming decision based on the forecast to
be effective?

3. What percentage of farm expenditure or profit will be
enhanced if the decision based on the forecast was correct?

4. Do you tend to trust the forecasts more or less so because data
from your farm was used to produce the forecasts?

5. Do you want any improvements in the forecasts provided?
6. What is the ideal lead-time (in months) the forecasts should

be provided before the onset of the rainy season to help you to
better prepare and make farming decisions?

RESULTS

Deterministic Hindcasts
The selection of the five farms from the more than 20 farmers
who responded to the call tomake their rainfall data available is of
course, fairly limited. However, we wanted to use rainfall data that
are not only restricted to the summer rainfall regions of South
Africa, where predictability studies have been conducted for a
number of decades already (see references in Landman, 2014).

FIGURE 8 | As for Figure 6, but for 13-years and for Nov-Dec-Jan rainfall

forecasts for the second farm located in the northwestern interior of

South Africa.

FIGURE 9 | As for Figure 6, but for 20-years and for Jan-Feb-Mar rainfall

forecasts for the farm located in the northern interior of Namibia.

FIGURE 10 | As for Figure 6, but for 18-years and for Jun-Jul-Aug rainfall

forecasts for the farm located in the southwestern Cape of South Africa.

We are therefore grateful that a farmer from the southwestern
Cape has made data available for this study in a region that has
only recently been shown to have some level of forecast skill
(Archer et al., 2019). Further, the Grootfontein area of Namibia
has a small number of farmers that have over recent years been
actively engaging with seasonal forecastmodelers in South Africa.
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As a result, including that area was considered likely to prove
useful. Moreover, as stated earlier, we are only presenting the
forecasts for farms where we have found predictability to be
present. Finally, farm data has been collected, but has neither
been analyzed nor used in the development of forecast models yet
for some farms, owing to the fact that we only recently received
the data.

We begin our presentation of the seasonal rainfall predictions
by considering hindcasts for the three farms in the summer
rainfall region of South Africa, located respectively in the
central and north-western interior (two) regions of South
Africa. Figure 1 shows the results for the central interior, and
Figures 2, 3 for the north-western interior. Similar skill levels
are found for the three farms, but the seasonal-to-interannual
variation of both the observed and hindcast data differ.
Notwithstanding, rainfall hindcasts during the strong El Niño
events of 1997/98 and 2015/16 tend to show negative anomalies,
although the outcome was not as severe for the 1997/98 season.
The ENSO-neutral year of 2019/20 is associated with high rainfall
totals for these three farms, even though the hindcast for that
year does not always pick up on the high rainfall outcomes.
The 2019/20 example may yet be another reminder of the major
challenges faced in developing good forecasts for South Africa,
when we are in an ENSO-neutral season (Landman and Beraki,
2012), notwithstanding the possible presence of climate factors in
addition to ENSO that also have been found to be associated with
southern African rainfall. These include sea-surface temperature
of the Indian and Atlantic Ocean (Mason, 1995), dipole modes in
the Indian Ocean (Reason, 2001; Washington and Preston, 2006;
Hoell et al., 2017) and the Madden-Julian Oscillation (Pohl et al.,
2009). The important effect of specific boundary forcing (e.g.,
ENSO) on the seasonal prediction skill for a given year remains
an important consideration in seasonal forecasting (Hoell and
Eischeid, 2019).

Figure 4 shows the hindcast results for the farm site in
northern Namibia. This area is associated with good forecast
skill during ENSO years (Landman and Beraki, 2012), and it is
thus likely that the phase of ENSO is largely responsible for the
relatively good level of skill found for the farm there. A variety of
farming activities are found in that part of Namibia, including
cattle and maize (as well as wildlife management in different
forms, in certain areas).

The southwestern Cape farm is also associated with significant
predictability (Figure 5), but the rainfall model did not perform
skilfully during the more recent years of the test period, especially
for the 2018 season when the hindcast shows a large positive
anomaly during a period when the southwestern Cape was facing
significant water use challenges owing to prolonged droughts
(Otto et al., 2018).

Potential Economic Value of the Hindcasts
Figures 6–10 show the cumulative profit values for the five farms
over varying test periods. We arbitrarily selected the lengths
of these periods on condition that the most recent years are
included in the analysis. These figures show the economic value
of skillful forecasts—but also what may happen with accumulated
profits, when there is a sequence of poorly performing forecasts.

Except for one of the South African farms and the Namibian
farm, the accumulated profits become negative at the end of the
forecast period.

The results of this economic value analysis shows that much
more work has to be done in the investigation of the financial
viability of introducing seasonal forecasts in decision-making
in agriculture in southern Africa. This is not surprising as we
have used an idealized calculation here to illustrate the method,
whereas in the real world cumulative profits would depend on
input costs and the price the crop is sold for, all of which vary
from year to year. In a real sense, we are very early in the process
of truly working with the agricultural sector in southern Africa
in a way that truly captures iterative and longstanding processes
of co-learning.

RESPONSE FROM FARMERS

Our discussion on the farmer’s responses start with the farm
in northern Namibia, as forecast skill and economic profit are
found to be highest for this farm of the five farms considered,
and the response from the farmer has been comprehensive
and positive. It is important to note that forecasts in real-time
produced by UP for this particular farm have been provided to
the farmer since 2018. Owing to this already existing relationship
between the farmer and the forecast producer, it may be expected
to find a more positive response from the farmer. In fact,
the farmer states that the UP seasonal forecasts do influence
farming decisions, and that the forecast service provided to the
farmer is such that in future the farmer will consider to only
use UP forecasts for farming decision-making—including, for
example, decisions as how many hectares to stock or destock
with cattle. Notwithstanding the recent good forecasts provided
to the farmer, the farmer will continue to require that forecasts
for future seasons capture the amplitude of the anomalous
dry or wet season, due to high risks and profitability, and the
unavailability of maize insurance in Namibia. When asked about
percentage farm expenditure or profitmaking, the farmer stated
that cattle profit or loss is about 40% of the farming, maize is
also about 40%—while the rest is barbeque wood or charcoal
produced from invader bush. Because cattle and maize both rely
on seasonal climate, the farmer claims that seasonal forecasts
play a significant role in profit or loss planning for the farm. In
addition, the farmer states that profits can increase by at least
a further 10% in a favorable rainy season which is predicted
in advance, whereas in dry seasons, the farmer has to focus
primarily on wood and charcoal. In reply to the question if
forecasts that use data from the farm increase trust in forecasts,
the farmer claims that the forecasts produced this way, especially
for the 2020 summer season of high spatial variability, provided
unprecedented guidance on expected rainfall outcomes. The
farmer was happy to have used the UP forecasts for the past
season regarding the planting of maize on the farm. However,
the farmer would like to also see forecasts from neighboring
farms (within a 20–50 km radius)—hopefully, thus, more farmers
from the region will join the UP initiative. In addition to having
more forecasts for the region, the farmer also require forecasts
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at multiple month lead-times—for instance, as maize farmer
planning has to start as early as August for the first half of
summer (Oct-Nov-Dec) as well as for the main rainfall season
of Jan-Feb-Mar. As a cattle farmer, forecasts at such lead-times
should also be able to advise on whether or not to sell cattle early
in the season, or, if the farmer can delay the sale of existing cattle
until February (the price per head picks up again in November
after an initial drop).

The responses from the three farmers in the summer rainfall
region are less comprehensive, but still valuable. The first farmer
in the northwestern interior (see Figures 2, 7) states that seasonal
forecasts may influence his decisions on which crops to consider
planting for a coming season, and also decisions relating to
planting dates of the crops. Furthermore, seasonal forecasts
should be able to help provide a holistic view on expenditure;
for example the purchasing of farming equipment and fertilizer.
However, forecasts need to be skillful and such forecasts may
contribute to as much as 30% of the profit, according to the
farmer. The farmer is also convinced that the inclusion of his
own data in the development of a seasonal rainfall forecast model
for his farm has made forecast more trustworthy as compared
to forecasts available from other sources. The farmer would also,
however, like to see his data being used to make forecasts for
individual calendar months to supplement the seasonal forecasts,
and that lead-times are extended tomake forecasts for the coming
summer rainfall season as early as July or August.

The second farmer in the northwestern interior (Figures 3, 8)
seems to be most interested in the forecasts when the forecasts
favor an anomalously wet season. During such seasons the
farmer will apply more fertilizer than would be the case for even
“normal” years, and as a result boost production. As was stated by
the first northwest farmer, forecasts need to be skillful before their
potential can be fully realized. In fact, the second farmer would
like to see more years of the test period as skillfully predicted as
the years from 2005 to 2012 (Figure 3) since skillful forecasts can
increase profits by asmuch as 25%. The farmer does not, however,
have a lot of confidence in the current forecast model for his
farm, notwithstanding the incorporation of his rainfall data in
the model (in which he is confident they have been accurately
recorded). Effectively, before the farmer would invest in such
forecasts for his farm, he requires a significant improvement in
forecast performance. On a positive note, he requires forecast
lead-times of only a month or two, so an improved forecast
system does not additionally have to cater for long lead-times.

The farmer in the central interior of South Africa stopped
farming actively on his farm about 2 years ago, after selling more
than 70% of his land. Although he still resides on the remaining
land, he has since become a commodity trader. In spite of this
development, his view on the utility of seasonal forecasts may still
be of some use. In fact, he claims that as a speculator, he does
consider seasonal forecasts to a limited extent, and that skillful
forecasts may be able to make his business about 10% more
profitable. However, he is of the opinion that the inclusion of his
own data in the development of a forecast model for his farm has
not necessarily made the forecasts for his farmmore trustworthy.
If the forecasts can improve, however, he would like to receive
forecasts for the whole year and not just for the main 3-month

rainfall season, and that these forecasts are issued at lead-times
ranging from 4 to 6 months.

The farmer from the southwestern Cape believes that a
number of farming decisions will be positively influenced by
good and reliable seasonal forecasts. Even decisions as (in his
view) mundane as how much effort must be spent to prepare
the dirt roads for the winter months will benefit from skillful
forecasts. Perhaps more importantly, decisions on those areas in
which to plant crops in that year can benefit the most. However,
from the hindcast graph provided to the farmer, the forecasts
made for those years from 2010 are not very useful. These poor
forecasts over the most recent years reduced the confidence the
farmer may have in forecasts for coming seasons. Poor forecasts
are especially problematic if the forecast is for a wet season and it
turns out to be dry. Moreover, when the forecast indicated a wet
season (in the above-normal category) then the outcome should
at least be above the climatological average. Although there seems
to be a lack of confidence in seasonal forecasts for that region, the
farmer does state that there is a tendency to have increased faith
in forecast models that include rainfall data from the farm.

When asked what percentage of farm expenditure or profit
might be enhanced if the decision based on the forecast were
correct, it was clear that the Cape farmer has not really considered
this aspect thus far in farming operations. This may be the result
of the general lack of available seasonal forecasts for South Africa’s
winter rainfall region. The farmer’s previous experience with
forecasts available online is that they generally do not give a
clear direction in which the coming rainfall season was headed.
Notwithstanding, the farmer states that more accurate seasonal
forecasts will definitely have a positive effect on profit, but such an
effort is currently difficult to quantify. Accurate forecasts would
be especially beneficial if they can give guidance on particular
months, not only on 3-month seasons. For example, if the
forecast shows an enhanced likelihood of a dry winter, guidance
on which single month has the biggest chance of receiving some
rain will enable farmers to plant just before or after most of the
rainfall has been received. Skillful forecasts, as was the case for the
farmers in the summer rainfall areas, need to be made at several
months lead-time in order to be most beneficial for decision-
making. The farmer states that a 6-month lead-time would be
preferred even if the forecast only provides a general direction—
for example, if the consensus is for a wet or for a dry winter
season. A more detailed forecast will be helpful 3 months before
the winter season, including which single month is most likely
to be wet. This information will allow for significantly improved
planning for planting, especially if the forecasts also include the
expected dominating wind direction.

SUMMARY AND CONCLUSIONS

Statistical post-processing is required to improve on seasonal
forecasts from global models (Barnston and Tippett, 2017).
In addition to corrections of model biases and adjusting the
variances of model output fields, statistical models can also be
developed to relate global climate model output to commodities
such as dry-land crop yields. Recently, such a procedure
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was used to develop statistical seasonal forecast models for
malaria occurrence over the Limpopo province of South Africa
(Landman et al., 2020). The malaria modeling was proven
successful, not only as a consequence of the skilful models
developed, but also as a result of the engagement between
modelers and health practitioners in the region during the
development stage of the models and the subsequent high uptake
of the malaria forecasts. This successful collaboration required
the provision of malaria data to modelers who in turn used the
malaria data to develop forecast models in real-time. We wanted
to show here that a similar co-production process can potentially
lead to improved forecast value and uptake by a number of
commercial farmers in southern Africa.

Rainfall data from five farms within southern Africa are
considered. The statistical rainfall models for all five farms
show statistically significant correlations (p > 0.05) between
rainfall hindcasts and observed values, even though some
of the years over the hindcast period are predicted poorly
(Figures 1–5). Notwithstanding poor forecasts, there are a
good number of consecutive seasons during which farmers
can potentially experience enhanced profits based on forecasts
(Figures 6–10). However, since there will always be seasons when
even probabilistic seasonal forecasts will turn out to be less useful,
farmers may benefit from knowing in advance when such seasons
may occur and/or which seasons are more likely to be associated
with reliable forecasts (Hoell and Eischeid, 2019).

This notion of “predicting” how reliable the probabilistic
forecast for the next season is, is of course, difficult to do.
However, verification work on hindcast data has provided
the following general guideline that can also be followed by
farmers in the larger part of southern Africa, namely, “no
ENSO, no forecast” (e.g., Landman and Beraki, 2012). This
guideline suggests that during ENSO-neutral seasons, farmers
may improve their position by ignoring seasonal forecasts for
planning purposes during such seasons. In addition to this
guideline, probabilistic verification over the retro-active periods
used for the profit calculations (Figures 6–10) shows that the
relative operating characteristic scores (an indication of forecast
discrimination; Wilks, 2011) for two of the South African farms
in the summer rainfall region is about 0.8 for the extreme
below-normal category and <0.5 for the extreme above-normal
category. This result shows that these two farmers can be more
confident when the forecast direction for a coming season shows
drought (although we are not making claims here about the
reliability of the forecast probabilities). Therefore, if an El Niño
event is present (not ENSO-neutral), and the forecast for these
two farms suggests a drought, this may be the point when these
farmers should act on the forecast, by investing in protective
action (Richardson, 2000).

In general, the farmers claim that using seasonal forecast can
improve their profits. The prospects of using seasonal forecasts
by the South African farmers seems to be viewed as less than that
expressed by the Namibian farmer, who seems more optimistic
about the forecasts. Two reasons for this conclusion are proposed
here. The first is that there has been a track record, albeit short,
and consequently greater trust between forecast user and forecast
produced in the case of the Namibian farm. The second is

that seasonal rainfall for the Namibian farm has higher forecast
skill, and, thus, forecasts are subsequently associated with greater
economic value.

When asked how forecasts can be improved and what their
required forecast lead-time should be, most of the farmers
wanted lead-times longer than the 1-month lead time hindcasts
presented to them. This requirement should be achievable since
skilful seasonal forecasts for parts of southern Africa have
been shown to be possible at lead-times up to 3 or even 4
months (Landman et al., 2012). Further improvements could
be achieved by making forecasts for individual months within
a 3- month season. Higher temporal resolution forecasting has
received some attention in the region (Phakula et al., 2018), but
needs to be developed further. Further improvements may be
possible through the use of dynamical variables from the GCMs
as predictors for the statistical downscaling, instead of rainfall
which is sometimes less well simulated. This could help build
confidence in those farmers who observed the current forecasts
are not sufficiently skilful.

This study is limited in the sense that only a small sample of
only commercial farmers are considered in the analysis, and that
even for the five farmers included here, the interaction between
forecast user and producer has been brief. There remains a lot of
co-learning to explore. For example, although cumulative profit
results (Figures 6–10) were also presented to the farmers, and
there was a question posed to them on their expected profits
when using the forecasts, none of the farmers referred to the
cumulative profit graphs on their responses—even though they
were presented with an explanation on the interpretation of
the graphs. This interaction may be improved in the future by
engaging in the co-production of cumulative profit calculations,
utilizing specific input costs and crop prices which are realized at
each individual farm and therefore making the calculations more
realistic for each farming enterprise.

Notwithstanding the caveats presented above, we feel we
have moved further toward co-learning and co-development in
agriculture in the region, including learning from this process.
However, we need to iteratively improve on our engagement with
the farmers, in order to develop a track record of trust, reach
out to more farmers to make their data available for forecast
model development for their respective farms, provide honest
assessments on forecast performance and capability, and expand
on the notion that using forecasts can be profitable, while being
clear on the conditions under which that may occur.
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